Record I_{on} (0.50 mA/μm at $V_{DD} = 0.5$ V and $I_{off} = 100$ nA/μm) 25 nm-Gate-Length ZrO$_2$/InAs/InAlAs MOSFETs

Sanghoon Lee1*, V. Chobpattana2, C.-Y. Huang1, B. J. Thibeault1, W. Mitchell1, S. Stemmer2, A. C. Gossard2, and M. J. W. Rodwell1

1ECE and 2Materials Departments
University of California, Santa Barbara, CA

2014 Symposium on VLSI Technology
Honolulu, Hawaii, USA
06/10/2014

*sanghoon_lee@ece.ucsb.edu
Why III-V MOSFETs in VLSI applications?

Low m^* in III-V material \Rightarrow high v_{inj}
\Rightarrow high transconductance

More transconductance per gate width
more current \Rightarrow lower intrinsic delay
-or- reduced V_{DD} \Rightarrow less power consumption
-or- small FETs \Rightarrow reduced IC size

Other advantages
Wide range of available materials
nm-precise growth \Rightarrow 1-2 nm thick channel
Larger ΔE_c \Rightarrow Better confinement, Small EOT
Key Design Considerations

Source/Drain:
- Low $\rho_c \Rightarrow$ Small contact size
- Self-aligned \Rightarrow Small contact pitch
- Shallow \Rightarrow Scaling (electrostatics)

Dielectric:
- Thin \Rightarrow high I_{on}, better SS and DIBL
- Low $D_{it} \Rightarrow$ Better SS

Channel:
- Thin \Rightarrow Electrostatics
- Thin and wide bandgap \Rightarrow Small band-band tunneling
- Thick and narrow bandgap \Rightarrow higher injection velocity
FET Structures

Inversion mode MOSFETs
- Self-aligned ✔
- Implant damage ❌
- Large R_{access} (limited doping) ❌

MOS-HEMT
- Good short channel effect ✔
- Large device footprint ❌
- Large R_{access} (Barrier) ❌

Trench-etch
- Small footprint ✔
- Small R_{access} ✔
- Limited L_g scaling (wet etch) ❌

Regrown S/D with gate-first
- Small footprint and L_g ✔
- Small R_{access} ✔
- Abrupt junction ✔
- High damage (gate-stack etch) ❌

Regrown S/D with gate-Last
- Low damage (No dry etch) ✔
Gate-Last Process (Simplified for Development)

Channel growth

By MBE

- **Cap:** 2 nm In$_{0.53}$Ga$_{0.47}$As (U.I.D)
- **Channel:** 3.5 nm InAs (Strained)
- **Setback:** In$_{0.52}$Al$_{0.48}$As Setback (U.I.D)
 - Pulse Doping (Si 2X1012/cm2)
- **Back Barrier:** In$_{0.52}$Al$_{0.48}$As (U.I.D)
- **P-type Doped Barrier:** In$_{0.52}$Al$_{0.48}$As (Be 1017/cm3)
- **Substrate:** InP (Semi-insulating)

Dummy gate formation

e-beam lithography

- **HSQ**
 - Al$_2$O$_3$
 - InGaAs Cap
 - InAs Channel
 - In$_{0.52}$Al$_{0.48}$As Setback
 - In$_{0.52}$Al$_{0.48}$As Back Barrier
 - Pulse Doping
 - P-type Doped Barrier
 - InP (Substrate)

Vertical spacer and N+ S/D regrowth in MOCVD

- **50 nm N+ In$_{0.53}$Ga$_{0.47}$As**
- **10 nm In$_{0.53}$Ga$_{0.47}$As**
- **Vertical Spacer**

S/D metal contact formation

- **Ti/Pd/Au**
 - 0.7/3.0 nm Al$_2$O$_3$/N$_2$/ZrO$_2$

Mesa-isolation

Surface digital etching

- **N+ In$_{0.53}$Ga$_{0.47}$As**
- **Regrown S/D**
 - 12 nm In$_{0.53}$Ga$_{0.47}$As
 - 2.5 nm InAs Channel
 - In$_{0.52}$Al$_{0.48}$As Setback
 - In$_{0.52}$Al$_{0.48}$As Back Barrier
 - P-type Doped Barrier
 - InP (Substrate)

Gate stack formation

- **N+ In$_{0.53}$Ga$_{0.47}$As**
 - (gate metal)
- **Regrown S/D**
 - 12 nm In$_{0.53}$Ga$_{0.47}$As
 - 2.5 nm InAs Channel
 - In$_{0.52}$Al$_{0.48}$As Setback
 - In$_{0.52}$Al$_{0.48}$As Back Barrier
 - P-type Doped Barrier
 - InP (Substrate)

S/D metal contact formation

- **N+ In$_{0.53}$Ga$_{0.47}$As**
 - (gate metal)
- **Regrown S/D**
 - 12 nm In$_{0.53}$Ga$_{0.47}$As
 - 2.5 nm InAs Channel
 - In$_{0.52}$Al$_{0.48}$As Setback
 - In$_{0.52}$Al$_{0.48}$As Back Barrier
 - P-type Doped Barrier
 - InP (Substrate)
High-k : MOSCAP with 0.7/5.0 nm Al$_2$O$_{x}$N$_{y}$/ZrO$_2$

- Dielectric constant for ZrO$_2$ is 23; EOT is ~1 nm.
- 3.5 µF/cm2 accumulation capacitance at 1MHz.
- ~1X1012/cm2-eV D_{it} near midgap.
- Gate leakage < 1 A/cm2 up V_G=2 V.

