Design of high-current L-valley GaAs/AlAs$_{0.56}$Sb$_{0.44}$/InP (111) ultra-thin-body nMOSFETs

Saumitra Mehrotra*, Michael Povolotskyi†, Jeremy Law‡, Tillmann Kubis*, Gerhard Klimeck*, and Mark Rodwell†
* Network for Computational Nanotechnology, Purdue University, West Lafayette, IN 47907, USA
† Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA

Abstract—We propose and analyze a high-current III-V transistor design using electron transport in the Γ- and L-valleys of (111) GaAs. Using $sp^3d^5s^*$ empirical tight-binding model for band-structure calculations and the top-of-the-barrier transport model, improved drive current is demonstrated using L-valley transport in a strained GaAs channel grown on an (111) InP substrate. At a body thickness of 2 nm the (111)GaAs/InP MOSFET design outperforms both (100) Si and (100) GaAs/InP for all EOTs larger than 0.3nm.

Index Terms—MOSFET, L-valley, tight-binding, GaAs, InP, top-of-the-barrier

I. INTRODUCTION

III-V nMOSFETs have small transport effective mass that provides high electron velocities and high on-state currents. However, small effective mass also leads to a small semiconductor density of states, and consequently III-V channels provide no benefit over Si for EOT < 0.6 nm [1]. This loss of state density can be compensated by using the highly anisotropic L-valley for electron transport [2]. Confining the channel along the (111) direction leads the L-valley to have a large confinement mass and much smaller in-plane transport mass. At some channel thickness, the Γ- and L-valleys are aligned in energy, increasing the state density and on-current [3]. Simulations in [3] ignored interactions of the channel wavefunction with gate dielectric and the well bottom barrier: here we report practical L-valley GaAs channel designs incorporating AlAs$_{0.56}$Sb$_{0.44}$ barriers to set the boundary conditions for Γ-L alignment.

II. DEVICE STRUCTURE

Interaction of the channel wavefunction with the amorphous gate dielectric is difficult to compute, hence ideal hydrogen-terminated semiconductor interfaces are often assumed in simulations. To prevent this interaction from changing the Γ-L energy alignment and dispersion, the designs here reported use thin AlAs$_{0.56}$Sb$_{0.44}$ cladding layers to strongly attenuate the channel wavefunction at the dielectric-semiconductor interface. Fig. 1 shows the device geometries under study in this paper. A single-gate (SG) MOSFET consists of a biaxially strained (3.67% mismatch with InP) GaAs channel grown on a 5nm AlAs$_{0.56}$Sb$_{0.44}$ barrier layer, lattice matched to InP. Two monolayers of AlAs$_{0.56}$Sb$_{0.44}$ serve as a cap-layer. Similarly, for a double-gate (DG) MOSFET a biaxial strained GaAs with AlAs$_{0.56}$Sb$_{0.44}$ cap layer on top and bottom are assumed.

Fig. 1. GaAs/AlAs$_{0.56}$Sb$_{0.44}$/InP (111) MOSFETs based on (a) a single gate with strained GaAs channel and AlAs$_{0.56}$Sb$_{0.44}$ as a capping and barrier layer (b) a double gate structure with strained GaAs channel AlAs$_{0.56}$Sb$_{0.44}$ capping layer.

Similar designs are used for GaAs/InP (100) and Si (100) (no cap layer) for comparison of device performance.

III. SIMULATION METHODOLOGY

Band structure calculations of the SG/DG structures (Fig. 1) are performed using an $sp^3d^5s^*$ empirical tight-binding model including spin-orbit coupling. GaAs has a smaller lattice constant than InP, leading to an in-plane tensile strain \simeq3.67% in GaAs. The biaxial strain is modeled as a homogenous strain tensor that affects the original atomic positions [4]. Strain effects are taken into account according to the Boykin model [5]. Both the channel material, GaAs and the capping layer AlAs$_{0.56}$Sb$_{0.44}$ are included in the simulation domain. Fig. 2 explicitly shows the effect of including a barrier layer on the band structure calculations. For a 2 nm thick, GaAs thin body structure grown on InP(111) with idealized hydrogen-terminated interfaces, the conduction band minima is formed by the L-valley states. The inclusion of thick AlAs$_{0.56}$Sb$_{0.44}$ layers on top and bottom reduces effective confinement and the Γ valley becomes the lowest-energy band. It should be noted that, electronic effects due to strain are included only
Fig. 2. Bandstructure calculations for 2 nm thick and biaxially strained
(a) GaAs/InP(111) and (b) GaAs/InP(111) with 5 nm thick AlAs$_{0.56}$Sb$_{0.44}$ layers.

for the GaAs material [5]. The AlAs$_{0.56}$Sb$_{0.44}$ layer, that is lattice matched to InP is not affected by strain.

