InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts

Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell
ECE Department, University of California, Santa Barbara, CA 93106-9560
D Loubychev, A Snyder, Y Wu, J M Fastenau, W K Liu
IQE Inc., 119 Technology Drive, Bethlehem, PA 18015
Outline

- HBT Scaling Laws
- Refractory base ohmics
- Fabrication
- DHBT – Epitaxial Design and Results
- Summary
Bipolar transistor scaling laws

\[
\frac{1}{2\pi f_{tr}} = \tau_{tr} + RC \,
\]
\[
f_{\text{max}} = \sqrt{\frac{f_{\tau}}{8\pi R_{bb,\text{eff}} C_{cb,\text{eff}}}}
\]

To **double cutoff frequencies** of a mesa HBT, must:

Keep constant all resistances and currents

Reduce all capacitances and transit delays by 2

\[
\tau_b \approx T_b^2 / 2D_n + T_b / v_{\text{exit}}
\]
\[
\tau_c = T_c / 2v_{\text{sat}}
\]
\[
C_{cb} = \varepsilon A_c / T_c
\]
\[
I_{c,\text{max}} \propto v_{\text{eff}} A_e (V_{cb} + \phi_{bi}) / T_c^2
\]
\[
R_{ex} = \rho_{\text{contact}} / A_e
\]
\[
R_{bb} = \rho_{\text{sheet}} \left(\frac{W_e}{12L_e} + \frac{W_{bc}}{6L_e} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}
\]

Epitaxial scaling

Lateral scaling

Ohmic contacts

(emitter length \(L_e\))
<table>
<thead>
<tr>
<th>Design</th>
<th>Emitter</th>
<th>Base</th>
<th>Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (nm)</td>
<td>256</td>
<td>175</td>
<td>106</td>
</tr>
<tr>
<td>Access ρ (Ω·µm²)</td>
<td>8</td>
<td>10</td>
<td>106</td>
</tr>
<tr>
<td>Contact width (nm)</td>
<td>128</td>
<td>120</td>
<td>75</td>
</tr>
<tr>
<td>Contact ρ (Ω·µm²)</td>
<td>64</td>
<td>60</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance</th>
<th>Current density</th>
<th>Breakdown voltage</th>
<th>f_T</th>
<th>f_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA/µm²</td>
<td>9</td>
<td>4</td>
<td>520</td>
<td>850</td>
</tr>
<tr>
<td>V</td>
<td>18</td>
<td>3.3</td>
<td>730</td>
<td>1300</td>
</tr>
<tr>
<td>GHz</td>
<td>36</td>
<td>2.75</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>2-2.5</td>
<td></td>
<td></td>
<td>1400</td>
<td>2800</td>
</tr>
</tbody>
</table>

Rodwell, Le, Brar, Proceedings of IEEE, 2008
Contact diffusion

- Pd contacts diffuse in base (p-InGaAs)
- Contact resistance ↑ for thin base
- Limits base thickness
 → Scaling Limitation

15 nm Pd diffusion

100 nm InGaAs grown in MBE

Need for non-diffusive, refractory base metal
Refractory base ohmics

<table>
<thead>
<tr>
<th>Doping</th>
<th>Metal</th>
<th>Type</th>
<th>ρ_c (Ω-μm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5E20</td>
<td>Mo</td>
<td>As deposited</td>
<td>2.5</td>
</tr>
<tr>
<td>1.5E20</td>
<td>Ru/Mo</td>
<td>As deposited</td>
<td>1.3</td>
</tr>
<tr>
<td>1.5E20</td>
<td>W/Mo</td>
<td>As deposited</td>
<td>1.2</td>
</tr>
<tr>
<td>1.5E20</td>
<td>Ir/Mo</td>
<td>As deposited</td>
<td>1.0</td>
</tr>
<tr>
<td>2.2E20</td>
<td>Ir/Mo</td>
<td>As deposited</td>
<td>0.6</td>
</tr>
<tr>
<td>2.2E20</td>
<td>Ir/Mo</td>
<td>Annealed</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Refractory metal base contacts

Require a blanket deposition and etch-back process
Emitter process flow

- Mo contact to n-InGaAs for emitter
- W/TiW/SiO₂/Cr deposition
- SF₆/Ar etch
- SiNₓ Sidewall

