n⁺-InAs–InAlAs Recess Gate Technology for InAs-Channel Millimeter-Wave HFETs

Abstract—We report a submicrometer, self-aligned recess gate technology for millimeter-wave InAs-channel heterostructure field effect transistors. The recess gate structure is obtained in an n⁺-InAs–InAlAs double cap layer structure with a citric-acid-based etchant. From molecular-beam epitaxy-grown material, functional devices with 1000-, 500-, and 200-nm gate length were fabricated. From all device geometries we obtain drive currents of at least 500 mA/mm, gate leakage currents below 2 mA/mm, and RF-conductance of 1 S/mm. For the 200-nm gate length device fT and fmax are 162 and 137 GHz, respectively. For the 500-nm gate length device fT and fmax are 89 and 140 GHz, respectively. We observe scaling limitations at 200-nm gate length, in particular a negative threshold voltage shift from −550 to −810 mV, increased kink-effect, and a high gate-to-drain capacitance of 0.5 pF/mm. The present limitations to device scaling are discussed.

Index Terms—Antimonides, heterojunction field-effect transistor (HFET), millimeter-wave transistor, molecular-beam epitaxy.

I. INTRODUCTION

The III-V heterostructure field effect transistors (HFETs) are promising devices for millimeter-wave (mm-wave) applications. This has been demonstrated, for example, by an InP-based HFET with 25-nm gate length with a current gain cutoff frequency fT of 562 GHz and a maximum frequency of oscillation fmax of 330 GHz [1]. These results have been obtained with a strained In0.7Ga0.3As channel on the InP lattice constant. For some time, it has been recognized that pure InAs channels have potential application for improved HFETs because of their high electron mobility, up to 30 000 cm²/V·s [2]. Such InAs channels can be embedded into antimonide-based barrier materials at a lattice constant of approximately 6.1 Å. InAs-channel HFETs with antimonide-based barriers have been demonstrated by several groups [3]–[5], and there has been recent interest in such devices for mm-wave, low-power, low-noise amplifiers [6]–[11].

With the exception of the devices in [4] and [9], InAs-channel HFETs have not employed a recess gate technology. In other advanced III-V HFET technologies, however, recess gate technology is commonly used for multiple purposes [1], [12]: these include to simultaneously obtain low access resistance and low threshold voltage, to control the electric field between gate and drain for higher breakdown voltages or higher electron velocities, or to provide surface protection during device fabrication.

Here we report on the development of a recess gate technology for HFETs at a lattice constant of 6.1 Å and the demonstration of mm-wave HFETs. The only other reports on recess gate technology for InAs-channel HFETs are based on a fundamentally different approach employing a thin, fully depleted InAs cap layer [4], [9]. In contrast, the recess technology presented here employs an undepleted n⁺-InAs–InAlAs double cap layer structure.

II. RECESS GATE DESIGN

The presented recess structure is aimed at simultaneously obtaining low source resistance, RŞ, and low threshold voltage, Vth. In addition, the recess technology is aimed at providing surface protection. Low RŞ is needed for good RF performance. Low Vth is desirable for several reasons: First, high output resistance hence high fmax operation of HFETs requires a pinched-off channel or Vd > Vth + Vg, where Vd is the drain voltage and Vg the gate voltage. Hence, low Vth allows operation at low Vd. This results in low power dissipation, which is one of the main motivations for developing InAs-channel HFETs. In addition, low Vg operation is desirable because the maximum Vd of InAs-channel HFETs is limited by source-to-drain breakdown due to impact ionization [4], [5], [13]. Second, low Vth reduces the gate-to-drain voltage, Vgd, under operation. Hence, gate-to-drain breakdown phenomena are also reduced.

