Plenary, ESSCIRC ESSDERC 2021 European Solid-state Circuits and Devices Conference, Grenoble and online. September 15, 2021.

Transistors for 100-300GHz Wireless

Mark Rodwell, Brian Markman, Yihao Fang, Logan Whitaker, Hsin-Ying Tseng, A. S. H. Ahmed University of California, Santa Barbara rodwell@ece.ucsb.edu

This work was supported in part by the Semiconductor Research Corporation (SRC) and DARPA

Acknowledgements

Transistors for 100-300GHz wireless

Wireless networks: exploding demand.

Immediate industry response: 5G.

~6~100GHz increased spectrum, extensive beamforming

Next generation: 100-300GHz (???)

greatly increased spectrum, massive spatial multiplexing

What transistors do we need ?

140GHz, 160 Gb/s MIMO network hub

Hub with 32-element array (four 1×8 modules): 16 users/array. F=8dB LNAs, P_{1dB}=21 dBm PAs 10 Gb/s/beam→ 160 Gb/s total capacity 40 m range in 50mm/hr rain with 17dB total margins

Handset: 8 × 8 array (9×9mm)

8-channel 140GHz MIMO hub modules

A. Farid et. al, in review

Kyocera LTCC carrier

210 GHz, 640 Gb/s MIMO backhaul

8-element MIMO array

3.1 m baseline for 500 meters range.
80Gb/s/subarray → 640Gb/s total
4 × 4 sub-arrays → 8 degree beamsteering

Key link parameters

500 meters range in 50 mm/hr rain; 23 dB/km 20 dB total margins:

packaging loss, obstruction, operating, design, aging LNAs: 6dB noise figure PAs: 18dBm = P_{1dB} (per element)

210 GHz transmitter and receiver ICs

210GHz transmitter: 20GHz bandwidth, 15.5-16.5dBm power

M. Seo et al, 2021 IMS; Teledyne 250nm InP HBT

Size: 2.9 x 0.75 mm²

210GHz receiver: 20GHz bandwidth, 7.7-9.5dB noise figure

280GHz transmitter: 17dBm power (simulated)

Solyu, Alz, Ahmed, Seo; UCSB/Sungkyunkwan; Teledyne 250nm InP HBT

280GHz receiver: 11dB noise figure, 40GHz bandwidth (sim.)

100-300GHz wireless: transistor requirements

Transmitters need:

high power-added efficiency $PAE = (P_{out} - P_{in})/P_{DC}$ high added power density $(P_{out}-P_{in})/(\text{gate width, emitter length})$

Receivers need:

low cascaded noise $F_{casc} = F + (F - 1)/G + (F - 1)/G^2 + \cdots$

gain

gain

Need reasonable gain/stage.

die area, power, accumulated gain compression

(gain in PAs, LNAs is less than MAG/MSG, U, ...)

Transistors for 100-300GHz

CMOS: good power & noise up to ~150GHz. Not much beyond. 65-32nm nodes are best.

InP HBT: record 100-300GHz PAs

SiGe HBT: outperforms CMOS above 200GHz

GaN HEMT: record power below 100GHz. Bandwidth improving

InGaAs-channel HEMT: world's best low-noise amplifiers

Where the IC designer can't help us.

mm-wave transistor gain is low: gain-boosting is common

Common-source vs. common-gate. Capacitive neutralization. Controlled positive feedback (Singhakowinta, Int. J. Electronics, 1966)

Such circuits don't improve the parameters that matter the most.

The circuit* doesn't change the transistor minimum cascaded noise figure. (Haus, Adler, Proc. IRE, 1958)

The circuit* doesn't change the transistor maximum efficiency vs. added power curve.

*If lossless, and given the correct source and load impedances.

Current density, finger pitch limit cell output power

Electrode *RC* charging time \propto (finger length)² Maximum finger length $\propto 1/\sqrt{\text{frequency}}$ Current per finger $\propto 1/\sqrt{\text{frequency}}$

Maximum cell width $\propto 1/$ frequency Maximum number fingers $\propto 1/$ frequency Maximum current per cell $\propto 1/$ frequency^{3/2}

Maximum RF power per cell \propto (maximum load resistance) (maximum current)² \propto 1/(frequency)³

Compare to Johnson F.O.M.: maximum power per cell $\propto (\text{maximum voltage})^2 / (\text{minimum load resistance}) \propto 1 / (\text{frequency})^2 \sim 1$

Current density, finger pitch limit cell output power

High V_{br} , low I_{max} ? Device sized to drive 50 Ω might approach $\lambda_g/4$ width. Small finger pitch is critical; limited by thermal design

Current density, finger pitch limit power combining

More cells: more output power

Number of cells limited by combining losses.

Losses mostly limited by size.