Mo

Emitter cap

Emitter

Base

N-collector

Sub collector

InP substrate

Mo contact to *n*-InGaAs for emitter

W/TiW interface acts as shadow mask for base lift off

Collector formed via *lift off* and *wet etch*

BCB used to passivate and planarize devices
Base process flow – I

Blanket refractory metal

PR Planarization
Isotropic Dry etch of metal
Removes any Emitter-Base short
Base process flow – II

Lift-off Ti/Au
Low base metal resistance

Blanket SiN$_x$ mask
Etch base contact metal in the field

Ti$_{0.1}$W$_{0.9}$
W
Mo
InGaAs
InP

p+ InGaAs Base

SiN$_x$

Ti$_{0.1}$W$_{0.9}$
W
Mo
InGaAs
InP

p+ InGaAs Base
Base Planarization

Planarization: Emitter projecting from PR for W dry etch

Etch Back

Planarization Boundary
Epitaxial Design

<table>
<thead>
<tr>
<th>T (nm)</th>
<th>Material</th>
<th>Doping (cm$^{-3}$)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>In${0.53}$Ga${0.47}$As</td>
<td>8·1019 : Si</td>
<td>Emitter Cap</td>
</tr>
<tr>
<td>15</td>
<td>InP</td>
<td>5·1019 : Si</td>
<td>Emitter</td>
</tr>
<tr>
<td>15</td>
<td>InP</td>
<td>2·1019 : Si</td>
<td>Emitter</td>
</tr>
<tr>
<td>30</td>
<td>InGaAs</td>
<td>9·5·1019 : C</td>
<td>Base</td>
</tr>
<tr>
<td>4.5</td>
<td>In${0.53}$Ga${0.47}$As</td>
<td>9·1016 : Si</td>
<td>Setback</td>
</tr>
<tr>
<td>10.8</td>
<td>InGaAs / InAlAs</td>
<td>9·1016 : Si</td>
<td>B-C Grade</td>
</tr>
<tr>
<td>3</td>
<td>InP</td>
<td>6·1018 : Si</td>
<td>Pulse doping</td>
</tr>
<tr>
<td>81.7</td>
<td>InP</td>
<td>9·1016 : Si</td>
<td>Collector</td>
</tr>
<tr>
<td>7.5</td>
<td>InP</td>
<td>1·1019 : Si</td>
<td>Sub Collector</td>
</tr>
<tr>
<td>7.5</td>
<td>In${0.53}$Ga${0.47}$As</td>
<td>2·1019 : Si</td>
<td>Sub Collector</td>
</tr>
<tr>
<td>300</td>
<td>InP</td>
<td>2·1019 : Si</td>
<td>Sub Collector</td>
</tr>
<tr>
<td></td>
<td>Substrate</td>
<td>SI : InP</td>
<td></td>
</tr>
</tbody>
</table>

Low Base doping

→ Good refractory ohmics not possible
→ Pd/W contacts used

$V_{be} = 1 \text{ V}, V_{cb} = 0.7 \text{ V}, J_e = 25 \text{ mA/μm}^2$
Results - DC Measurements

BV_{ceo} = 2.4 V @ J_e = 1 kA/cm^2

\beta = 26

J_{KIRK} = 21 mA/\mu m^2

Common emitter I-V

@Peak f_{\tau}, f_{\text{max}}

J_e = 17.9 mA/\mu m^2

P = 30 mW/\mu m^2

Gummel plot
1-67 GHz RF Data

- $I_c = 22.4 \text{ mA}$
- $V_{ce} = 1.67 \text{ V}$
- $J_e = 17.9 \text{ mA/µm}^2$
- $V_{cb} = 0.7 \text{ V}$

Diagram Notes
- Single-pole fit to obtain cut-off frequencies
- $f_\tau = 410 \text{ GHz}$
- $f_{\text{max}} = 690 \text{ GHz}$
- $A_{je} = 0.22 \times 5.7 \text{ µm}^2$
\(R_{\text{ex}} = 6 \, \Omega \cdot \mu \text{m}^2 \)

Hybrid-\(\pi \) equivalent circuit from measured RF data
TEM

Large undercut in base mesa

Pd/W adhesion issue

→ High R_{bb}

→ Low f_{max}
Summary

- Demonstrated a **planarized, etch back process** for refractory base contacts
- Demonstrated DHBTs with peak $f_T/f_{max} = 410/690$ GHz
- Higher base doping, thinner base and refractory base ohmics needed to enable higher bandwidth devices
Thank You

Questions?

This work was supported by the DARPA THETA program under HR0011-09-C-006.

A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415