30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining

1H.C. Park, 1S. Daneshgar, 1J. C. Rode, 2Z. Griffith, 2M. Urteaga, 3B.S. Kim, 1M. Rodwell

1University of California at Santa Barbara
2Teledyne Scientific and Imaging Company
3Sungkyunkwan University

16th October, 2013
hcpark@ece.ucsb.edu
mm-Wave Power Amplifier: Challenges

mm-Wave PAs:
- **applications**: High resolution imaging, high speed communication
- **needed**: High power / High efficiency / Small die area (low cost)

Extensive power combining

Class E/D/F are poor @ mm-wave
- insufficient f_{max}
- high losses in harmonic terminations
- efficiency must instead come from combiner

Efficient power-combining

Goal: efficient, compact mm-wave power-combiners
Parallel Power-Combining

Output power: $P_{\text{OUT}} = N \times V \times I$
Parallel connection increases P_{OUT}

Load Impedance: $Z_{\text{OPT}} = \frac{V}{(N \times I)}$
Parallel connection decreases Z_{opt}

High $P_{\text{OUT}} \rightarrow$ Low Z_{opt}
Needs impedance transformation:
lumped lines, Wilkinson, ...

High insertion loss ✓
Small bandwidth ✓
Large die area ✓
Series Power-Combining & Stacks

Parallel connections: \(I_{out} = N \times I \)

Series connections: \(V_{out} = N \times V \)

Output power: \(P_{out} = N^2 \times V \times I \)

Load impedance: \(Z_{opt} = V / I \)

Small or zero power-combining losses ▶️
Small die area ▶️

How do we drive the gates?

Local voltage feedback:
- drives gates, sets voltage distribution

Design challenge:
- need uniform RF voltage distribution
- need ~unity RF current gain per element
- ...needed for simultaneous compression of all FETs.
Standard $\lambda/4$ Baluns: **Series** Combining

Balun combiner:

Voltages add

2:1 series connection

each source sees 25 Ω

\rightarrow double I_{max} for each source

4:1 increased P_{out}

Standard $\lambda/4$ balun:

$\lambda/4$ stub \rightarrow open circuit

long lines \rightarrow high losses

long lines \rightarrow large die
Sub-$\lambda/4$ Baluns for Series Combining

What if balun length is $<<\lambda/4$? Stub becomes inductive!

Sub-$\lambda/4$ balun:
- stub \rightarrow inductive
- tunes transistor C_{out}
- short lines \rightarrow low losses
- short lines \rightarrow small die

$V_1, V_2 \rightarrow 50\ \Omega$

Z_{stub}
Sub-λ/4 Baluns for Series Combining

2:1 baluns:
2:1 series connection

Each device loaded by 25Ω
→ HBTs are 2:1 larger than needed for 50Ω load.
→ 4:1 increased P_{out}.

Sub λ/4 balun: inductive stub
balun inductive stub
tunes HBT C_{out}.

Similar network on input.
Each HBT loaded by 25Ω
HBT junction area selected so that $I_{\text{max}} = \frac{V_{\text{max}}}{25}$

Each HBT has some C_{out}.
Stub length picked so that $Z_{\text{stub}} = -\frac{1}{j\omega C_{\text{out}}}$ → tunes HBT

$$P_{\text{out}} = 4 \times \left(\frac{V_{\text{max}}^2}{8 \cdot 50\Omega} \right)$$
4:1 more power than without combiner.
Balun Configurations in PA ICs

- Step 1

2 (diff.) x 8 finger TR cells + GND (M₁)
Balun Configurations in PA ICs

- **Step 2**
Balun Configurations in PA ICs

- **Step 3**

M_2–M_3 Microstrip transmission lines
But, E-fields between M_3–M_1 are not negligible!!
Balun Configurations in PA ICs

- Step 4

$M_3 - M_1$ E-field shield using sidewalls

\rightarrow Well-balanced balun with short length ($\lambda/16$)
2:1 Balun Test Results

C_P = 103fF
F_C = 81GHz
I.L. = -1.1dB
S21 = -1.76dB

C_P = 78fF
F_C = 94GHz
I.L. = -1.2dB
S21 = -1.79dB

C_P = 65fF
F_C = 103GHz
I.L. = -1.2dB
S21 = -1.56dB

*Does not de-embed losses of PADs, capacitors, and interconnection lines

0.6~0.8 dB single-pass insertion loss (used for 4:1 power combining)
InP HBT (Teledyne 250nm HBT)

cell: 0.25\(\mu\)m x 6\(\mu\)m x 4-fingers

\[BV_{CEO} = 4.5V, \quad I_{C,\text{max}} = 72mA \]

\[P_{\text{out}} = 15.5\text{dBm} \]

\[R_{\text{opt}} = 56\Omega \]

350GHz \(f_{\tau}\), 590GHz \(f_{\text{max}}\) @ \(J_E=6\text{mA}/\mu\text{m}^2\)

\(~13\text{dB MAG @ 85 GHz}\)
Identical input / output baluns
2-stage input matching networks
Active bias – thermal / class-AB
Single-Stage PA IC Test Results (86GHz)

10dB Gain, >100mW P_{SAT}, >30% PAE, 23GHz 3dB-bandwidth

Power per unit IC die area* = 294 mW/mm2 (if pad area included)
= 723 mW/mm2 (if pad area not included)
Two-Stage PA IC Test Results (86GHz)

17.5dB Gain, >200mW P_{SAT}, >30% PAE

Power per unit IC die area* = 307 mW/mm² (if pad area included)
= 497 mW/mm² (if pad area not included)
800 mW 1.3mm² Design Using 4:1 Baluns

Baluns for 4:1 series-connected power-combining

\[Z_{\text{stub}} \quad Z_{\text{stub}} \quad Z_{\text{stub}} \quad Z_{\text{stub}} \]

\[V_1 \quad V_2 \quad V_3 \quad V_4 \]

\[25 \Omega \quad 50 \Omega \quad 50 \Omega \]

\[V_3 \text{ and } V_4 \text{ must be delayed by time delay } \tau \text{ relative to } V_1 \text{ and } V_2. \]

4:1 Two-Stage Schematic

4:1 Two-Stage Layout (1.2x1.1mm²)

Small-signal data looks good. Need driver amp for \(P_{\text{sat}} \) testing.
Sub-$\lambda/4$ Baluns for Series Combining

Series combining using sub-$\lambda/4$ baluns
Low-loss (~0.6 dB @85GHz) \rightarrow high efficiency
Compact \rightarrow small die area

2:1 baluns \rightarrow effective 2:1 series connection
4:1 increase in output power.

W-band power amplifiers using 2:1 baluns
Record >30% PAE @ 100mW, 200mW
Record 23 GHz 3-dB bandwidth
Record 723mW/mm2 power density

Completed new designs in test
Higher-efficiency ~200 mW, 85 GHz designs
4:1 balun design: goal 800 mW, 85 GHz, 1.3 mm2
220 GHz 4:1 balun design has been taped out
Thanks for your attention!

Questions?

hcpark@ece.ucsb.edu