III-V FET Channel Designs for High Current Densities and Thin Inversion Layers

Mark Rodwell
University of California, Santa Barbara

Coauthors:

W. Frensley:
University of Texas, Dallas

S. Steiger, S. Lee, Y. Tan, G. Hegde, G. Klimek
Network for Computational Nanotechnology, Purdue University

E. Chagarov, L. Wang, P. Asbeck, A. Kummel,
University of California, San Diego

T. Boykin
University of Alabama, Huntsville

J. N. Schulman
The Aerospace Corporation, El Segundo, CA.

Acknowledgements: Herb Kroemer (UCSB), Bobby Brar (Teledyne)
Art Gossard (UCSB), John Albrecht (DARPA)
Thin, high current density III-V FET channels

InGaAs, InAs FETs

THz & VLSI need **high current**

low m → **high velocities**

FET scaling for speed requires increased charge density

low m → **low charge density**

Density of states bottleneck (Solomon & Laux IEDM 2001)

→ *For < 0.6 nm EOT, silicon beats III-Vs*

Open the bottle!

low transport mass → high v_{carrier}

multiple valleys or anistropic valleys → high DOS

Use the L valleys.
Simple FET Scaling

Goal: double transistor bandwidth when used in any circuit
→ reduce 2:1 all capacitances and all transport delays
→ keep constant all resistances, voltages, currents

gate-source, gate-drain fringing capacitances:
0.15-0.25 fF/µm

\[
g_{m}/W_g \sim \nu \cdot \left(\frac{C_{gs}}{L_g W_g}\right)
\]

\[
C_{gs}/W_g = \left(\frac{C_{gs}}{W_g L_g}\right) \cdot L_g
\]

To double speed, we must double \((g_{m}/W_g)\), \((I_D/W_g)\), \((C_{gs}/L_g W_g)\), \(n_s\)
FET Scaling Laws

Changes required to double device / circuit bandwidth.

laws in constant-voltage limit:

<table>
<thead>
<tr>
<th>FET parameter</th>
<th>change</th>
</tr>
</thead>
<tbody>
<tr>
<td>gate length</td>
<td>decrease 2:1</td>
</tr>
<tr>
<td>current density (mA/μm), g_m (mS/μm)</td>
<td>increase 2:1</td>
</tr>
<tr>
<td>channel 2DEG electron density</td>
<td>increase 2:1</td>
</tr>
<tr>
<td>electron mass in transport direction</td>
<td>constant</td>
</tr>
<tr>
<td>gate-channel capacitance density</td>
<td>increase 2:1</td>
</tr>
<tr>
<td>dielectric equivalent thickness</td>
<td>decrease 2:1</td>
</tr>
<tr>
<td>channel thickness</td>
<td>decrease 2:1</td>
</tr>
<tr>
<td>channel density of states</td>
<td>increase 2:1</td>
</tr>
<tr>
<td>source & drain contact resistivities</td>
<td>decrease 4:1</td>
</tr>
</tbody>
</table>

Current densities should double
Charge densities must double
Semiconductor Capacitances Must Also Scale

\[(V_{gs} - V_{th}) \]

\[c_{ox} \]

\[c_{\text{depth}} = \varepsilon / T_{\text{inversion}} \]

\[(E_f - E_{\text{well}}) / q \]

\[c_{dos} = q^2 g m^* / 2 \pi \hbar^2 \]

channel charge \(= q n_s = c_{dos} (V_f - V_{\text{well}}) = q (E_f - E_{\text{well}}) \cdot (gm^* / 2\pi\hbar^2) \)

Inversion thickness & density of states must also both scale.
Calculating Current: Ballistic Limit

