Performance Impact of Post-Regrowth Channel Etching on InGaAs MOSFETs Having MOCVD Source-Drain Regrowth

Andrew D. Carter1, S. Lee1, D.C. Elias1, C.-Y. Huang1, J. J. M. Law1, W. J. Mitchell1, B. J. Thibeault1, V. Chobpattana2, S. Stemmer2, A. C. Gossard1, and M. J. W. Rodwell1

1ECE Department, 2Materials Department,
University of California, Santa Barbara, CA 93106

Device Research Conference 2013
Notre Dame, Indiana
6/24/2013
Overview

Why III-V for VLSI?
Device Physics and Scaling
Process Flows
Measurements
Conclusions
Why III-V VLSI?

Higher electron velocities than Si MOS

For short L_g FETs, $\frac{J_{\text{drain}}}{q} = \frac{n_{s,\text{channel}} \cdot v_{\text{sat}}}{C_{\text{g}}}$

Transconductance, $g_m = C_{\text{effective}} \cdot v_{\text{sat}}$

J_d and g_m are key figures of merit in VLSI

However:

J_d and g_m degraded by source large R_{access}

J_d and g_m degraded by interface trap density, D_{it}

Therefore, we must develop:

Low access resistance source/drain contacts

Thin, high-k, low D_{it} dielectrics on InGaAs

Fully self-aligned process modules

MOSFETs have been, and always will be, a materials challenge.
FET Device Physics

\[C_{ox} = \frac{\varepsilon_0 \varepsilon_r L_g W_g}{t_{ox}} \]

\[C_{depth} \approx \frac{\varepsilon_0 \varepsilon_{channel} L_g W_g}{t_{channel}/2} \]

\[C_{dos} = \frac{q^2 g_m}{2\pi \hbar^2} L_g W_g \]

\[n_{channel} = \frac{C_{dos}}{q} (V_{dos}) \]

D_{it} problem

\[\uparrow C_{it}, \downarrow V_{surface} \]

\[V_{surface} \text{ supplies } C_{dos} \]

\[\downarrow V_{surface} = \downarrow n_{dos} \text{ in } C_{dos} \]

Electron band diagram: gate-insulator-channel
Candidate III-V Planar Geometries

“Trench” MOSFET
Leverages HEMT tech.
Gate oxide \rightarrow Low I_g
Small footprint
But
Will the L_g scale?

Replacement Gate MOSFET
Easily defined L_g
Gate oxide
Small footprint
But
Is RG doping high enough?
Gate Replacement FET Process Flow

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MBE growth, deposit SiO₂</td>
</tr>
<tr>
<td>2.</td>
<td>InGaAs well, InAlAs barrier, S.I. substrate</td>
</tr>
<tr>
<td>3.</td>
<td>Pattern dummy gate.</td>
</tr>
<tr>
<td>4.</td>
<td>Regrow source/drain.</td>
</tr>
<tr>
<td>5.</td>
<td>Strip SiO₂, deposit gate dielectric.</td>
</tr>
<tr>
<td>6.</td>
<td>Lift off gate metal.</td>
</tr>
</tbody>
</table>

MBE S/D Regrowth

- **Low-damage process**
- Thermal gate metal
- No/Low-damage plasma
- Dielectric post-regrowth

STEM FET cross section, color-coded by chemistry

Figure courtesy Jeremy Law (UCSB)

Nickel Gate Metal

100 nm L_g

10 nm Thick Well

InAlAs Back Barrier
Gate Replacement FET Challenges

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>InGaAs well</td>
<td>N⁺ S/D</td>
<td>InGaAs well</td>
<td>N⁺ S/D</td>
<td>InGaAs well</td>
</tr>
<tr>
<td>InAlAs barrier</td>
<td>InAlAs barrier</td>
<td>SiO₂</td>
<td>InAlAs barrier</td>
<td>SiO₂</td>
<td>InAlAs barrier</td>
</tr>
<tr>
<td>S.I. substrate</td>
<td>S.I. substrate</td>
<td></td>
<td>S.I. substrate</td>
<td></td>
<td>S.I. substrate</td>
</tr>
</tbody>
</table>

