Low Power III-V InGaAs MOSFETs Featuring InP Recessed Source/Drain Spacers with $I_{on}=120 \, \mu A/\mu m$ at $I_{off}=1 \, nA/\mu m$ and $V_{DS}=0.5 \, V$

C. Y. Huang1, S. Lee1, V. Chobpattana2, S. Stemmer2, A. C. Gossard1,2, B. Thibeault1, W. Mitchell1 and M. J. W. Rodwell1

1Electrical and Computer Engineering
2Materials Department
University of California, Santa Barbara

IEDM 2014
San Francisco, CA, USA
Outline

- Problem: III-V MOSFETs are very leaky
- Gate-last Process Flow
- Knob 1: Wide band-gap barrier
- Knob 2: Source/Drain vertical spacer
- Knob 3: Ultrathin channel
- Knob 4: Recessed InP S/D spacer
- Knob 5: Doping-graded InP spacer
- Summary
InGaAs/InAs FETs are leaky!

- **III-V channel**: low electron effective mass, high velocity, high mobility \rightarrow higher current at lower V_{DD} 😊

- Low band gap \rightarrow band-to-band tunneling (BTBT) 😞

- High permittivity \rightarrow worse electrostatics, large DIBL 😞

- Goal: reduce leakage current for low power logic!

Table: Comparison of Materials

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Si</th>
<th>Ge</th>
<th>GaAs</th>
<th>InAs</th>
<th>In${0.53}$Ga${0.47}$As</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_e^* (m$_e$/eV)</td>
<td>0.19</td>
<td>0.08</td>
<td>0.063</td>
<td>0.023</td>
<td>0.041</td>
</tr>
<tr>
<td>μ_e (cm2/V·s)</td>
<td>1450</td>
<td>3900</td>
<td>9200</td>
<td>33000</td>
<td>12000</td>
</tr>
<tr>
<td>μ_h (cm2/V·s)</td>
<td>370</td>
<td>1800</td>
<td>400</td>
<td>450</td>
<td><300</td>
</tr>
<tr>
<td>E_g (eV)</td>
<td>1.12</td>
<td>0.664</td>
<td>1.424</td>
<td>0.354</td>
<td>0.75</td>
</tr>
<tr>
<td>ε_r</td>
<td>11.7</td>
<td>16.2</td>
<td>12.9</td>
<td>15.2</td>
<td>13.9</td>
</tr>
<tr>
<td>a (Å)</td>
<td>5.43</td>
<td>5.66</td>
<td>5.65</td>
<td>6.06</td>
<td>(InP)</td>
</tr>
</tbody>
</table>

![Graph showing current density vs. gate bias for different device thicknesses at $V_{DS}=0.5$ V and 0.05 V]
UCSB Gate Last Process Flow

- Channel
- Barrier
- Substrate

MBE grown device epilayer

Pattern dummy gate

HSQ

MOCVD source/drain regrowth

N+ S/D

HSQ

ZrO₂

Isolation
Strip dummy gate
Digital etch
Deposit ALD dielectric
FGA anneal

N+ S/D

Channel
Barrier
Substrate

Lift-off gate metal

N+ S/D

Channel
Barrier
Substrate

Deposit S/D contacts

Ti/Pd/Au
Knob 1: Wide Band-gap Barrier

- Wide band-gap barriers or P-doped back barriers reduces bottom leakage path.
- **Solution 1**: AlAsSb barriers (Sample B) reduces subthreshold leakage.
- **Solution 2**: P-doped InAlAs barriers also work well.

C. Y. Huang et al., APL., 103, 203502 (2013)
Knob 2: Source/Drain Vertical Spacer

Vertical spacers reduce the peak electric field, improve electrostatics, and reduce BTBT floor.

S. Lee et al., APL 103, 233503 (2013)
C. Y. Huang et al., DRC 2014.
Knob 3: Ultra-thin channel

S. Lee et al., VLSI 2014

2.7 nm InAs channel (strained)

2.5 nm ZrO₂

1 nm Al₂O₃Nₓ

![Graph](image)

\(I_{on} = 500 \, \mu A/\mu m \) at \(I_{off} = 100 \, nA/\mu m \)

and \(V_D = 0.5 V \)

SS ~ 72 mV/dec.

SS ~ 77 mV/dec.

\(V_{DS} = 0.5 \, V \)

\(I_{on} = 500 \, \mu A/\mu m \) at \(I_{off} = 100 \, nA/\mu m \)

Intel, IEDM 2009

J. Gu, IEDM 2012

D. Kim, IEDM 2012
Increasing band gap: $\text{In}_{0.53}\text{Ga}_{0.47}\text{As}$ channel

<table>
<thead>
<tr>
<th>Sample</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel (nm)</td>
<td>4.5</td>
<td>3</td>
</tr>
<tr>
<td>InGaAs spacer (nm)</td>
<td>11.5</td>
<td>13</td>
</tr>
</tbody>
</table>

Reduction in channel thickness improves electrostatics, increases confinement bandgap and reduces BTBT.
E-field and BTBT contour

- Concentrated electric field at the drain end of the channel next to the gate edge.

