Regrown Ohmic Contacts to $\text{In}_x\text{Ga}_{1-x}\text{As}$ Approaching the Quantum Conductivity Limit

Jeremy J. M. Law,a,b Andy D. Carter,a Sanghoon Lee,a Arthur C. Gossard,a,b and Mark J. W. Rodwella

a) Department of Electrical and Computer Engineering, University of California, Santa Barbara
b) Materials Department, University of California, Santa Barbara
Outline

• Motivation

• Ballistic FET Current and TLM Quantum Conductance

• Process Flow

• Sample Structures
 − Regrowth TLM (RG-TLM)
 − Transmission Line Measurement (TLM)

• Results
 − Metal-semiconductor (TLM)
 − Metal-semiconductor and semiconductor-channel (RG-TLM)

• Theory Comparison

• Conclusion
Motivation

- Two interfaces of interest
 - Metal–regrowth interface
 - Regrowth–channel interface
- Sheet resistance of regrowth
- Sheet resistance of ungated region
- Must ascertain contribution to overall access resistance from all of above
FET Ballistic Current $=\text{TLM Quantum Conductance}$

- Fundamental limits to contact resistance to a two-dimensional channel?
- Quantum limited contact resistance1,2 equivalent to ballistic transconductance

charge density $\mu \left(E_f, E_c \right)^1$

velocity $\mu \left(E_f, E_c \right)^{1/2}$

current $\mu \left(E_{f,s}, E_c \right)^{3/2} \left(E_{f,d}, E_c \right)^{3/2}$

$\mu \left(V_{gs}, V_{th} \right)^{3/2} \left(V_{gd}, V_{th} \right)^{3/2}$

current $\mu \left(E_{f,d} + q V E_c \right)^{3/2} \left(E_{f,d}, E_c \right)^{3/2}$

$\mu \cdot V \times \left(E_{f,s}, E_c \right)^{1/2}$

$\mu \cdot V \times \left(\text{carrier density} \right)^{1/2}$

conductivity $\mu \left(\text{carrier density} \right)^{1/2}$

Regrowth TLM (RG TLM) Process Flow

- Understand source (regrowth) to channel interface
- Rudimentary process flow
- Approximates FET structure and process flow
 - Independent of high-k properties
- Four-point Kelvin measurement
TLM Process Flow

- Understand metal to source (regrowth) interface
- Rudimentary process flow
- Can be done on same die as RGTLM
- Four-point Kelvin measurement
Sample Structures: TLM

InAs RG on δ–doped 25 nm \(\text{In}_{0.53}\text{Ga}_{0.47}\)As channel

InAs RG on δ–doped 15 nm InAs channel

InAs RG on 100 nm \(n^+\) \(\text{In}_{0.53}\text{Ga}_{0.47}\)As channel

\(\text{In}_{0.53}\text{Ga}_{0.47}\)As → InAs RG on 100 nm \(n^+\) \(\text{In}_{0.53}\text{Ga}_{0.47}\)As channel
TLM Results

InAs RG on δ–doped
25 nm $\text{In}_{0.53}\text{Ga}_{0.47}\text{As}$ channel

Slope: 23.8 Ω; Intercept/2: 2.1 Ω–μm

InAs RG on 100 nm $n^+ \text{In}_{0.53}\text{Ga}_{0.47}\text{As}$ channel

Slope: 7.4 Ω; Intercept/2: 4.6 Ω–μm

InAs RG on δ–doped 15 nm InAs channel

Slope: 19.3 Ω; Intercept/2: 3.0 Ω–μm

In$_{0.53}$Ga$_{0.47}$As \rightarrow InAs RG on 100 nm $n^+ \text{In}_{0.53}\text{Ga}_{0.47}\text{As}$ channel

Slope: 11.3 Ω; Intercept/2: 3.0 Ω–μm
Sample Structures: RGTLM

InAs RG on δ-doped 25 nm \(\text{In}_{0.53}\text{Ga}_{0.47}\text{As}\) channel

InAs RG on δ-doped 15 nm InAs channel

InAs RG on 100 nm \(n^+\) \(\text{In}_{0.53}\text{Ga}_{0.47}\text{As}\) channel

\(\text{In}_{0.53}\text{Ga}_{0.47}\text{As} \rightarrow \text{InAs RG on 100 nm } n^+ \text{In}_{0.53}\text{Ga}_{0.47}\text{As channel}\)
Regrowth TLM Results

InAs RG on δ-doped 25 nm In$_{0.53}$Ga$_{0.47}$As channel

Slope: 540 Ω; Intercept/2: 120.8 Ω–μm

InAs RG on 100 nm n^+ In$_{0.53}$Ga$_{0.47}$As channel

Slope: 32 Ω; Intercept/2: 55.6 Ω–μm

InAs RG on δ-doped 15 nm InAs channel

Slope: 269 Ω; Intercept/2: 68.2 Ω–μm

In$_{0.53}$Ga$_{0.47}$As → InAs RG on 100 nm n^+ In$_{0.53}$Ga$_{0.47}$As channel

Slope: 15 Ω; Intercept/2: 12.7 Ω–μm
Results Summary

- Contact resistance to thin channels (small n_s) limited by quantum conductance
- Low contact resistance of $12.7 \Omega \cdot \mu m$ ($11.1 \Omega \cdot \mu m^2$)
- Contact resistance low n_s channels $136.4 \Omega \cdot \mu m$ close to theoretical $80 \Omega \cdot \mu m$