Channel Fermi voltage = voltage applied to c_{dos}

$$E_f = qV_f = m^*v_f^2 / 2$$

mean electron velocity $= \overline{v} = (4/3\pi)v_f$

Channel charge: $\rho_s = c_{dos}(V_f - V_c) = \frac{c_{dos}c_{equiv}}{c_{equiv} + c_{dos}}(V_{gs} - V_{th})$

$$c_{dos} = q^2gm^*/2\hbar^2 = c_{dos,o} \cdot g \cdot (m^*/m_o), \text{ where } g \text{ is the # of band minima}$$

$$\Rightarrow J = \left(84 \frac{mA}{\mu m}\right) \frac{g \cdot (m^*/m_o)^{1/2}}{\left(1 + (c_{dos,o} / c_{ox}) \cdot g \cdot (m^*/m_o)\right)^{3/2}} \left(\frac{V_{gs} - V_{th}}{1 \text{ V}}\right)^{3/2}$$

Do we get highest current with high or low mass?
InGaAs MOSFETs: superior I_d to Si at large EOT.

InGaAs MOSFETs: inferior I_d to Si at small EOT.

Solomon / Laux Density-of-States-Bottleneck → III-V loses to Si.
Transit delay versus mass, # valleys, and EOT

\[\tau_{ch} = \frac{Q_{ch}}{I_D} = K_2 \cdot \left(\frac{L_g}{2.52 \cdot 10^7 \text{ cm/s}} \right) \cdot \left(\frac{1 \text{ Volt}}{V_{gs} - V_{th}} \right)^{1/2} \]

where \(K_2 = \left(\frac{m^*}{m_0} \right)^{1/2} \cdot \left(1 + \frac{c_{dos,o}}{c_{eq}} \cdot g \cdot \frac{m^*}{m_0} \right)^{1/2} \)

Low \(m^* \) gives lowest transit time, lowest \(C_{gs} \) at any EOT.

EOT includes wavefunction depth term (mean wavefunction depth*\(\varepsilon_{\text{SiO}_2} / \varepsilon_{\text{semiconductor}} \))
Low effective mass also impairs vertical scaling

Shallow electron distribution needed for high I_d, high g_m / G_{ds} ratio, low drain-induced barrier lowering.

Energy of L^{th} well state $\propto L^2 / m^* T_{well}^2$.

For thin wells,
 only 1st state can be populated.
For very thin wells,
 1st state approaches L-valley.

Only one vertical state in well.
Minimum ~ 3 nm well thickness.
\rightarrow Hard to scale below 10-16 nm L_g.
III-V Band Properties, normal \{100\} Wafer

\[
\begin{array}{c}
\Gamma \\
\begin{array}{c}
\begin{array}{c}
\text{material} \\
\text{substrate}
\end{array} \\
\begin{array}{c}
\text{In}_{0.5}\text{Ga}_{0.5}\text{As} \\
\text{InP}
\end{array} \\
\begin{array}{c}
\text{InAs} \\
\text{InP}
\end{array} \\
\begin{array}{c}
\text{GaAs} \\
\text{GaAs}
\end{array} \\
\begin{array}{c}
\text{Si} \\
\text{Si}
\end{array}
\end{array}
\begin{array}{c}
\text{\(m^* / m_o\)} \\
0.045 \\
0.026 \\
0.067 \\

\end{array}
\end{array}
\begin{array}{c}
\text{\(\Gamma\) valley} \\
\begin{array}{c}
\begin{array}{c}
\text{\(m_t / m_o\)} \\
1.29 \\
1.13 \\
1.30 \\
0.92
\end{array} \\
\begin{array}{c}
\begin{array}{c}
\text{\(E_x - E_\Gamma\)} \\
0.83 \text{ eV} \\
0.87 \text{ eV} \\
0.47 \text{ eV} \\
0.92 \text{ (negative)}
\end{array}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\text{\(X\) valley} \\
\begin{array}{c}
\begin{array}{c}
\text{\(m_t / m_o\)} \\
1.29 \\
1.13 \\
1.30 \\
0.92
\end{array} \\
\begin{array}{c}
\begin{array}{c}
\text{\(E_x - E_\Gamma\)} \\
0.83 \text{ eV} \\
0.87 \text{ eV} \\
0.47 \text{ eV} \\
0.92 \text{ (negative)}
\end{array}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\text{\(L\) valley} \\
\begin{array}{c}
\begin{array}{c}
\text{\(m_t / m_o\)} \\
1.23 \\
0.65 \\
1.90
\end{array} \\
\begin{array}{c}
\begin{array}{c}
\text{\(E_L - E_\Gamma\)} \\
0.47 \text{ eV} \\
0.57 \text{ eV} \\
0.28 \text{ eV}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\]