Fig. 1 shows a schematic cross section of the recessed HFETs. Both Vth and RŞ depend on n, the electron density in the channel: Vth is proportional to n in the gate region and RŞ...
is inversely proportional to \(n \) in the source access region. In a nonrecessed HFET, \(n \) is the same in the gate region and in the access regions. Hence low \(V_{th} \) and low \(R_S \) lead to conflicting requirements on \(n \) in a nonrecessed HFET. The presented recess design aims at independent control of \(n \) in the access regions and in the gate region. This is achieved by using a double cap structure as shown in Fig. 1. Cap layer 1 is heavily n-type doped InAs. This layer is present in the access regions, and it is selectively removed in the gate region. Cap layer 2 is undoped strained InAlAs. This layer is the cap layer in the gate region. The position of the Fermi-level at the top interface of cap layer 2 determines \(n \). The main objective of the recess structure is to control the Fermi-level at the top interface of cap layer 2 by the bulk doping level in cap layer 1. To achieve high \(n \) in the access regions, the Fermi-level needs to be high relative to the InAs conduction band edge. This is achieved by doping the InAs degenerately to \(2 \times 10^{19} \) cm\(^{-3} \). In addition thickness and doping of cap layer 1 are chosen so high that the field in the barrier is screened from the surface Fermi-level pinning. Because of the large nonparabolicity of InAs, the effective mass cannot be considered constant [14] when calculating the Fermi level. Fig. 2 shows band diagrams in the access regions of the transistors. These were calculated with one-dimensional (1-D) Poisson, a self-consistent Poisson–Schrödinger solver [15]. The surface Fermi-level of as-grown InAs is assumed to be \(1320 \) meV below the conduction band edge of AlSb, \(E_C(AlSb) \) [16]. The surface Fermi-level of InAlAs is assumed to be \(1050 \) meV below \(E_C(AlSb) \) based on fitting measured electron densities. Because 1-D Poisson does not model the nonparabolicity of InAs, the cap layer doping in the input file was adjusted to \(1.1 \times 10^{19} \) cm\(^{-3} \) from the real value of \(2.0 \times 10^{19} \) cm\(^{-3} \). The three band diagrams are for a heavily n-type doped InAs cap layer 1 (a), for an undoped InAs cap layer 1 (b), and for an air-exposed InAlAs cap layer 2 (c) at the surface. \(n \) increases monotonically with the doping in cap layer 1. For high enough doping in cap layer 1, \(n \) is higher with the n+ InAs cap layer 1 than with the InAlAs cap layer 2 on the surface. In the region under the gate, \(n \) is controlled, among other facts, by the difference between the gate metal work function and the InAlAs electron affinity. To first approximation, the Fermi-level pinning is similar at the InAlAs-metal interface and the InAlAs–air interface.

In addition to modifying \(n \), the n+-InAs cap layer provides surface protection. The InAlAs layer under the gate metal is only exposed to the ambient for a short time (few minutes) during the gate process. This is desirable because InAlAs can quickly oxidize during processing. This work has concentrated on n+-InAs for cap layer 1 and strained InAlAs for cap layer 2. Strained InAlAs was first introduced as a cap layer by Boos et al. [4] and is used successfully in other nonrecessed devices [6]–[8]. n+-InAs was chosen for cap layer 1 over other materials such as GaSb because InAs can be n-type doped very heavily and it is more stable in processing than GaSb.

Experimental procedures are needed to determine \(n \) in the different regions of the HFET. In this report Hall measurements were used to measure \(n \) in the gate region as described in Section III. In the access regions, \(n \) could not be determined experimentally. Instead the sheet resistance in the access regions was determined from measurements of the S/D resistance, \(R_{DS} \), on HFETs as described in Section IV. Because of parallel conduction through the n+-InAs cap layer, Hall measurements cannot determine \(n \) in the access regions.

III. Epitaxial Growth

All samples were grown by molecular-beam epitaxy (MBE) employing a solid-source MBE machine. The growth front was monitored by reflection high-energy electron diffraction (RHEED) and the growth temperatures were measured by a pyrometer facing the wafer. This report concerns four MBE-grown samples, samples A, B, C, and D. Their layer structure can be