SEM of dummy gate

MBE regrowth is non-selective → requires photoresist planarization

DRC 2013
Gate Replacement FET Challenges

Short dummy gates are hard to planarize, aspect-ratio-limited gate length
Solution: MOCVD S/D Regrowth *

MBE InAs RG MOCVD InGaAs RG

MBE is non-selective to the SiO₂ pillar, while MOCVD is selective!
→ PR planarization no longer necessary → short L_g that will not fall over

* Terao et al, APEX 2011, and Egard et al, DRC 2011
81 nm \(L_g \), (1 nm Al\(_2\)O\(_3\)/ 4 nm HfO\(_2\)), 10 nm channel, MBE InGaAs Regrowth

\[V_{GS} = -0.2 \text{ V to } 0.6 \text{ V} \]
\[0.2 \text{ V increment} \]

\[V_{DS} = 0.1 \text{ V, 0.5 V, 0.7 V} \]
\[SS=194 \text{ mV} \]
\[at V_{DS}=0.1\text{V} \]

68 \(L_g \), (1 nm Al\(_2\)O\(_3\)/ 4 nm HfO\(_2\)), 10 nm channel, MOCVD InGaAs Regrowth

\[V_{GS} = -0.6 \text{ V to } 0.6 \text{ V} \]
\[0.2 \text{ V increment} \]

\[V_{DS} = 0.05 \text{ V to } 0.5 \text{ V} \]

Similar on-state performance, but large Vth shift, poor SS, DIBL

DRC 2013
Poor subthreshold: Channel Degradation

> 300 mV/dec subthreshold swing $\rightarrow D_{it}$? Channel degradation?

Experiment: SiO$_2$ capping + high temp anneal + strip \rightarrow MOSCAP 5 nm Al$_2$O$_3$

InP channel capping for RG \rightarrow large subthreshold swing for FETs 😞
Digital semiconductor etching*

Before ALD deposition:
Oxidize channel surface (UV O₃)
Etch oxide in HCl:DI

Repeat as needed
Etches ~ 1.2 nm per cycle

Top-down thin channels \(\rightarrow\) Increase \(C_{\text{depth}}\)
Simultaneous damage removal and body scaling

* S.Lee et al, IPRM 2013
MOCVD RG with Digital Channel Etching

68 nm actual L_g, (1 nm Al$_2$O$_3$ / 4 nm HfO$_2$), No digital etching (~ 10 nm channel)

65 nm actual L_g, (1 nm Al$_2$O$_3$ / 4 nm HfO$_2$), 2 cycles of digital etching (~ 6.5 nm channel)

result

All devices improve with channel etch \rightarrow thinner channel, remove surface damage
MOCVD RG with Digital Channel Etching

Peak transconductance (mS/micron): 50 nm as drawn gate length, 0.5 V \(V_{gs} \)

<table>
<thead>
<tr>
<th>No Etching (10 nm ch.)</th>
<th>2 Cycle Etching (~6.5 nm ch.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.10</td>
</tr>
<tr>
<td>2</td>
<td>0.89</td>
</tr>
<tr>
<td>3</td>
<td>0.93</td>
</tr>
<tr>
<td>4</td>
<td>1.01</td>
</tr>
<tr>
<td>5</td>
<td>Open</td>
</tr>
<tr>
<td>6</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Peak transconductance (mS/micron):

- 50 nm as drawn gate length, 0.5 V \(V_{gs} \)

Result

All devices improve with channel etch → thinner channel, remove surface damage
All devices improve with channel etch → thinner channel, remove surface damage
Lower performance for not etched channels not due to metal-RG contact
MOCVD RG: Recent Results

48 nm gate length, ~ 3.8 nm HfO$_2$, InGaAs with 2 cycle digital etching, p-doped back barrier