L-valley transverse masses are comparable to \(\Gamma\) valleys.
Consider instead: valleys in \{111\} Wafer

![Diagram showing valleys in \{111\} Wafer]

<table>
<thead>
<tr>
<th>Material</th>
<th>Substrate</th>
<th>(m^*/m_o)</th>
<th>(m_t/m_o)</th>
<th>(m_t/m_o)</th>
<th>(E_x - E_G)</th>
<th>(E_L - E_G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{In}{0.5}\text{Ga}{0.5}\text{As})</td>
<td>InP</td>
<td>0.045</td>
<td>1.29</td>
<td>0.19</td>
<td>0.83 eV</td>
<td></td>
</tr>
<tr>
<td>InAs</td>
<td>InP</td>
<td>0.026</td>
<td>1.13</td>
<td>0.16</td>
<td>0.87 eV</td>
<td></td>
</tr>
<tr>
<td>GaAs</td>
<td>GaAs</td>
<td>0.067</td>
<td>1.30</td>
<td>0.22</td>
<td>0.47 eV</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>Si</td>
<td>---</td>
<td>0.92</td>
<td>0.19</td>
<td>(negative)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.90</td>
</tr>
</tbody>
</table>

Orientation: one L valley has high vertical mass

X valleys & three L valleys have moderate vertical mass
Valley in \{111\} wafer: with quantization in thin wells

Selects L[111] valley; low transverse mass
$\{111\}$ Γ-L FET: Candidate Channel Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>m^*/m_o</th>
<th>m_l/m_o</th>
<th>m_t/m_o</th>
<th>$E_L - E_\Gamma$</th>
<th>Well thickness for Γ–L alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{In}{0.5}\text{Ga}{0.5}\text{As}$</td>
<td>0.045</td>
<td>1.23</td>
<td>0.062</td>
<td>0.47 eV</td>
<td>1 nm (?)</td>
</tr>
<tr>
<td>GaAs</td>
<td>0.067</td>
<td>1.90</td>
<td>0.075</td>
<td>0.28 eV</td>
<td>2 nm</td>
</tr>
<tr>
<td>GaSb</td>
<td>0.039</td>
<td>1.30</td>
<td>0.10</td>
<td>0.07 eV</td>
<td>4 nm</td>
</tr>
<tr>
<td>Ge</td>
<td>0.039</td>
<td>1.58</td>
<td>0.08</td>
<td></td>
<td>- - -</td>
</tr>
</tbody>
</table>

* $E_L - E_\Gamma$ is the energy difference between the L valley and the Γ valley, indicating the alignment of the conduction bands at the Γ and L points of the Brillouin zone.

For a negative value of $E_L - E_\Gamma$, the conduction bands are aligned at the Γ and L points, which is desirable for FET performance.
Standard III-V FET: Γ valley in [100] orientation

3 nm GaAs well
AlSb barriers

$\Gamma = 0$ eV
$L = 177$ meV
$X[100] = 264$ meV
$X[010] = 337$ meV
1st Approach: Use both Γ and L valleys in [111]