Can 50 Ω cell fit in $\lambda_g/8$ (120 µm) pitch ? \rightarrow 8:1 combining with 0.4dB loss @200GHz

Can 50 Ω cell fit in λ_g /24 (40 µm) pitch ? \rightarrow 16:1 combining with 0.5dB loss @200GHz

200GHz InP HBT PA: 80 μm cell pitch

mm-Wave Transistor Development

InGaN and GaN HEMTs:

Leading power technology to ~110GHz Efforts to extend this to 140, 220GHz.

N-polar GaN: Mishra, UCSB

THz InP HBTs:

State-of-art: 1.1THz f_{max} @ 130nm node (Teledyne: Urteaga, DRC 2011) Efficient 100-650GHz power

THz InP HEMTs:

State-of-art: 1.5THz f_{max} @ 32nm node (NGST: X. Mei, EDL 2015) Sensitive 100-650GHz low-noise amplifiers high-K gate dielectric *might* permit further scaling.

Transistor scaling laws: (V,I,R,C, τ) vs. geometry

Degenerate State Density (Ballistic) Limits

Charge =
$$\int_{\text{Band edge}}^{\text{Fermi Energy}} q \cdot n(E) dE$$
 Current = $\int_{\text{Band edge}}^{\text{Fermi Energy}} q \cdot v(E) \cdot n(E) dE$

E

 E_{well} E_c^-

$$J \propto m^{1/2} (E_f - E_{well})^{3/2} \propto (V_{gs} - V_{th})^{3/2}$$

not $(\mu c_{ox} / L_g) (V_{gs} - V_{th})^2$
"ballistic limit"

$$\rho_{sheet} = c_{dos} (V_{gs} - V_{th}) \propto m^* (E_f - E_{well})$$

"state density capacitance"

$$\int \int \propto m^* (E_f - E_c)^2 \propto m^* (V_{be} - \varphi)^2$$

not ~ exp(qV_{be} / kT)

Bipolar Transistor Design: Scaling

 $\tau_b \approx T_b^2/2D_n$ $\tau_c = T_c / 2v_{sat}$ $C_{cb} = \varepsilon A_c / T_c$ $I_{c,\max} \propto v_{sat} A_e (V_{ce,operating} + V_{ce,punch-through}) / T_c^2$ $\Delta T \propto \frac{P}{L_{E}} \left| 1 + \ln \left(\frac{L_{e}}{W_{e}} \right) \right|$

$$R_{ex} = \rho_{\text{contact}} / A_{e}$$
$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

Bipolar Transistor Scaling Laws

Narrow junctions.

Thin layers

High current density

Ultra low resistivity contacts

to double the bandwidth:	change
emitter & collector junction widths	decrease 4:1
current density (mA/µm²)	increase 4:1
current density (mA/μm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1

Refractory Ohmic Contacts to In(Ga)As

Refractory: robust under high-current operation / Low penetration depth: ~ 1 nm

Why no ~2THz HBTs today? Problem: reproducing these base contacts in full HBT process flow

InP HBTs: 1.07 THz @200nm, ?? @ 130nm

THz Transistor Measurements

Simple pads:

Substrate coupling: need small pads, narrow CPW Ambiguity in pad stripping order. UCSB 130nm HBTs: order not important.

Add through & load to remove ambiguity

On-wafer through-reflect-line:

No ambiguity from pad stripping. Calibration to line Zo Still must avoid substrate mode coupling CPW particularly vulnerable. better: thin-film microstrip or ~25 μm substrate with TSV's

Challenges @ 64nm/2THz, 32nm/3THz Nodes

Need high base contact doping >10²⁰/cm³ for good contacts

high Auger recombination very low β .

Seem to need 1-3nm contact penetration

Pd or Pt contacts react with 3++ nm of base penetrate surface contaminants too deep for thin base

Base regrowth as possible solution thin, moderately-doped intrinsic base InGaAs or GaAsSb @ 10¹⁹-10²⁰/cm³ thick, heavily-doped extrinsic base P-GaAs, ~10²¹/cm³

Regrown-Base InP HBTs: Images

Before regrowth

After 100nm p-GaAs regrowth

Cross-sections

Dry-etched TiW emitter contact

Regrown-Base InP HBTs: Status

Good DC data: even given regrowth refractory Mo/W/TiW emitter contact maintains low ρ_c .