40 nm gate length, ~ 3.6 nm HfO$_2$, InAs/InGaAs channel, digitally etched *

High performance III-V MOS using aggressively scaled ALD dielectrics
Conclusions

65 nm gate last InGaAs MOSFET process flow using MOCVD

\[J_{\text{drain}} = 0.78 \text{ mA/\mu m} \text{ at } 0.5 \text{ V} \ V_{gs} - V_{th}, 0.5 \text{ V} \ V_{ds} \]

Peak transconductance: 1.58 mS/micron at 0.5 V \(V_{ds} \)

Self-aligned process path for sub-50 nm III-V VLSI

Continued research areas
 Thinner gate dielectrics
 Body scaling (thin planar QW and/or FinFETs)
 Improved \(D_{it} \) passivation techniques
Thanks for your time!
Questions?

contact address: adc [at] ece.ucsb.edu

This research was supported by the SRC Non-classical CMOS Research Center (Task 1437.009).
A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415.
BACK UP SLIDES
Source-Drain Regrowth Data

<table>
<thead>
<tr>
<th>Name</th>
<th>Dopant (cm$^{-3}$)</th>
<th>Thickness (nm)</th>
<th>Contact Metal</th>
<th>R_{sheet} (Ω/□)</th>
<th>R_{Access} (Ω·μm)</th>
<th>ρ_{contact} (Ω·μm2)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-InGaAs</td>
<td>Si, $\sim 5 \times 10^{19}$</td>
<td>~ 50</td>
<td>Mo, In-Situ</td>
<td>29</td>
<td>12</td>
<td>5.5</td>
<td>[18]</td>
</tr>
<tr>
<td>n-InAs</td>
<td>Si, $\sim 4 \times 10^{19}$</td>
<td>~ 50</td>
<td>Mo, In-Situ</td>
<td>23</td>
<td>8.5</td>
<td>3.5</td>
<td>[20]</td>
</tr>
<tr>
<td>n-InAs (1)</td>
<td>Si, $\sim 5 \times 10^{19}$</td>
<td>~ 60</td>
<td>Ti/Pd/Au, Ex-Situ</td>
<td>21.4</td>
<td>6.5</td>
<td>2</td>
<td>[24]</td>
</tr>
<tr>
<td>n-InAs (2)</td>
<td>Si, $\sim 5 \times 10^{19}$</td>
<td>~ 60</td>
<td>Ti/Pd/Au, Ex-Situ</td>
<td>25.3</td>
<td>9.9</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>n-InAs (3)</td>
<td>Si+Te, $\sim 6 \times 10^{19}$</td>
<td>~ 60</td>
<td>Ti/Pd/Au, Ex-Situ</td>
<td>17</td>
<td>4.7</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>n-InAs</td>
<td>Si+Te, $\sim 6 \times 10^{19}$</td>
<td>~ 60</td>
<td>Ti/Pd/Au, Ex-Situ</td>
<td>18.9</td>
<td>6.56</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>n-InAs</td>
<td>Si+Te, $\sim 6 \times 10^{19}$</td>
<td>~ 60</td>
<td>Ti/Pd/Au, Ex-Situ</td>
<td>17.8</td>
<td>10.6</td>
<td>6.32</td>
<td></td>
</tr>
<tr>
<td>n-InGaAs</td>
<td>Si+Te, $\sim 5 \times 10^{19}$</td>
<td>~ 60</td>
<td>Ni/Pd/Au †, Ex-Situ</td>
<td>17.8</td>
<td>3.25</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>MOCVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-InGaAs (1)</td>
<td>Si, $\sim 4.5 \times 10^{19}$</td>
<td>~ 30</td>
<td>Ti/Pd/Au, Ex-Situ</td>
<td>41.8</td>
<td>32.44</td>
<td>25.2</td>
<td></td>
</tr>
<tr>
<td>n-InGaAs (2)</td>
<td>Si, $\sim 4.5 \times 10^{19}$</td>
<td>~ 30</td>
<td>Ti/Pd/Au, Ex-Situ</td>
<td>39.4</td>
<td>16.97</td>
<td>7.29</td>
<td></td>
</tr>
<tr>
<td>n-InGaAs (3)</td>
<td>Si, $\sim 4.5 \times 10^{19}$</td>
<td>~ 30</td>
<td>Ti/Pd/Au, Ex-Situ</td>
<td>46</td>
<td>19.8</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>n-InGaAs</td>
<td>Si, $\sim 4.5 \times 10^{19}$</td>
<td>~ 60</td>
<td>Ti/Pd/Au, Ex-Situ</td>
<td>23.5</td>
<td>13.02</td>
<td>7.2</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1: Summary of MBE and MOCVD regrowth data. Dopant concentration is active carrier concentration. Electron beam evaporation for metal contacts, unless otherwise noted. †: thermal metal evaporation.
MOCVD RG: Recent Results