To compare the device performance, 2D E-k relations are calculated for different device structures. The energy dependent density of states (DOS) and carrier velocity are then extracted from the band structure information. For GaAs/InP(111) case, <110> orientation is considered to be the transport orientation while for GaAs/InP(100) and Si(100) cases <100> is taken as the transport orientation. The DOS(E) and velocity(E) information are then used to calculate the on-state current (I_{on}) using the ballistic top-of-barrier transport model implemented in NEMO5 simulation package [6], [7].

IV. RESULTS

Fig. 3(a) shows the bandstructure calculations for GaAs UTB terminated by 2 - monolayer AlAs$_{0.56}$Sb$_{0.44}$ and lattice matched to InP. From the GaAs body thickness dependent band structure calculations it is revealed that L-valley minima transistor can be reached by confining GaAs to a 2 nm body thickness (marked in Fig. 3(a)). This particular structure is used for GaAs/InP(111) device performance comparison throughout this paper.

Fig. 4 compares state density and carrier velocity for the different channel designs. It is readily observed that Si(100) exhibits higher DOS and lower velocity when compared to GaAs/InP(100) which exhibits a high velocity but suffers from lower DOS. The small state density leads to the condition popularly known as ‘DOS bottleneck’ associated with low carrier effective mass III-V materials [1]. The GaAs/InP(111) transistor design aims to offest both the issues as will be shown later.

As a next step, ON state currents are calculated for 2 nm body structures with the channel material as GaAs/InP(111), GaAs/InP(100) and Si(100) structures. Fermi level E_f position in the on state for DG MOSFET and EOT=0.5 nm is also shown. Energy axis has been adjusted to the conduction band edge, E_C.

Fig 5 shows the gate capacitance (C_G) normalized to oxide capacitance (C_{OX}) for the DG MOSFET structures. It can
be deduced from Eq (2) a high C_{DOS} (directly related to DOS(E)) Eq (1) leads to C_G being closer to C_{OX}, or lower a DOS will lead to degraded C_G and ultimately on-state current (Eq 3). In Eq (2) D_{mean} is the mean wavefunction depth in the semiconductor and ϵ_s is the semiconductor permittivity. As expected GaAs/InP(100) which has a small confinement mass or lowest DOS has the smallest C_G. This is the ‘DOS bottleneck’ effect, which practically nullifies the expected gains from increasing the gate dielectric capacitance. This drawback can be minimized by utilizing L-valley minima transistor designs that allows multiple subbands close to band edge. The L-valley minima design of GaAs/InP(111) exhibits an increased C_G when compared to GaAs/InP(100). However, Si(100) still exhibits the highest gate capacitance owing to its large state density (Fig (4)). It should be noted that the GaAs/InP cases have further degraded capacitance due to the presence of AlAs$_{0.56}$Sb$_{0.44}$ cap layer.

\[C_{DOS} = q^2 \frac{dn_s}{dE_f} \]

\[C_G = (C_{DOS}^{-1} + C_{OX}^{-1} + D_{mean}/\epsilon_s)^{-1} \]

and,

\[I_{ON} = qC_G(V_{gs} - V_{th}) \times v_{avg} \]

Fig. 5. Gate capacitance normalized with oxide capacitance is shown for DG MOSFET. Gate capacitance calculated V_{gs}=0.5V and V_{ds}=0.05V

The final computed I_{on} values are shown in Fig. 6. GaAs/InP(111) exhibits an improved gate capacitance over GaAs/InP(100) and at the same time shows a higher carrier velocity over Si(100) MOSFET. This fact leads GaAs/InP(111) MOSFET to perform better than both GaAs/InP(100) and Si(100) MOSFET structures at higher EOT values. For SG and DG MOSFET designs, Si(100) surpasses GaAs/InP(100) in I_{on} \simeq 1.0 nm and \simeq 0.6 nm EOT, respectively. GaAs/InP(111) has a smaller density of states than Si (100), hence loses its advantage over Si at ultra thin EOT values. GaAs/InP(111) exhibits the highest on-current; only at \simeq 0.3 nm EOT is Si comparable. At EOT=0.5 nm, considered feasible for MOS-FETs at L_g=5nm, the GaAs/InP(111) design delivers 8.5% higher I_{on} than Si(100) DG MOSFETs and 18% higher than Si(100) SG MOSFETs confirming the efficacy of the Γ-L channel designs (see [8]).

V. CONCLUSIONS

GaAs/AlAs$_{0.56}$Sb$_{0.44}$/InP (111) channel designs are presented for high current MOSFETs. Using $sp^3d^5s^*$-SO bandstructure calculations it is showed that at \simeq 2 nm body thickness L valley minima can be achieved in GaAs/AlAs$_{0.56}$Sb$_{0.44}$/InP (111) quantum wells. Later, using the top-of-the-barrier transport model it is shown that GaAs/AlAs$_{0.56}$Sb$_{0.44}$/InP (111) orientation outperforms both Si(100) and GaAs/AlAs$_{0.56}$Sb$_{0.44}$/InP(100) at similar channel thicknesses for EOT >0.5nm. These results could be useful in design of future nanoscale device applications.

VI. ACKNOWLEDGMENT

The work is supported by National Science Foundation (award number ECCS-1125017)
REFERENCES