(V. Chobpattana, et al., ‘Scaled ZrO2 dielectrics for InGaAs gate stack with low interface trap densities’, APL 2014)
Off-state leakage and S/D spacers

Small S/D contact pitch

- N+ source
- N+ drain
- channel
- barrier

MOS-HEMT with large contact pitch

- N+ source
- N+ drain
- channel
- barrier

Band-band tunneling impact ionization

\[L_g = 18 \text{ nm} \]
\[V_{DS} = 0.1, 0.5 \text{ V} \]

\[L_g = 35 \text{ nm} \]

Large lateral spacer \(\rightarrow\) low leakage, good short channel immunity

Large lateral spacer \(\rightarrow\) large S/D pitch

Current Density (mA/\(\mu\)m)

\[g_m \text{ (mS/\(\mu\)m)} \]

Gate Bias (V)

D-H. Kim, IEDM 2012
Vertical Spacers \rightarrow reduced off-state leakage

- Larger spacer
 \rightarrow better short channel effect at short and long channels

(S. Lee, et al., EDL, June 2014)
Cross-sectional STEM image

- High-k($\text{Al}_2\text{O}_3\text{N}_y\text{ZrO}_2$)
- Gate metal (Ni/Au)
- Spacer/ N+ S/D ($\text{In}_{0.53}\text{Ga}_{0.47}\text{As}$)
- Channel (InAs)
- Back Barrier ($\text{In}_{0.52}\text{Al}_{0.48}\text{As}$)
- Substrate (InP)

2.7 nm InAs channel (strained)
2.5 nm ZrO$_2$
1 nm Al$_2$O$_3$N$_{y}$

*Heavy elements look brighter

Courtesy of S. Kraemer (UCSB)
I-V characteristics for long channel device ($L_g = 1 \mu m$)

- 61 mV/dec Subthreshold swing at $V_{DS}=0.1$ V
- Negligible hysteresis
- <1 A/cm2 gate leakage at measured bias range

$SS_{min} \sim 61$ mV/dec. (at $V_{DS} = 0.1$ V)

$SS_{min} \sim 63$ mV/dec. (at $V_{DS} = 0.5$ V)
I-V characteristics for short channel devices (L_g = 25 nm)

- ~2.4 mS/µm Peak g_m at V_DS=0.5 V
- ~300 Ohm-µm on-resistance at V_GS=0.7 V
- 77 mV/dec Subthreshold Swing at V_DS=0.5 V, 76 mV/V DIBL at 1 μA/µm
- 0.5 mA/µm I_on at I_off=100 nA/µm and V_DD=0.5 V
Source/drain series resistance

- From TLM measurement for N+S/D, $R_{\text{N+S/D sheet}} = 25 \text{ ohm/sq}$, $\rho_c = \sim 5.3 \text{ ohm-}\mu\text{m}^2$
- R_{spacer} is estimated to be $\sim 35 \text{ ohm-}\mu\text{m}$ for both sides

<table>
<thead>
<tr>
<th>R_{contact} [Ohm-\mu m]</th>
<th>$R_{\text{N+S/D}}$ [Ohm-\mu m]</th>
<th>R_{spacer} [Ohm-\mu m]</th>
<th>$R_{\text{ballistic}}$ [Ohm-\mu m]</th>
<th>$R_{\text{on at zero } L_g}$ [Ohm-\mu m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>60</td>
<td>35</td>
<td>50</td>
<td>170</td>
</tr>
</tbody>
</table>

for both source and drain sides
Performance comparison: 2.5 nm VS 5.0 nm-thick channel

- Better SS at all gate length scale:
 - Better electrostatics, reduced BTBT
 - ~1:10 reduction in minimum off-state leakage
 - ~5:1 increase in gate leakage \Rightarrow increased eigenstate
Performance comparison: 2.5 nm VS 5.0 nm-thick channel

- Peak g_m vs. Gate Length
- Carrier Density vs. Gate Bias
- Gate Capacitance vs. Gate Bias
- Energy levels for different channel thicknesses

1D-Poisson-Schrödinger solver (coded by W. Frensley, UT Dallas)
SS and DIBL vs. L_g (Benchmarking)

- <80 mV/dec at sub-30 nm L_g and $V_{DS}=0.5$ V
- Record low subthreshold swing among any reported III-V FETs.
- Lowest DIBL among planar-type III-V FETs.

Peak g_m and I_{on} at fixed I_{off} vs. L_g (Benchmarking)

- >2.4 mS/µm peak g_m at $V_{DS}=0.5$ V and sub-30 nm L_g.
- Highest I_{on} at $I_{off}=100$ nA/µm and $V_{DD}=0.5$ V
- 0.5 mA/µm I_{on} at sub-30 nm L_g

Benchmark with 22 nm node Si Fin- and nanowire FET

- Intel 22 nm FinFETs (HP) : ~0.5 mA/µm (?) @ $V_{GS}=0.5$ V, $V_{DS}=0.75$ V
- IBM 22 nm nanowire : ~0.4 mA/µm @ $V_{GS}=0.5$ V, $V_{DS}=0.5$ V
- Comparable performance with state-of-the-art Si-FinFETs (nanowire).
Conclusion

- Developed vertical spacer to reduce off-state leakage and to improve short channel effect.
- Integrated sub-1 nm EOT ZrO$_2$ high-k with low D_{it}
- Obtained 61 mV/dec at $V_{DS} = 0.1$ V and 1 μm-L_g.
- Obtained 0.5 mA/μm at $I_{off} = 100$ nA/μm and $V_{DD} = 0.5$ V (best reported I_{on} among any reported III-V MOSFETs)
- Achieved comparable I_{on} to state-of-art multi-gate Si-FETs
Acknowledgment

Thanks for your attention!
Questions?

This research was supported by the SRC Non-classical CMOS Research Center (Task 1437.006). A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415.

*sanghoon_lee@ece.ucsb.edu