48 nm gate length, ~3.8 nm HfO₂, InGaAs with 2 cycle digital etching, p-doped back barrier

40 nm gate length, ~3.6 nm HfO₂, InAs/InGaAs channel, digitally etched *

High performance III-V MOS using aggressively scaled ALD dielectrics

* S. Lee et al, VLSI 2013
FET Device Physics

\[C_{ox} = \frac{\varepsilon_o \varepsilon_r}{t_{ox}} \]

\[C_{\text{depth}} \approx \frac{\varepsilon_o \varepsilon_{\text{channel}}}{t_{\text{channel}}/2} \]

\[C_{\text{dos,2D}} = \frac{q^2 g_m^*}{\pi \hbar^2} \]

\[n_{\text{channel}} = \frac{C_{\text{dos}}}{q} (V_{\text{dos}}) \]

\[J_{\text{drain}} = q \cdot n_{s,\text{channel}} \cdot v_{\text{sat}} \]

\[g_m = C_{\text{effective}} \cdot v_{\text{sat}} \]

*Effective includes \(C_{ox}, C_{\text{depth}}, C_{\text{dos}} \)

Electron band diagram of a quantum well FET
FET Device Scaling

Contacted Gate Pitch

Si CMOS scaling: Contacted gate pitch 4x the gate length\(^1\)

4:1 reduction of contact area\(^2\) → 4:1 reduction of \(\rho_{\text{contact}}\)

22 nm node → 33 nm \(L_{S/D}\) → For \(L_{S/D} = L_T\), requires \(5 \times 10^{-9}\) ohm-cm\(^2\) \(\rho_{\text{contact}}\)

\[
\text{Contact Transfer Length} = L_T = \sqrt{\frac{\rho_c}{R_{sh}}}
\]

Gate First FET Process Flow

Thick (10 nm) channel

- Process damage mitigation

Heavy (~ $9 \times 10^{12} \text{ cm}^{-2}$) δ doping

- Prevents ungated sidewall current choke

$\text{In}_{0.52}\text{Al}_{0.48}\text{As}$ heterobarrier

- Carrier confinement

Semi-insulating InP

- Device isolation
Gate First FET Process Flow

Gate Stack Deposition

- **mask**
- **SiO₂**
- **Cr**
- **W**
- **high-k**
- **InGaAs Channel**
- **InAlAs Heterobarrier**
- **Insulating Substrate**

Gate Stack Etching

- **SiO₂**
- **Cr**
- **W**
- **high-k**
- **InGaAs Channel**
- **InAlAs Heterobarrier**
- **Insulating Substrate**

Front End: Gate Stack Definition

In-situ hydrogen plasma / TMA treatment before Al₂O₃ growth
Mixed e-beam / optical lithography
Bi-layer gate (Sputtered W + e-beam evaporated Cr)
High selectivity, low power dry etch
FET Process Development

Use optical lithography to produce >0.5um gates
Use electron beam lithography to produce sub-100nm gates
Need to investigate possible e-beam damage to oxides

EBL Tests

Finished Gate Etch + Sidewall Deposition
FET Process Development

ICP dry etches calibrated to perform at sub-100nm scale

Increased ICP Power

Higher power dry etch → vertical gate stack

Undercutting leads to fallen gates, ungated access regions → Minimize Cr undercut by reducing thickness
Gate First FET Process Flow

