High Doping Effects on In-situ and Ex-situ Ohmic Contacts to n-InGaAs

Ashish Baraskar*, Mark A. Wistey, Vibhor Jain, Uttam Singisetti, Greg Burek, Brian J. Thibault, Arthur C. Gossard and Mark J. W. Rodwell
ECE and Materials Departments, University of California, Santa Barbara

Yong J. Lee
Intel Corporation, Technology Manufacturing Group, Santa Clara, CA
Outline

• Motivation
 – Low resistance contacts for high speed HBTs
 – Approach

• Experimental details
 – Contact formation
 – Fabrication of Transmission Line Model structures

• Results
 – Doping characteristics
 – Effect of doping on contact resistivity
 – Effect of annealing

• Conclusion
Outline

• **Motivation**
 – Low resistance contacts for high speed HBTs
 – Approach

• **Experimental details**
 – Contact formation
 – Fabrication of Transmission Line Model structures

• **Results**
 – Doping characteristics
 – Effect of doping on contact resistivity
 – Effect of annealing

• **Conclusion**
Device Bandwidth Scaling Laws for HBT

To double device bandwidth:

- Cut transit time 2x:
 - Reduce thickness 2:1 😊
 - Capacitance increases 2:1 😞
- Cut RC delay 2x
 - **Scale contact resistivities by 4:1**

\[
\frac{1}{2\pi f_T} = \tau_{in} + RC
\]

\[
f_{\text{max}} = \sqrt{\frac{f_T}{8 \cdot \pi \cdot (R_{bb} \cdot C_{eb})_{\text{eff}}}}
\]

HBT: Heterojunction Bipolar Transistor

Uttam Singisetti, DRC 2007

InP Bipolar Transistor Scaling Roadmap

<table>
<thead>
<tr>
<th>Emitter:</th>
<th>512</th>
<th>256</th>
<th>128</th>
<th>64</th>
<th>32</th>
<th>width (nm)</th>
<th>access (\rho), ((\Omega \cdot \mu m^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base:</td>
<td>300</td>
<td>175</td>
<td>120</td>
<td>60</td>
<td>30</td>
<td>contact width (nm)</td>
<td>contact (\rho) ((\Omega \cdot \mu m^2))</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>2.5</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_t):</td>
<td>370</td>
<td>520</td>
<td>730</td>
<td>1000</td>
<td>1400</td>
<td>GHz</td>
<td></td>
</tr>
<tr>
<td>(f_{max}):</td>
<td>490</td>
<td>850</td>
<td>1300</td>
<td>2000</td>
<td>2800</td>
<td>GHz</td>
<td></td>
</tr>
</tbody>
</table>

- Contact resistance serious barrier to THz technology

Less than 2 \(\Omega \cdot \mu m^2 \) contact resistivity required for simultaneous THz \(f_t \) and \(f_{max} \)*

*M.J.W. Rodwell, CSICS 2008
Approach

To achieve low resistance, stable ohmic contacts

• **Higher number of active carriers**
 - Reduced depletion width
 - Enhanced tunneling across metal-semiconductor interface

• **Better surface preparation techniques**
 - Ex-situ contacts: treatment with UV-O$_3$, HCl etch
 - In-situ contacts: no air exposure before metal deposition

• **Use of refractory metal for thermal stability**
Outline

• Motivation
 – Low resistance contacts for high speed HBTs and FETs
 – Approach

• Experimental details
 – Contact formation
 – Fabrication of Transmission Line Model structures

• Results
 – Doping characteristics
 – Effect of doping on contact resistivity
 – Effect of annealing

• Conclusion
Epilayer Growth

Semiconductor epilayer growth by Solid Source Molecular Beam Epitaxy (SS-MBE) – n-InGaAs/InAlAs

- Semi insulating InP (100) substrate
- Unintentionally doped InAlAs buffer
- Electron concentration determined by Hall measurements

<table>
<thead>
<tr>
<th>Layer Description</th>
<th>Thickness</th>
<th>Composition</th>
<th>Dopant</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 nm In${0.53}$Ga${0.47}$As: Si</td>
<td>n-type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 nm In${0.52}$Al${0.48}$As</td>
<td>NID buffer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi-insulating InP Substrate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Two Types of Contacts Investigated