Excellent base contacts; but hydrogen base passivation 0.4 Ω - μ m² resistivity for GaAs/metal contact 290 Ω sheet resistivity for regrown base 0.60 Ω - μ m² resistivity for InGaAs/GaAs contact 1940 Ω / sheet resistivity for intrinsic base

Recent efforts: in-situ MOCVD hydrogen anneal

Preliminary results: marginal ~300GHz f_{max} (still excessive hydrogen)

FETs (HEMTs): key for low noise

2:1 to 4:1 increase in f_τ: improved noise less required transmit power smaller PAs, less DC power

or higher-frequency systems

High-Frequency FET Scaling

- vertical S/D spacer
- low-K dielectric spacer
- high-K gate dielectric

To double f_{τ} , reduce L_g 2:1, but this is not enough Must also reduce C_{gsx}/g_m , C_{gd}/g_m time constants 2:1 $\Rightarrow g_m/W_g$ must be doubled

Must also thin dielectric and channel by 2:1 ($g_m R_{ds}$)

FET Current and Transconductance

Towards faster HEMTs: InAs MOS-HEMTs

Thinner gate insulator

HEMT: ~6nm InAlAs (ϵ_r =12), limited by tunneling MOS-HEMT: 2nm ZrO₂ (ϵ_r =25)

Less source resistance

HEMT: InAlAs barrier under N+ source/drain MOS-HEMT: N+ layer on InAs channel

Simple ballistic theory: thin dielectric \rightarrow increased g_m . HEMT: InAlAs barrier: tunneling, thermionic leakage

Limitations to theory:

Assumes parabolic *E-k* dispersion: unrealistic Ignores effect of maximum gate overdrive $(V_{as}-V_{th})$

1st MOS-HEMT demonstration: Fraunhofer IAF / IBM Zurich

MOS-HEMT: fabrication flow

MOS-HEMT: device structure

t _{ch}	Channel Material	ZrO ₂ Cycles
7.0 nm	InAs / InGaAs	30

DC characteristics @ 40 nm L_q , 2 × 10µm W_q

RF characteristics @ 40 nm L_q , 2 × 10µm W_q

Peak f_{τ} = 420 GHz on L_g = 40 nm (011) conduction device, peak f_{max} at L_g = 50 nm f_{max} extrapolation difficult because of peaks in U; calibration artifacts or negative resistance

Need for higher energy barriers

To increase transconductance:

thin the oxide, thin the well

- \rightarrow increased eigenstate energy
- \rightarrow loss of confinement at large (V_{gs} - V_{th})
- \rightarrow constrains maximum transconductance: $I_D \propto (V_{gs} V_{th})^{3/2} \rightarrow \frac{g_m \propto (V_{gs} V_{th})^{1/2}}{g_m \propto (V_{gs} V_{th})^{1/2}}$
- \rightarrow maximum achievable $g_{\rm m}$.

Need high barrier energies

InAs/InAlAs vs InAs/AlAsSb InP/AlAsSb ????

Transistors for 100-300GHz wireless

Systems

Multi-beam (MIMO) endpoint and backhaul links. Imaging radar

Transistor parameters

LNAs: cascaded noise figure PAs: high PAE, high power density (W/mm) high $f_{\tau} \times V_{br}$ PAs need high A/mm & closely-spaced fingers

Today's available IC technologies

CMOS: good to ~150GHz. 65-32nm nodes are best. SiGe: surpasses CMOS above 200GHz. InP HBT: record 100-300GHz PAs GaN HEMT: record power below 100GHz. Improving InGaAs FETs: record LNAs

Improved InP HBTs

goal: improved PAE in 100-300GHz PAs. challenge: base contact resistivity scaling. Process complexity.

Improved InGaAs FETs

High-K gate dielectric may permit further scaling. High-K / InP / AlAsSb ? In case of questions

210 GHz FMCW crossed-array imaging car radar

Array:

36×1 transmit, 1×216 receive 36 (v) × 216 (h) image length: 15cm (6 inches), beamwidth: 0.27°, view: 10° (v) ×90° (h). scan: 40Hz

Electronics

transmit power/element: 50mW receiver noise: 6dB packaging losses: 2dB TX, 2dB RX

Sees:

22cm diameter target (a soccer ball) @ -10dB reflectivity 200m range, with 10dB SNR in heavy fog/rain @ 22dB/km with 4dB operating margins.

FET Scaling Laws (these now broken)

low-K dielectric spacer

high-K gate dielectric

FET parameter	change
gate length	decrease 2:1
current density (mA/mm)	increase 2:1
specific transconductance (mS/mm)	increase 2:1
transport mass	constant
2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
either (channel state density)	increase 2:1
or (V _{gs} -V _{th})	increase 4:1
contact resistivities	decrease 4:1

Gate dielectric can't be much further scaled. Not in CMOS VLSI, not in mm-wave HEMTs

 g_m/W_g (mS/ μ m) hard to increase $\rightarrow C_{end}/g_m$ prevents f_τ scaling.

Shorter gate lengths degrade electrostatics \rightarrow reduced $g_m/G_{ds} \rightarrow$ reduced f_{max} , $f_{\tau_{37}}$