2.3 nm GaAs well
AlSb barriers
[111] orientation

$\Gamma = 41$ meV
$L_{[11\bar{1}]} \,(1) = 0$ meV
$L_{[11\bar{1}]} \,(2) = 84$ meV
$L_{[11\bar{1}]} \,\text{etc.} = 175$ meV
$X = 288$ meV
Combined Γ-L wells in \{111\} orientation vs. Si

\[
J = K_1 \cdot \left(\frac{84 \text{ mA}}{\mu\text{m}}\right) \cdot \left(\frac{V_{gs} - V_{th}}{1 \text{ V}}\right)^{3/2}, \quad \text{where} \quad K_1 = \frac{g \cdot (m^*/m_o)^{1/2}}{\left(1 + (c_{dos,o} / c_{equiv}) \cdot g \cdot (m^*/m_o)^{1/2}\right)}/(1 + (c_{dos,o} / c_{equiv}) \cdot g \cdot (m^*/m_o)^{3/2})
\]

EOT includes the wavefunction depth term (mean wavefunction depth $\times \varepsilon_{SiO_2} / \varepsilon_{\text{semiconductor}}$).

Combined (Γ-L) transport

- 2 nm GaAs Γ/L well $\rightarrow g = 2, m^*/m_o = 0.07$
- 4 nm GaSb Γ/L well $\rightarrow m_{\Gamma}^*/m_o = 0.039, m_{L,t}^*/m_o = 0.1$
2nd Approach: Use L valleys in Stacked Wells

Three 0.66 nm GaAs wells
0.66 nm AlSb barriers
[111] orientation

$L_{[111]}(1) = 0 \text{ meV}$
$L_{[111]}(2) = 61 \text{ meV}$
$L_{[111]}(3) = 99 \text{ meV}$

$\Gamma = 338 \text{ meV}$
$L_{[111]}$, etc $= 232 \text{ meV}$
$X = 284 \text{ meV}$
Increase in C_{dos} with 2 and 3 wells
3 High Current Density (111) GaAs/AlSb Designs

(100) orientation

3 nm GaAs well AlSb barriers

Wavefunctions

Charge density, 1/cm³

position, nm

2.3 nm GaAs well AlSb barriers

N₅ (1/cm²)

position, nm

(111) orientation

Two 0.66 nm GaAs wells 0.66 nm AlSb barriers

Wavefunctions

Charge density, 1/cm³

position, nm

Three 0.66 nm GaAs wells 0.66 nm AlSb barriers

N₅ (1/cm²)

position, nm

(Vgs - Vth), V

(Vgs - Vth), V

(Vgs - Vth), V

(Vgs - Vth), V
Concerns

Nonparabolic bands reduce bound state energies

Failure of effective mass approximation: 1-2 nm wells

1-2 monolayer fluctuations in growth
 → scattering → collapse in mobility
Network for Computational Nanotechnology (NCN)

- AlSb-GaSb triple-QW
- QW extension ~1.2nm

- Non-primitive unit cell in lateral directions
- Therefore zone folding in $E(k)$

- Supervised by Profs. Gerhard Klimeck and Timothy Boykin
- Simulation software: OMEN3D by Hoon Ryu and Sunhee Lee
- TB parameters for AlSb and GaSb: Ganesh Hegde and Yachhua Tan
Band structure along [-1 1 0]

Effective masses:
E=1.587: m*=0.0875
E=1.589: m*=0.0624
E=1.600: m*=0.0902
E=1.601: m*=0.0650
E=1.607: m*=0.0937
E=1.608: m*=0.0663
E=1.872: m*=0.0972
E=1.874: m*=0.0706
E=1.877: m*=0.1448
E=1.878: m*=0.1122
E=1.877: m*=0.1066
E=1.878: m*=0.0767
E=1.882: m*=0.1053
E=1.883: m*=0.0756
E=1.940: m*=0.1395
E=1.940: m*=0.1154
E=1.964: m*=0.0853
E=1.965: m*=0.0751
1-D FET array = 2-D FET with high transverse mass