TABLE I

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cap doping ([10^{19} \text{ cm}^2])</th>
<th>Te-doping ([10^{19} \text{ cm}^2])</th>
<th>Cap barrier [Å]</th>
<th>Buffer</th>
<th>R(sheet) as-grown ([\Omega \text{sq}])</th>
<th>R(sheet) cap 1 removed ([\Omega \text{sq}])</th>
<th>Mobility ([\text{cm}^2/\text{Vs}])</th>
<th>Electron Density ([10^{19} \text{ cm}^2])</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.0</td>
<td>3.0</td>
<td>140</td>
<td>Al3Sb</td>
<td>63</td>
<td>120</td>
<td>22,600</td>
<td>2.25</td>
</tr>
<tr>
<td>B</td>
<td>2.0</td>
<td>1.0</td>
<td>180</td>
<td>AlSb</td>
<td>110</td>
<td>180</td>
<td>23,800</td>
<td>1.49</td>
</tr>
<tr>
<td>C</td>
<td>2.0</td>
<td>none</td>
<td>190</td>
<td>AlSb</td>
<td>130</td>
<td>300</td>
<td>25,300</td>
<td>0.81</td>
</tr>
<tr>
<td>D</td>
<td>none</td>
<td>none</td>
<td>190</td>
<td>AlSb</td>
<td>670</td>
<td>300</td>
<td>22,300</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Fig. 2. Band diagrams in the access regions of the transistor. Part (a) shows data for a heavily n-type doped InAs cap layer (Sample C, as-grown). Part (b) shows data for an undoped InAs cap layer (Sample D, as-grown). Part (c) shows data for an air-exposed InAlAs surface (Samples C and D after removal of cap layer 1).
seen schematically in Fig. 1. The four samples differ mainly in their doping levels, which are summarized in Table I.

The active part of the device was grown on top of a 1-μm-thick Al0.38Ga0.62Sb or AlSb buffer layer, which was grown metamorphically on a semi-insulating 2-in GaAs wafer. The initial samples used AlSb for the buffer layer; later samples used Al0.20Ga0.80Sb instead because it is more resistant to oxidation. Growth was initiated at 570 °C by growing a 500-Å-thick GaAs layer. Then we grew a 100-Å-thick AlAs layer followed by a 300-Å-thick AlSb layer. For the growth of the Al0.38Ga0.62Sb buffer layer, the temperature was lowered to 530 °C.

The RHEED pattern was streaky during the growth of the GaAs and AlAs layers. During the growth of the mismatched AlSb layer, the RHEED pattern initially became spotty without losing intensity. Within the first 100 Å of AlSb growth, the RHEED pattern recovered to a streaky, 1 × 3 reconstructed pattern. This evolution of the RHEED pattern indicates a transition from a smooth growth front to a rough growth front when nucleating the mismatched AlSb layer and a transition back to a smooth growth front within the first 100 Å of AlSb.

On top of this buffer structure, a 2000-Å-thick Al0.77Ga0.23Sb layer was grown, which serves as a chemically stable mesa floor. Then, a 200-Å-thick AlSb back barrier, a 130-Å-thick InAs quantum well, an AlSb top barrier, a 50-Å strained In0.50Ga0.50As cap layer, and a 200-Å InAs cap layer were grown. Samples A, B, and C have Si-doped cap layers. Sample D has an undoped cap layer. Samples A and B also contain a Te delta doping sheet in the AlSb top cap layers. Sample D has an undoped InAs cap layer and is included as a reference. In contrast to the other three samples, Sample D has a higher sheet resistance in the presence of the InAs cap layer. Because the InAs cap layer of Sample D is undoped, conduction through the InAs cap is small. Assuming conduction in only the InAs channel, we calculate an electron density of \(0.58 \times 10^{12} \text{ cm}^{-2}\) and an electron mobility of 1600 cm\(^2\)/V·s. For sample D, the electron density is lower in the presence of the InAs cap layer. This is due to different surface Fermi level pinning of InAs and InAlAs. The three band diagrams in Fig. 2 correspond to the as-grown Sample C (a), the as-grown Sample D (b), and Sample C and D after removal of cap layer 1 (c). The same phenomenon has been observed in samples with InAs and GaSb surface layers [16].