Front End: Gate Stack Definition

Sidewall Deposition
Conformal, protects S/D short circuit to gate

Sidewall etch
Vertical gate stack → self aligned sidewall
FET Process Development

Low power etch \rightarrow Isotropic etching + undercut \rightarrow fallen gates
Large undercuts \rightarrow ungated regions \rightarrow high R_{access}

Thick gate stack:
- Small L_g
- Large sidewall foot
- Unreliable gates

Thin Cr stack:
- Small L_g
- Large sidewall foot
- Repeatable gate etch?

ALD SiO$_2$ sidewall:
- Small L_g
- Still sidewall foot!
- Unrepeatable gate undercut
Gate First FET Process Flow

High-k Etch and Regrowth Prep

- **SiO₂**
- **Cr**
- **W**
- high-k

InGaAs Channel

InAlAs Heterobarrier

Insulating Substrate

Source and Drain Regrowth

- **SiO₂**
- **Cr**
- **W**
- high-k

InGaAs Channel

InAlAs Heterobarrier

Insulating Substrate

Contact Metalization, Device Isolation, and Passivation

Regrowth and Back End

Surface preparation

- UV O₃ exposure to clean the source/drain, removed *ex-situ* before MBE load

MBE InAs Regrowth

- Low arsenic flux, high temperature → near gate fill in

Metallization and Mesa Isolation

- *In-situ*Mo in MBE optional for lower ρₑ
- Ti/Pd/Au liftoff
- Wet etch for mesa isolation
Gate First FET Process Flow

TEM micrographs of 60 nm L_g device
Gate First FET Results

60 nm L_g

- V_{gs}: -2V to 3V in 1V steps
- W_g: 9 μm

- Increased leakage current:
 - Heavy δ doping leakage path
 - Drain induced barrier lowering

115 nm L_g

- V_{gs}: -2V to 3V in 1V steps
- W_g: 9 μm
Gate First FET Results

60 nm L_g

$V_{gs} : -2V$ to $3V$ in $1V$ steps
$W_g : 9 \mu m$

High J_{drain} but depletion mode

Transconductance: Similar to previous results* ($\approx 0.3\text{mS/}\mu\text{m}$)

Low R_{on} (371 ohm-μm) for InGaAs MOSFETs

Gate First FET Results

- J_{drain} increases rapidly with gate length scaling
- Transconductance: Relatively flat with gate length scaling

$W_g = 9 \ \mu\text{m}$

FET: Access Resistance

MOSFET On Resistance

Gateless Transistor Resistance

Gateless transistor effective diagnostic of regrowth

R_{access}: 200 ohm-µm

R_{access}: 100 ohm-µm

$R_{\text{measured}} = \frac{R_{sh} L_{\text{gap}}}{W} + 2R_{\text{access}}$

$W_g = 25 \mu m$

$T_{\text{chan}} = 15 \text{ nm}$

$W_g = 9 \mu m$

$T_{\text{chan}} = 10 \text{ nm}$

$y = 400.46 + 795.01x$ \(R^2 = 0.98313 \)

$y = 337.87 + 658.51x$ \(R^2 = 0.9877 \)

$y = 304.7 + 608.65x$ \(R^2 = 0.98906 \)
Gate First FET: Metal-Regrowth TLM

\[R_{\text{measured}} = \frac{R_{\text{sh}} L_{\text{gap}}}{W} + 2R_c \]

\[R_c \approx \frac{\rho_c}{L_TW} \quad \text{for } L > 1.5L_T \]

\[L_T = \sqrt{\frac{\rho_c}{R_{\text{sh}}}} \]

Metal-Regrowth access resistance is not a limiting factor in \(J_{\text{drain}} \)

Ex-situ Ti/Pd/Au / n-type InAs contacts: \(\rho_c = 2 \times 10^{-8} \text{ ohm-cm}^2 \)