- **Solution:** Replace InGaAs with wide band-gap InP ($E_g \sim 1.35$ eV)

R. Chu et al., EDL 29, 974 (2008)

J. Lin et al., EDL 35, 1203 (2014)
Knob 4: Recessed InP S/D spacer

12 nm InGaAs spacer

5 nm Recessed InP spacer

$V_{DS} = 0.1$ to 0.7 V, 0.2 V step

SS ≈ 80.1 mV

SS ≈ 72.5 mV

$L_g = 60$ nm
Minimum spacer thickness is required to maintain good electrostatics.

Thicker spacer is desired at drain to smooth electric field.
- Thicker InP spacer increases R_{on}, and degrades G_m.
- Thinner spacer is desired at source to reduce $R_{S/D}$.

![Graph showing the effect of InP spacer thickness on g_m and R_{on}]
Knob 5: Doping-graded InP spacer

- Doping-graded InP spacer reduces parasitic source/drain resistance and improves G_m.
- Gate leakage limits $I_{\text{off}} \sim 300 \text{ pA/\mu m}$.

\L_g - 30 nm, 30Å ZrO$_2$

$V_{\text{DS}} = 0.1$ to 0.7 V
0.2 V increment

I_D, $|I_G|$(mA/\(\mu\)m)

V_{GS}(V)

R_{on} at zero L_g (\(\Omega \cdot \mu\)m)

<table>
<thead>
<tr>
<th>Layer</th>
<th>5 nm UID InP</th>
<th>13 nm UID InP</th>
<th>Doping graded InP</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{on} at zero L_g ((\Omega \cdot \mu)m)</td>
<td>~ 199</td>
<td>~ 364</td>
<td>~ 270</td>
</tr>
</tbody>
</table>

S.I. InP substrate

50 nm N+InGaAs
10 nm N+InP
8 nm doping graded InP
5 nm U.I.D InP

ZrO$_2$

4.5 nm InGaAs
5 nm InAlAs U.I.D. spacer
2 nm 1E19 cm$^{-3}$ N+InAlAs
100 nm InAlAs U.I.D. buffer
250 nm 1E17 cm$^{-3}$ P-InAlAs
50 nm InAlAs U.I.D buffer
Doping-graded InP spacer + Thicker oxide

<table>
<thead>
<tr>
<th>V_{DS} = 0.1 to 0.7 V</th>
<th>V_{DS} = 0.1 to 0.7 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 V increment</td>
<td>0.2 V increment</td>
</tr>
</tbody>
</table>

InP graded spacer

- 38Å ZrO$_2$
- I_D ~ 60 pA/µm at V_{D}=0.5V for L_g-30 nm

| V_{GS} (V) | I_D (mA/µm) | $|I_G|$ (mA/µm) |
|--------------|---------------|---------------|
| -0.6 | 10^-9 | 10^-9 |
| -0.3 | 10^-8 | 10^-8 |
| 0 | 10^-7 | 10^-7 |
| 0.3 | 10^-6 | 10^-6 |
| 0.6 | 10^-5 | 10^-5 |

InGaAs spacer

- 100:1 smaller I_{off} compared to InGaAs spacer

| V_{GS} (V) | $|I_D|$ (mA/µm) |
|--------------|----------------|
| -0.2 | 10^-9 |
| 0 | 10^-8 |
| 0.2 | 10^-7 |
| 0.4 | 10^-6 |
| 0.6 | 10^-5 |

- Minimum I_{off} ~ 60 pA/µm at V_{D}=0.5V for L_g-30 nm
I_{on} vs L_g at I_{off} = 1 \text{nA/\mu m}

- Peak I_{on} = 150 \text{\mu A/\mu m} at V_{DS}=0.5\text{V} for L_g-45 nm devices.
I_{on} vs L_g at $I_{off} = 100$ nA/µm

- Peak $I_{on} = 415$ µA/µm at $V_{DS} = 0.5V$ for this work.
- Ultrathin InAs channel shows highest I_{on}.

![Graph](image_url)
Barrier Leakage
Channel Leakage

I_{on} = 150 \mu A/\mu m
at I_{off} = 1 nA/\mu m

I_{on} = 500 \mu A/\mu m
at I_{off} = 100 nA/\mu m
Recessed InP source/drain spacers enable III-V MOSFETs for low power logic.

Thank you!

- This research was supported by the SRC Non-classical CMOS Research Center (Task 1437.009) and GLOBALFOUNDRIES(Task 2540.001).
- A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network.
- This work was partially supported by the MRSEC Program of the National Science Foundation under Award No. DMR 1121053.