Integrated Circuits for Wavelength Division De-multiplexing in the Electrical Domain

1H.C. Park, 1M. Piels, 2E. Bloch, 1M. Lu, 1A. Sivanathan, 3Z. Griffith, 1L. Johansson, 1J. Bowers, 1L. Coldren, and 1M. Rodwell
1University of California at Santa Barbara
2Technion, Israel Institute of Technology
3Teledyne Scientific & Imaging Company

23rd September, 2013
hcpark@ece.ucsb.edu
Outline

• Motivation

• New Proposed WDM Receivers

• Test Setups and Results
 ▪ Two channel (SSB rejection) tests
 ▪ Three channel (adjacent channel rejection) tests

• Conclusion
Motivation

- **Network Traffics / High Data Rate Demands**
 - More bandwidth
 - Higher spectral efficiency
 - Low power consumption
 - System complexity and cost
 - Long reach

→ **Toward 1Tb/s using a Single Receiver (System)**

- **System Directions:**
 - Coherent (phase/amplitude) modulations (i.e. 16QAM)
 - Dual polarizations
 - Gridless channels
 - Super-channels
 - Photonic and electronic Integrations
 - Low power / high efficiency
Conventional WDM Receivers

- **Configuration: Photonic IC + Electrical IC**
 - WDM multi-channels
 - De-multiplexing using AWG
 - Integrated LO lasers
 - 90° optical hybrids
 - Balanced photo-diodes (PDs)
 - EIC: TIAs + filters + ADCs + DSPs

Photonic IC

- Complex PIC
- Large die: expensive
- Many interfaces between PIC & EIC
- Fixed WDM channel spacing
Proposed WDM Receivers

- **Single-chip Multi-channel WDM Receivers:** *Toward 1Tb/s*
 - Simple PIC: one LO + one optical hybrid + one set of PDs
 - Complex EIC
 - TIAs + filters + ADCs + DSPs
 - SSB mixers
 - Electrical LOs
 - **Challenges:** high speed PDs\(^1\) and high speed EIC\(^2\)

References:
1) >300GHz PDs – Ishibashi et. al.
2) 1THz TRs – Jain Vibhor et. al.

- Complex EIC: **OK!!**
- Small and simple PIC
- One set of interface between PIC & EIC
- Flexible WDM channel spacing
Two-Stage Down-conversion: Optical, then Electrical

1) Optical LO for optical down conversion for all WDM channels
 → Optical WDM channels become subcarriers in the electrical domain

2) Electrical LO for selected channel with SSB mixers
 → Selected channel down-converted to near DC

3) Other channels removed by filtering
 → Then, ADC + DSP
 → DATA recovery
System Demonstration using OMA+EIC (2-channels)

OMA* as PICs
Free space optics
90° optical hybrid
& Balanced PDs

Real-time oscilloscope

OMA* blocks

As PICs

*OMA – optical modulation analyzer

Ref. Agilent N4391A Optical Modulation Analyzer Measure with confidence
Two-channel Tests: Single-side-band Suppression

Activated channel

Suppressed channel

(+/- channels)

I & Q outputs
Two-channel Tests: Single-side-band Suppression

- **EIC outputs (Electrical Spectrum Analyzer)**
 - About **25dB SSB suppression**
 - Negligible channel interference
 - $x2$ more channels within the PDs and EIC bandwidth
Three-channel Tests: Adjacent Channel Rejections

- **20GHz Spacing**
- **10GHz Spacing**
- **5GHz Spacing (no guard band)**

Tested with different channel spacing!!

Measured spectrums by an optical spectrum analyzer
Three-channel Tests: Adjacent Channel Rejections

- **Eye Qualities with Different Filter Combinations**

*Filter1: before optical modulators to suppress the side lobes
*Filter2: after EIC outputs to filter out the other channels

BER 1.0E-9
Future Tests: 6-channel WDM Receivers

- Concept schematics (PIC + EIC)
- EIC for 6-channel receivers is ready to test!
Future Tests: 6-channel WDM Receivers

- **6-channel WDM receiver IC**
 - *Teledyne 500 nm InP HBT: ~300GHz f_t, f_{max}*
 - *1st design spin: no attempt to design for low power*
 - *4.8 x 1.5 mm²*

- **Simulations (5Gb/s BPSK)**
 - *30Gb/s for BPSK, 60Gb/s for QPSK, 120Gb/s for 16QAM are feasible!*

- **6-channel initial EIC only tests (done)**
- **6-channel system demonstrations will be done (soon)!**
Conclusion

- The first concept demonstration using two channel EIC receivers
- Spectral efficiency is maximized using a minimum channel spacing
- 5Gb/s using two channel receivers
 → Using 8-channels / 25GHz spacing / 100GHz EIC / 100GHz PDs / PDM
 → 0.8Tb/s for QPSK, 1.6Tb/s for 16QAM
- 5GHz spacing data recovery
 → Flexible channel (<10GHz) designs

Future Works

- 6-channel demonstration soon
- PIC + EIC demonstration soon
- Silicon based designs in near future
 → Low power consumption
 → Small IC size
Thanks for your attention!

Questions?

hcpark@ece.ucsb.edu