Weak coupling → narrow transverse-mode energy distribution → high density of states
3rd Approach: High Current Density L-Valley MQW FINFETs

valley energies $E_{\text{min},i} = qV_{\text{min},i} = \frac{h^2\pi^2}{2mW^2} t^2$

current $I = \sum_{i} \frac{gq^2}{\pi \hbar} (V_f - V_{\text{min},i})$

charge $Q_{ch} = \sum_{i} \frac{g_l}{\pi \hbar} \sqrt{2m^* q (V_f - V_{\text{min},i})}$

gate voltage $V_{gs} = V_f + Q_{ch} / C_{ox}$
4th Approach: \{110\} Orientation → Anisotropic Bands

L\[111\], L\[1\overline{1}\overline{1}\]: moderate vertical mass → valleys populate
High in-plane mass perpendicular to transport → high density of states
Low in-plane mass parallel to transport → high carrier velocity

L\[1\overline{1}\overline{1}\], \[\overline{1}11\]: low vertical mass → depopulate
High in-plane mass parallel to transport → low carrier velocity

Challenge: only moderate energy separation between desired and undesired valleys.
Anisotropic bands, e.g. \{110\}

\[J = K_1 \cdot \left(84 \frac{\text{mA}}{\mu \text{m}} \right) \cdot \left(V_{gs} - V_{th} \right)^{3/2} \]

where \(K_1 = \frac{g \cdot (m_{\perp}^{1/2} / m_o^{1/2})}{\left(1 + (c_{d_\text{os,o}} / c_{\text{equiv}}) \cdot g \cdot (m_{\perp}^{1/2} m_\|^{1/2} / m_o)\right)^{3/2}} \)

Transport in \{110\} oriented \(L \) valleys

\[c_{\text{equiv}} = \left(\frac{1}{\varepsilon_{ox}} + \frac{1}{\varepsilon_{\text{semi}}} \right)^{-1} = \frac{\varepsilon_{\text{SiO}_2}}{\varepsilon_{\text{EOT}}} \]

GaAs and Ge \{110\} MOSFETs with \(L \)-valley transport

GaAs: \(n = 2, m_t / m_o = 0.075, m_\| / m_o = 1.9 \quad \text{Ge: } n = 2, m_t / m_o = 0.081, m_\| / m_o = 1.58 \)
THz FET scaling: with & without increased DOS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>50</th>
<th>35</th>
<th>25</th>
<th>18</th>
<th>13</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate length</td>
<td>nm</td>
<td>50</td>
<td>35</td>
<td>25</td>
<td>18</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Gate barrier EOT</td>
<td>nm</td>
<td>1.2</td>
<td>0.83</td>
<td>0.58</td>
<td>0.41</td>
<td>0.29</td>
<td>0.21</td>
</tr>
<tr>
<td>Well thickness</td>
<td>nm</td>
<td>8.0</td>
<td>5.7</td>
<td>4.0</td>
<td>2.8</td>
<td>2.0</td>
<td>1.4</td>
</tr>
<tr>
<td>S/D resistance</td>
<td>Ω·μm</td>
<td>210</td>
<td>150</td>
<td>100</td>
<td>74</td>
<td>53</td>
<td>37</td>
</tr>
<tr>
<td>Effective mass</td>
<td>*m₀</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td># band minima</td>
<td></td>
<td>1</td>
<td>1.4</td>
<td>2</td>
<td>2.8</td>
<td>4</td>
<td>5.7</td>
</tr>
<tr>
<td>Canonical</td>
<td></td>
<td>1</td>
<td>1.4</td>
<td>2</td>
<td>2.8</td>
<td>4</td>
<td>5.7</td>
</tr>
<tr>
<td>Fixed DOS</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stepped #</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Scaled FET performance: fixed vs. increasing DOS

Increased density of states needed for high drive current, fast logic @ 16, 11, 8 nm nodes
10 nm / 3 THz III-V FETs: Challenges & Solutions

To double the bandwidth:

- **Gate dielectric**: decrease EOT 2:1

- **S/D access regions**: decrease resistivity 2:1

- **Channel**: keep same velocity, but thin channel 2:1, increase density of states 2:1