- **In-situ contacts: Mo**
 - Samples transferred under vacuum for contact metal deposition
 - no air exposure

- **Ex-situ contacts: Ti/Ti$_{0.1}$W$_{0.9}$**
 - exposed to air
 - surface treatment before contact metal deposition

<table>
<thead>
<tr>
<th>Contact metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 nm In${0.53}$Ga${0.47}$As: Si (n-type)</td>
</tr>
<tr>
<td>150 nm In${0.52}$Al${0.48}$As: NID buffer</td>
</tr>
</tbody>
</table>

Semi-insulating InP Substrate
In-situ contacts

In-situ Molybdenum (Mo) deposition
- E-beam chamber connected to MBE chamber

Why Mo?
- Refractory metal (melting point ~ 2623 C)
- Work function ~ 4.6 (± 0.15) eV, close to the conduction band edge of InGaAs
- Easy to deposit by e-beam technique
- Easy to process and integrate in HBT process flow

<table>
<thead>
<tr>
<th>Layer Description</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 nm in-situ Mo</td>
<td></td>
</tr>
<tr>
<td>100 nm In_{0.53}Ga_{0.47}As: Si (n-type)</td>
<td></td>
</tr>
<tr>
<td>150 nm In_{0.52}Al_{0.48}As: NID buffer</td>
<td></td>
</tr>
<tr>
<td>Semi-insulating InP Substrate</td>
<td></td>
</tr>
</tbody>
</table>
Ex-situ contacts

Ex-situ Ti/Ti\textsubscript{0.1}W\textsubscript{0.9} contacts on InGaAs

- Surface preparation
 - Oxidized with UV-ozone for 10 min
 - Dilute HCl (1:10) etch and DI rinse for 1 min each
- Immediate transfer to sputter unit for contact metal deposition
- Ti: Oxygen gettering property, forms good ohmic contacts*

2009 Electronic Materials Conference

June 24-26, 2009 – University Park, PA

Ashish Baraskar
TLM (Transmission Line Model) fabrication

- E-beam deposition of Ti, Au and Ni layers
- Samples processed into TLM structures by photolithography and liftoff
- Mo and Ti/TiW dry etched in SF$_6$/Ar with Ni as etch mask, isolated by wet etch

<table>
<thead>
<tr>
<th>Layer Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 nm ex-situ Ni</td>
</tr>
<tr>
<td>500 nm ex-situ Au</td>
</tr>
<tr>
<td>20 nm ex-situ Ti</td>
</tr>
<tr>
<td>Mo or Ti/TiW</td>
</tr>
<tr>
<td>100 nm In${0.53}$Ga${0.47}$As: Si (n-type)</td>
</tr>
<tr>
<td>150 nm In${0.52}$Al${0.48}$As: NID buffer</td>
</tr>
<tr>
<td>Semi-insulating InP Substrate</td>
</tr>
</tbody>
</table>
Resistance Measurement

- Resistance measured by Agilent 4155C semiconductor parameter analyzer

- TLM pad spacing varied from 0.6-26 µm; verified from scanning electron microscope

- TLM Width ~ 10 µm
Error Analysis

• Error due to extrapolation*
 – 4-point probe resistance measurements on Agilent 4155C
 – For the smallest TLM gap, R_c is 40% of total measured resistance

• Metal Resistance
 – Minimized using thick metal stack
 – Minimized using small contact widths
 – Correction included in data

• Overlap Resistance
 – Higher for small contact widths
Outline

• Motivation
 – Low resistance contacts for high speed HBTs and FETs
 – Approach

• Experimental details
 – Contact formation
 – Fabrication of Transmission Line Model structures

• Results
 – Doping characteristics
 – Effect of doping on contact resistivity
 – Effect of annealing