In-situ Mo / n-type InAs contacts have shown \(\rho_c = 6 \times 10^{-9} \text{ ohm-cm}^2 \)

Gate First FET: Issues

Ungated region \rightarrow potential current choke

Thinner sidewall can help…

… but hard to control with gate undercut

Electron band diagram of channel underneath sidewall
Gate First FET: Issues

Heavy δ doping \rightarrow parallel conduction, poor g_m
Large leakage current in device
Decreases C_{depth} \rightarrow limits g_m

\[9 \cdot 10^{12} \text{ cm}^{-2} \delta \text{ doping} \quad \text{no } \delta \text{ doping} \]

Must reduce δ doping while maintaining low R_{access}
FET Device Physics

\[C_{ox} = \frac{\varepsilon_o \varepsilon_r L_g W_g}{t_{ox}} \]

\[C_{depth} \approx \frac{\varepsilon_o \varepsilon_{\text{channel}} L_g W_g}{t_{\text{channel}}/2} \]

\[C_{dos} = \frac{q^2 g_m^*}{\pi \hbar^2} L_g W_g \]

\[n_{\text{channel}} = \frac{C_{dos}}{q} (V_{dos}) \]

- **Dit problem**
 - \(\uparrow C_{it} \), \(\downarrow V_{surface} \)
 - \(V_{surface} \) also supplies \(C_{dos} \)
 - \(\downarrow V_{surface} = \downarrow ndos \) in \(C_{dos} \)
FET Device Scaling

<table>
<thead>
<tr>
<th>FET parameters</th>
<th>Scaling Rule</th>
<th>How?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Density $\left(\frac{mA}{\mu m}\right)$, $g_m \left(\frac{mS}{\mu m}\right)$</td>
<td>increase 2:1</td>
<td>Lithographic Scaling</td>
</tr>
<tr>
<td>Gate Length and Contact Spacing $\left(L_g, L_{S/D}\right)$</td>
<td>decrease 2:1</td>
<td>Channel Material and Orientation</td>
</tr>
<tr>
<td>Channel Electron Density</td>
<td>increase 2:1</td>
<td>Channel Material and Orientation</td>
</tr>
<tr>
<td>Electron Transport Mass $\left(m^*_{\text{transverse}}\right)$</td>
<td>constant</td>
<td>Channel Material and Orientation</td>
</tr>
<tr>
<td>Gate Capacitance</td>
<td>increase 2:1</td>
<td>Channel Material and Orientation</td>
</tr>
<tr>
<td>Channel Density of States</td>
<td>increase 2:1</td>
<td>Channel Material and Orientation</td>
</tr>
<tr>
<td>Channel Thickness $\left(T_{\text{inv}}\right)$</td>
<td>decrease 2:1</td>
<td>Materials Engineering</td>
</tr>
<tr>
<td>Effective Oxide Thickness $\left(T_{\text{ox}}\right)$</td>
<td>decrease 2:1</td>
<td>Materials Engineering</td>
</tr>
<tr>
<td>Source/Drain Contact Resistivity</td>
<td>decrease 4:1</td>
<td>Materials Engineering</td>
</tr>
</tbody>
</table>
FET Device Scaling

- 5 nm channel, 500 cm²/(V*s) mobility, 5E19 cm⁻³ carriers = 500 ohm/sq
- 5E-9 ohm cm² contact resistance
- \(L_{\text{transfer}} \approx 31 \) nm

\[
\text{Contact Transfer Length} = L_T = \sqrt{\frac{\rho_c}{R_{sh}}}
\]

FET Process Development

1) Poorly controlled dry etch undercut
 - Low power etch → Isotropic etching

Thick gate stack:
Small L_g ☺
Large sidewall foot ☹
Unreliable gates ☹

Thin Cr stack:
Small L_g ☺
Large sidewall foot ☹
Reliable gate etch?

ALD SiO$_2$ sidewall:
Small L_g ☺
Still sidewall foot! ☹
Unreliable gate undercut ☹