IV. DEVICE FABRICATION AND RECESSED GATE TECHNOLOGY

HFETs were fabricated in a mesa-isolated process. First, Pd–Ti–Pd–Au ohmic contacts were formed using optical lithography and electron beam evaporation [17]. In the recess process, the contact resistance cannot be measured with transfer length method (TLM) patterns due to the conductive cap layer. These Pd-based ohmic contacts routinely give specific contact resistances below \(10^{-6} \Omega \cdot \text{cm}^2\) and below 0.1 Ω·mm in a nonrecessed process [6]. Device mesas were defined by optical lithography. The 100-nm-high mesas were formed by first selectively removing the InAs cap layer in an aqueous solution of citric acid and hydrogen peroxide (equal parts of 1-M citric acid and 30% \(\text{H}_2\text{O}_2\)) [18] and then by dry etching in \(\text{BCl}_3\). This was followed by another wet etch in the same solution to undercut the InAs quantum wells. To fabricate the recess gates, a self-aligned recess gate process was developed: the gates were defined by electron beam lithography in a trilayer resist stack, which consisted of 150-nm-thick 950 k PMMA, 370-nm-thick copolymer and 120-nm-thick 50 k PMMA. After development, wet-chemical etching in the same citric acid-based etchant was performed for 30 s to form the recess structure. This etchant selectively removes the n-InAs layer. After etching through the n-InAs layer, the etch proceeds to undercut the resist laterally. In separate etch experiments, we have observed identical lateral and vertical etch rates of 90 nm/min. After the recess etch, Ti–Pd–Au was deposited by electron beam evaporation and T-shaped gates were formed by lift-off. Fig. 3 shows a scanning electron microscope (SEM) image of a cleaved cross section through a gate fabricated in this process. The gate length is 290 nm with symmetric, 50-nm-long recessed regions. In this process, the amount of lateral etching, and hence the recess length, is limited to 50 nm by degradation of the InAs channel after long etch times. The maximum acceptable etch time was determined in separate experiments on Hall samples in van-der-Pauw geometry. On these samples an increase of the electron density from \(1.5 \times 10^{12} \text{ cm}^{-2}\) to \(4.0 \times 10^{12} \text{ cm}^{-2}\) and a reduction of the electron mobility from 25000 to 100000 cm\(^2\)/V·s was observed for etch times exceeding 30 s. We attribute this to residual etching of the InAlAs layer during the recess etch. Recessed gates with length between 200 and 1000 nm were fabricated in this process. At last one layer
of Ti–Pd–Au interconnect metal was deposited using optical lithography and electron beam evaporation.

To evaluate the effectiveness of the recess, a method for measuring the sheet resistance of the InAs channel layer in the access regions of the transistor is required. This measurement must not incorporate the parallel conduction of the n+–InAs cap layer, as this parallel conduction does not contribute to the transistors source and drain resistances, R_s and R_d. As discussed before, normal TLM or Hall measurements of the full set of epitaxial layers measure the parallel conduction paths of the n+–InAs cap and the InAs quantum well layers, and hence do not provide the required information. Nor does removing the n+–InAs cap layer prior to Hall or TLM measurements suffice because cap layer removal changes the electron density in the InAs channel, n. Required instead is a TLM measurement with the doped cap layer present but no conduction through the doped cap layer. The sheet resistance of the source and drain access region, R_{access}, is measured by measuring the source/drain (S/D) resistance, R_{DS}, of a series of HFETs of identical gate length as a function of S/D separation L_{SD}. This measurement is taken at $V_g = 0$ mV so as to maintain the HFET channel regions in their linear resistive bias region.

Fig. 4 shows results of such measurements for different gate voltages on Sample C. The data analysis is identical to that of TLM test structures. The rate of variation of R_{DS} with L_{SD} is the product of the device width, W, and R_{access}. The y-intercept (extrapolation of R_{DS} to zero L_{SD}) is the sum of the contact resistances and the channel resistance in the gate region. It can be seen in Fig. 3 that the measured R_{access} is independent of the gate voltage, V_g, as expected. The y-intercept does depend on V_g because the resistance under the gate increases as the device is pinched off. With this method, R_{access} of Samples A, B, and C was determined to be $110 \, \Omega/\text{sq}$, $140 \, \Omega/\text{sq}$, and $200 \, \Omega/\text{sq}$, respectively. These values should be compared to the sheet resistance of the material after selectively removing the n+–InAs cap (as shown in Table I). In the case of Sample A, the conductivity increased by 10%, in the case of Sample B by 30%, and in the case of Sample C by 50%.