• Conclusion
Results: Doping Characteristics

Enhanced n for colder growths

-hypothesis: As-rich surface drives Si onto group-III sites

n saturates at high dopant concentration
Results: Contact Resistivity

<table>
<thead>
<tr>
<th>Metal Contact</th>
<th>Active Carriers (cm(^{-3}))</th>
<th>(\rho_c) ((\Omega)-(\mu m^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-situ Mo</td>
<td>6 \times 10^{19}</td>
<td>1.1(\pm)0.6</td>
</tr>
<tr>
<td>In-situ Mo</td>
<td>4.2 \times 10^{19}</td>
<td>2.0(\pm)1.1</td>
</tr>
<tr>
<td>Ex-situ Ti/Ti({0.1})W({0.9})</td>
<td>4.2 \times 10^{19}</td>
<td>2.1(\pm)1.2</td>
</tr>
</tbody>
</table>

- Mo contacts: in-situ deposition; clean interface
- Ti: oxygen gettering property

\[
2 \cdot R_c = \frac{2 \cdot \sqrt{\rho_c \cdot R_{Sh}}}{W}
\]
Results: Effect of doping-I

- Contact resistivity (ρ_c) ↓ with ↑ in electron concentration

T_{sub}: 440 °C

Contact Resistivity (Ω-µm²)

Active Carriers ($\times 10^{19}$ cm⁻³)

Total Si atoms ($\times 10^{19}$ cm⁻³)
Results: Effect of doping-II

Data suggests tunneling.

Tunneling \(\rightarrow \rho_c \propto \exp\left(\frac{1}{\sqrt{N_d}}\right) \)*

Thermionic Emission \(\rightarrow \rho_c \sim \text{constant} \)*

High active carrier concentration is the key to low resistance contacts

* Physics of Semiconductor Devices, SM Sze
Contacts annealed under N\textsubscript{2} flow for 60 secs

- Mo contacts stable to at least 400°C
- Ti/Ti\textsubscript{0.1}W\textsubscript{0.9} contacts degrade on annealing*

Conclusion

• Extreme Si doping improves contact resistance
• In-situ Mo and ex-situ Ti/Ti$_{0.1}$W$_{0.9}$ give low contact resistance
 - Mo contacts are thermally stable
 - Ti/Ti$_{0.1}$W$_{0.9}$ contacts degrade
• $\rho_c \sim (1.1 \pm 0.6) \ \Omega \cdot \mu m^2$ for in-situ Mo contacts
 - less than $2 \ \Omega \cdot \mu m^2$ required for simultaneous THz f_t and f_{max}

✓ Contacts suitable for THz transistors
Thank You!

Questions?

Acknowledgements
ONR, DARPA-TFAST, DARPA-FLARE
Extra Slides
Correction for Metal Resistance in 4-Point Test Structure

From hand analysis & finite element simulation

Error term ($-R_{metal}/3$) from metal resistance
Effect changes measured ρ_c by $\sim40\%$ (@1.3 Ω-μm^2)

All data presented corrects for this effect
Doping Vs As flux

\[\text{As flux (x10^{-6}) torr} \]

\[\text{Doping density (x10^{19}) cm}^{-3} \]

\[T_{\text{sub}}: 440 \, \text{C} \]
Active Carrier, Mobility Vs Total Si

Active Carriers ($\times 10^{19} \text{cm}^{-3}$) vs Total Si atoms ($\times 10^{19} \text{cm}^{-3}$)

Active Carrier

Mobility ($\text{cm}^2/\text{V} \cdot \text{s}$)
Strain Effects

\[[\text{Si}] = 1.5 \times 10^{20} \text{ cm}^{-3}, \quad n = 6 \times 10^{19} \text{ cm}^{-3} \]

\[
\frac{(a_{\text{sub}} - a_{\text{epi}})}{a_{\text{sub}}} = 5.1 \times 10^{-4}
\]

Random and Offset Error in 4155C

- Random Error in resistance measurement ~ 0.5 mΩ
- Offset Error < 5 mΩ*

*4155C datasheet
Accuracy Limits

• Error Calculations
 – $dR = 50 \, m\Omega$ (Safe estimate)
 – $dW = 1 \, \mu m$
 – $d\text{Gap} = 20 \, nm$
• Error in $\rho_c \sim 40\%$ at $1.1 \, \Omega-\mu m^2$