S/D regrowth

Wistey et al
Singisetti et al
Bandstructure of the [111] AISb/GaSb triple-QW

Sebastian Steiger
Network for Computational Nanotechnology (NCN)
Electrical and Computer Engineering
steiger@purdue.edu

- Supervised by Profs. Gerhard Klimeck and Timothy Boykin
- Simulation software: OMEN3D by Hoon Ryu and Sunhee Lee
- TB parameters for AISb and GaSb: Ganesh Hegde and Yaohua Tan
MOSFET Scaling Laws

<table>
<thead>
<tr>
<th>parameter</th>
<th>law</th>
<th>parameter</th>
<th>law</th>
</tr>
</thead>
<tbody>
<tr>
<td>gate length L_g, source-drain contact lengths $L_{S/D}$ (nm)</td>
<td>γ^{-1}</td>
<td>gate-channel capacitance C_{g-ch}</td>
<td>γ^{-1}</td>
</tr>
<tr>
<td>$L_{S/D}$ (nm)</td>
<td></td>
<td>$=[1/C_{ox} + 1/C_{semi} + 1/C_{DOS}]^{-1}$ (fF)</td>
<td></td>
</tr>
<tr>
<td>gate width W_g (nm)</td>
<td>γ^{-1}</td>
<td>transconductance $g_m \sim C_{g-ch} v_{injection} / L_g$ (mS)</td>
<td>γ^0</td>
</tr>
<tr>
<td>equivalent oxide thickness $T_{eq} = T_{ox} \varepsilon_{SiO_2} / \varepsilon_{oxide}$ (nm)</td>
<td>γ^{-1}</td>
<td>gate-source, gate-drain fringing capacitances $C_{gs,f} \propto \varepsilon W_g$, $C_{gd} \propto \varepsilon W_g$ (fF)</td>
<td>γ^{-1}</td>
</tr>
<tr>
<td>dielectric capacitance $C_{ox} = \varepsilon_{SiO_2} L_g W_g / T_{eq}$ (fF)</td>
<td>γ^{-1}</td>
<td>S/D access resistances R_s, R_d (Ω)</td>
<td>γ^0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S/D contact resistivity R_s / W_g, R_d / W_g ($\Omega - \mu m$)</td>
<td>γ^{-1}</td>
</tr>
<tr>
<td>inversion thickness $T_{inv} \sim T_{well} / 2$ (nm)</td>
<td>γ^{-1}</td>
<td>S/D contact resistivity ρ_c ($\Omega - \mu m^2$)</td>
<td>γ^{-2}</td>
</tr>
<tr>
<td>semiconductor capacitance $C_{semi} = \varepsilon_{semi} L_g W_g / T_{inv}$ (fF)</td>
<td>γ^{-1}</td>
<td>drain current $I_d \sim g_m (V_{gs} - V_{th})$ (mA)</td>
<td>γ^0</td>
</tr>
<tr>
<td>DOS capacitance $C_{DOS} = q^2 nm^* L_g W_g / 2\pi \hbar^2$ (fF)</td>
<td>γ^{-1}</td>
<td>drain current density (mA/μm)</td>
<td>γ^1</td>
</tr>
<tr>
<td>electron density n_s (cm$^{-2}$)</td>
<td>γ^1</td>
<td>temperature rise (one device, K)</td>
<td>$\sim W_g^{-1}$</td>
</tr>
</tbody>
</table>
2 nm well: \(\Gamma \) and \(L(l) \) minima both populated.
\[\Gamma: m^* / m_o = 0.067 \quad \text{L(l): } \quad m_{\text{lateral}}^* / m_o = 0.075 \]
Low \(m^* \) \(\rightarrow \) high carrier velocity
Two band minima \(\rightarrow \) doubles \(c_{\text{dos}} \)
2 nm well \(\rightarrow \) good electrostatics at \(\sim 5 - 7 \) nm \(L_g \).
GaSb well, AlSb barriers, on \{110\} GaSb