In-situ Ohmic Contacts to p-InGaAs

Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault, Arthur Gossard and Mark Rodwell
ECE and Materials Departments, University of California, Santa Barbara, CA

Mark Wistey
Electrical Engineering, University of Notre Dame, IN
Outline

• Motivation
 – Low resistance contacts for high speed HBTs
 – Approach

• Experimental details
 – Contact formation
 – Fabrication of Transmission Line Model structures

• Results
 – Doping characteristics
 – Effect of doping on contact resistivity
 – Effect of annealing

• Conclusion
Outline

• Motivation
 – Low resistance contacts for high speed HBTs
 – Approach

• Experimental details
 – Contact formation
 – Fabrication of Transmission Line Model structures

• Results
 – Doping characteristics
 – Effect of doping on contact resistivity
 – Effect of annealing

• Conclusion
Device Bandwidth Scaling Laws for HBT

To double device bandwidth:

• Cut transit time 2x
• Cut RC delay 2x

Scale contact resistivities by 4:1*

\[
\frac{1}{2\pi f_{\tau}} = \tau_{in} + RC
\]

\[
f_{\text{max}} = \sqrt{\frac{f_{\tau}}{8 \cdot \pi \cdot (R_{bb} \cdot C_{cb})_{\text{eff}}}}
\]

HBT: Heterojunction Bipolar Transistor

*M.J.W. Rodwell, CSICS 2008
InP Bipolar Transistor Scaling Roadmap

<table>
<thead>
<tr>
<th>Emitter</th>
<th>256</th>
<th>128</th>
<th>64</th>
<th>32</th>
<th>(\text{nm width})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>(\Omega \cdot \mu \text{m}^2 \text{ access } \rho)</td>
</tr>
<tr>
<td>Base</td>
<td>175</td>
<td>120</td>
<td>60</td>
<td>30</td>
<td>(\text{nm contact width})</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5</td>
<td>2.5</td>
<td>1.25</td>
<td>(\Omega \cdot \mu \text{m}^2 \text{ contact } \rho)</td>
</tr>
<tr>
<td>Collector</td>
<td>106</td>
<td>75</td>
<td>53</td>
<td>37.5</td>
<td>(\text{nm thick})</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>18</td>
<td>36</td>
<td>72</td>
<td>(\text{mA/} \mu\text{m}^2 \text{ current})</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.3</td>
<td>2.75</td>
<td>2-2.5</td>
<td>(\text{V breakdown})</td>
</tr>
<tr>
<td>(f_t)</td>
<td>520</td>
<td>730</td>
<td>1000</td>
<td>1400</td>
<td>(\text{GHz})</td>
</tr>
<tr>
<td>(f_{\text{max}})</td>
<td>850</td>
<td>1300</td>
<td>2000</td>
<td>2800</td>
<td>(\text{GHz})</td>
</tr>
</tbody>
</table>

Contact resistivity serious barrier to THz technology

Less than 2 \(\Omega \cdot \mu \text{m}^2\) contact resistivity required for simultaneous THz \(f_t\) and \(f_{\text{max}}\)
Approach

To achieve low resistance, stable ohmic contacts

- **Higher number of active carriers**
 - Reduced depletion width
 - Enhanced tunneling across metal-semiconductor interface

- **Better surface preparation techniques**
 - For efficient removal of oxides/impurities
Approach (contd.)

- Scaled device → thin base
 (For 80 nm device: $t_{\text{base}} < 25 \text{ nm}$)
- Non-refractory contacts may diffuse at higher temperatures through base and short the collector
- Pd/Ti/Pd/Au contacts diffuse about 15 nm in InGaAs on annealing

Need a **refractory** metal for thermal stability
Outline

• Motivation
 – Low resistance contacts for high speed HBTs and FETs
 – Approach

• Experimental details
 – Contact formation
 – Fabrication of Transmission Line Model structures

• Results
 – Doping characteristics
 – Effect of doping on contact resistivity
 – Effect of annealing

• Conclusion
Epilayer Growth

Epilayer growth by Solid Source Molecular Beam Epitaxy (SS-MBE) – p-InGaAs/InAlAs
- Semi insulating InP (100) substrate
- Un-doped InAlAs buffer
- CBr_4 as carbon dopant source
- Hole concentration determined by Hall measurements

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 nm In${0.53}$Ga${0.47}$As: C</td>
<td>(p-type)</td>
</tr>
<tr>
<td>100 nm In${0.52}$Al${0.48}$As:</td>
<td>NID buffer</td>
</tr>
<tr>
<td>Semi-insulating InP Substrate</td>
<td></td>
</tr>
</tbody>
</table>
In-situ contacts

In-situ molybdenum (Mo) deposition
- E-beam chamber connected to MBE chamber
- No air exposure after film growth

Why Mo?
- Refractory metal (melting point ~ 2620 °C)
- Easy to deposit by e-beam technique
- Easy to process and integrate in HBT process flow

20 nm in-situ Mo

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 nm In${0.53}$Ga${0.47}$As: C (p-type)</td>
<td></td>
</tr>
<tr>
<td>100 nm In${0.52}$Al${0.48}$As: NID buffer</td>
<td></td>
</tr>
<tr>
<td>Semi-insulating InP Substrate</td>
<td></td>
</tr>
</tbody>
</table>
TLM (Transmission Line Model) fabrication

- E-beam deposition of Ti, Au and Ni layers
- Samples processed into TLM structures by photolithography and liftoff
- Contact metal was dry etched in SF$_6$/Ar with Ni as etch mask, isolated by wet etch