N^+ Regrowth

<table>
<thead>
<tr>
<th></th>
<th>Composition</th>
<th>Thickness</th>
<th>Doping</th>
<th>Sheet Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>InAs</td>
<td>60 nm</td>
<td>$5-10 \times 10^{19} \text{ cm}^{-3}$</td>
<td>23.8Ω</td>
</tr>
<tr>
<td></td>
<td>InAs</td>
<td>60 nm</td>
<td>$5-10 \times 10^{19} \text{ cm}^{-3}$</td>
<td>7.4Ω</td>
</tr>
<tr>
<td></td>
<td>InAs</td>
<td>60 nm</td>
<td>$5-10 \times 10^{19} \text{ cm}^{-3}$</td>
<td>19.3Ω</td>
</tr>
<tr>
<td></td>
<td>In${0.53}$Ga${0.47}$As → InAs</td>
<td>60 nm</td>
<td>$5-10 \times 10^{19} \text{ cm}^{-3}$</td>
<td>11.3Ω</td>
</tr>
</tbody>
</table>

Channel

<table>
<thead>
<tr>
<th></th>
<th>Composition</th>
<th>Thickness</th>
<th>Doping</th>
<th>Sheet Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In${0.53}$Ga${0.47}$As</td>
<td>25 nm</td>
<td>$9 \times 10^{12} \text{ cm}^{-2}$</td>
<td>540Ω</td>
</tr>
<tr>
<td></td>
<td>In${0.53}$Ga${0.47}$As</td>
<td>100 nm</td>
<td>$3-5 \times 10^{19} \text{ cm}^{-3}$</td>
<td>32Ω</td>
</tr>
<tr>
<td></td>
<td>InAs</td>
<td>15 nm</td>
<td>$9 \times 10^{12} \text{ cm}^{-2}$</td>
<td>269Ω</td>
</tr>
<tr>
<td></td>
<td>In${0.53}$Ga${0.47}$As</td>
<td>100 nm</td>
<td>$3-5 \times 10^{19} \text{ cm}^{-3}$</td>
<td>15Ω</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Access Resistivity</th>
<th>$120.8 \Omega \cdot \mu m$</th>
<th>$55.6 \Omega \cdot \mu m$</th>
<th>$68.2 \Omega \cdot \mu m$</th>
<th>$12.7 \Omega \cdot \mu m$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metal/Regrowth Contact Resistivity</td>
<td>$2.1 \Omega \cdot \mu m$</td>
<td>$4.6 \Omega \cdot \mu m$</td>
<td>$3.0 \Omega \cdot \mu m$</td>
<td>$3.0 \Omega \cdot \mu m$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.2 \Omega \cdot \mu m^2$</td>
<td>$1.5 \Omega \cdot \mu m^2$</td>
<td>$0.4 \Omega \cdot \mu m^2$</td>
<td>$0.8 \Omega \cdot \mu m^2$</td>
</tr>
</tbody>
</table>
Conclusion

• Ballistic FET current equivalent to quantum conductance of TLM
• Should not add to FET contact resistance
• Material independent, i.e. true for all semiconductor materials
• Metal–regrowth contact resistance is small portion of overall R_c
 – ~ $3.0 \, \Omega \cdot \mu m$ (1.0 $\Omega \cdot \mu m^2$)
• Regrown ohmic contacts (136 $\Omega \cdot \mu m$) within a factor of 2 of theoretical 80 $\Omega \cdot \mu m$
• 12.7 $\Omega \cdot \mu m$ (11.1 $\Omega \cdot \mu m^2$) is true measure of interface properties
 – This includes regrowth to channel and metal to regrowth
Backup slides
MBE Regrowth by Migration Enhance Epitaxy (MEE)

InAs Quasi MEE

- In, As, and Si shutters open
- As shutter open

InGaAs Quasi MEE

- In, Ga, As, and Si shutters open
- As shutter open
MBE Regrowth: Close to 2-D Quantum conductivity Limit:

Unidirectional 2D density of states: \(c_{dos,1} = \frac{q^2 g m^*}{2\pi \hbar^2} \)

Charge density in left-moving states: \(\rho_{s1} = c_{dos,1} V_{f1} \)

Leftward-moving Fermi Velocity: \(E_{f1} = q V_{f1} = \frac{m^* v_{f1}^2}{2} \rightarrow v_{f1} = \sqrt{2 q V_{f1} / m^*} \)

Mean leftward electron velocity: \(\bar{v}_1 = \frac{4}{3\pi} v_{f1} = \frac{4}{3\pi} \cdot \sqrt{2 q V_{f1} / m^*} \)

Leftward current: \(J_1 = \rho_{s1} \bar{v}_1 = c_{dos,1} V_{f1} \left(\frac{4}{3\pi} \right) \cdot \sqrt{2 q V_{f1} / m^*} \)

Total current: \(J = c_{dos,1} \left(\frac{4}{3\pi} \right) \cdot \sqrt{\frac{2 q}{m^*} \left(V_{f1}^{3/2} - V_{f2}^{3/2} \right)} \)

Conductivity: \(G = \frac{\partial J}{\partial V_f} = c_{dos,1} \left(\frac{4}{3\pi} \right) \cdot \sqrt{\frac{2 q}{m^*} \cdot \frac{3}{2} V_f^{1/2}} \)

\[
G_{valley} = \frac{q^2}{\hbar} \cdot \frac{2^{1/2}}{\pi^{3/2}} \cdot n_s^{1/2, valley} \text{ including spin degeneracy.}
\]

Total conductivity found by summing over valleys and vertical eigenstates:

UCSB regrowth resistance measurements are being limited by this effect.