<table>
<thead>
<tr>
<th>Layer Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 nm ex-situ Ni</td>
</tr>
<tr>
<td>500 nm ex-situ Au</td>
</tr>
<tr>
<td>20 nm ex-situ Ti</td>
</tr>
<tr>
<td>20 nm in-situ Mo</td>
</tr>
<tr>
<td>100 nm In${0.53}$Ga${0.47}$As: C (p-type)</td>
</tr>
<tr>
<td>100 nm In${0.52}$Al${0.48}$As: NID buffer</td>
</tr>
<tr>
<td>Semi-insulating InP Substrate</td>
</tr>
</tbody>
</table>
Resistance Measurement

- Resistance measured by Agilent 4155C semiconductor parameter analyzer
- TLM pad spacing (L_{gap}) varied from 0.5-26 μm; verified from scanning electron microscope (SEM)
- TLM Width $\sim 25 \, \mu m$

\[2 \cdot R_C = \frac{2 \cdot \sqrt{\rho_C \cdot R_{Sh}}}{W} \]
Error Analysis

- **Extrapolation errors:**
 - 4-point probe resistance measurements on Agilent 4155C
 - Resolution error in SEM

- **Processing errors:**
 - Variable gap spacing along width (W)
 - Overlap resistance
Outline

• Motivation
 – Low resistance contacts for high speed HBTs and FETs
 – Approach

• Experimental details
 – Contact formation
 – Fabrication of Transmission Line Model structures

• Results
 – Doping characteristics
 – Effect of doping on contact resistivity
 – Effect of annealing

• Conclusion
Doping Characteristics-I

- Hole concentration saturates at high CBr fluxes
- Number of di-carbon defects ↑ as CBr flux ↑

Hole concentration Vs CBr$_4$ flux

$T_{\text{sub}} = 460 \, ^{\circ}\text{C}$
Doping Characteristics-II

Hole concentration Vs V/III flux

As V/III ratio ↓ hole concentration ↑

hypothesis: As-deficient surface drives C onto group-V sites
Doping Characteristics-III

Hole concentration Vs substrate temperature

Tendency to form di-carbon defects ↑ as Tsub ↑

Hole concentration Vs substrate temperature

![Graph showing hole concentration vs substrate temperature](image)

Tendency to form di-carbon defects ↑ as Tsub ↑*

Results: Contact Resistivity - I

<table>
<thead>
<tr>
<th>Metal Contact</th>
<th>ρ_c ($\Omega\mu m^2$)</th>
<th>ρ_h ($\Omega\mu m$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-situ Mo</td>
<td>2.2 ± 0.8</td>
<td>15.4 ± 2.6</td>
</tr>
</tbody>
</table>

- Hole concentration, $p = 1.6 \times 10^{20}$ cm$^{-3}$
- Mobility, $\mu = 36$ cm2/Vs
- Sheet resistance, $R_{sh} = 105$ ohm/μm
 (100 nm thick film)

ρ_c lower than the best reported contacts to pInGaAs ($\rho_c = 4$ $\Omega\mu m^2$)$^{[1,2]}$

Results: Contact Resistivity - II

Contact Resistivity, \(\rho_c \) (\(\Omega \cdot \mu m^2 \))

Tunneling \(\rightarrow \) \(\rho_c \propto \exp\left(\frac{1}{\sqrt{p}}\right) \)

Thermionic Emission \(\rightarrow \) \(\rho_c \sim \text{constant} \)

Data suggests tunneling

High active carrier concentration is the key to low resistance contacts

* Physics of Semiconductor Devices, S M Sze
Thermal Stability - I

Mo contacts annealed under N$_2$ flow for 60 mins. at 250 °C

<table>
<thead>
<tr>
<th></th>
<th>Before annealing</th>
<th>After annealing</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_c (Ω-μm2)</td>
<td>2.2 ± 0.8</td>
<td>2.8 ± 0.9</td>
</tr>
</tbody>
</table>

- ρ_c increases on annealing
- Mo reacts with residual interfacial carbon?

Thermal Stability - II

Mo contacts annealed under N\textsubscript{2} flow for 60 mins. at 250 °C

TEM of Mo-pInGaAs interface
- Suggests sharp interface
- Minimal/No intermixing
Summary

• Maximum hole concentration obtained = 1.6×10^{20} cm$^{-3}$ at a substrate temperature of 350 °C

• Low contact resistivity with in-situ metal contacts (lowest $\rho_c = 2.2 \pm 0.8 \ \Omega \cdot \mu$m2)

✓ Contacts suitable for THz transistors
Thank You!

Questions?

Acknowledgements
ONR, DARPA-TFAST, DARPA-FLARE
Extra Slides
Correction for Metal Resistance in 4-Point Test Structure

\[
R_{\text{metal}} \quad (\rho_{\text{sheet}} \rho_{\text{contact}})^{1/2} / W \quad \rho_{\text{sheet}} L / W
\]

\[
(\rho_{\text{sheet}} \rho_{\text{contact}})^{1/2} / W + \rho_{\text{sheet}} L / W + R_{\text{metal}} / x
\]

Error term \((R_{\text{metal}} / x)\) from metal resistance
Random and Offset Error in 4155C

- Random Error in resistance measurement \(\sim 0.5 \text{ m}\Omega\)
- Offset Error < 5 m\(\Omega\)^*
Accuracy Limits

- Error Calculations
 - \(dR = 50 \text{ m}\Omega \) (Safe estimate)
 - \(dW = 1 \mu\text{m} \)
 - \(\text{dGap} = 20 \text{ nm} \)
- Error in \(\rho_c \sim 40\% \) at \(1.1 \Omega-\mu\text{m}^2 \)