V. Device Results and Discussion

The following dc and RF measurements were made on HFETs on Sample A. All measurements are common-source. The measured HFETs have two gate fingers with a total width W of 40 μm. Devices with gate length L_g of 1000, 500, and 200 nm were measured. Table II summarizes the device geometry and the dc performance. The RF performance and the dc operating points are summarized in Table III.

Fig. 5(a) shows the drain current I_D as a function of drain bias V_D of a 500-nm gate length HFET. Fig. 5(b) shows the gate leakage current I_G. There are two contributions to I_G. First, there is a peak at $V_g = -300 \, \text{mV}$, which dominates I_G when the device is turned on. This contribution is well understood and is due to holes generated in the InAs channel by impact ionization [4], [5], [13]. Second, there is a contribution to I_G that increases monotonically with reverse gate bias. This second contribution dominates I_G when the device is turned off and is believed to be due to tunneling through the AlSb barrier. The dc transconductance, $g_m(dc)$, of this HFET is shown in Fig. 5(c). As normally observed in InAs-channel HFETs [5]–[7], $g_m(dc)$ peaks
just above V_{th}, in this case at $V_d = -475$ mV. In Fig. 6(a) and (b), the I_g-dash-V_d characteristics of devices with $L_g = 1000$ and $L_g = 200$ nm are shown. The dc performance at $L_g = 1000$ and $L_g = 500$ nm are similar. However, at $L_g = 200$ nm the HFET shows poorer dc performance than at the two longer gate lengths: its V_{th} increases from -810 to -970 mV as V_d increases from 250 to 400 mV. In addition, the output conductance is increased. As shown in Table III, the S/D resistance R_{DS} decreases from 13.9 to 10.9 Ω as L_g decreases from 1000 to 200 nm. This is due to the different S/D separation, L_{SD}. Similarly, I_d at $V_d = 400$ mV increases from 500 to 690 mA. As discussed earlier, we have independently measured an access sheet resistance of $120 \Omega/\sqrt{\text{cm}}$. We find good agreement between the measurements and the calculations if we assume a contact resistance of 0.14 Ω.mm. In this calculation, we also assume that the sheet resistance in the gate region is unaffected by the presence of the gate metallization for $V_d = 0$ mV. We believe the contact resistance can be decreased below 0.1 Ω-mm, the value in the nonrecessed gate process, by further process development. Table II also shows the maximum on-state I_g for $V_d = 400$ mV, $I_g(\text{on})$, and the

<table>
<thead>
<tr>
<th>Gate length [nm]</th>
<th>V_d [mV]</th>
<th>V_f [mV]</th>
<th>g_m (at 25GHz) [S/mm]</th>
<th>C_{gs} [pF/mm]</th>
<th>C_{gd} [pF/mm]</th>
<th>f_t [GHz]</th>
<th>f_{max} [GHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>450</td>
<td>-400</td>
<td>0.98</td>
<td>3.18</td>
<td>0.70</td>
<td>40</td>
<td>89</td>
</tr>
<tr>
<td>500</td>
<td>450</td>
<td>-475</td>
<td>1.16</td>
<td>1.98</td>
<td>0.49</td>
<td>89</td>
<td>140</td>
</tr>
<tr>
<td>200</td>
<td>350</td>
<td>-650</td>
<td>1.05</td>
<td>0.59</td>
<td>0.44</td>
<td>162</td>
<td>137</td>
</tr>
</tbody>
</table>
off-state I_g, $I_g^{(\text{off})}$, at $V_{ds} = -1000$ mV and $V_{ds} = 400$ mV. Both $I_g^{(\text{on})}$ and $I_g^{(\text{off})}$ are independent of I_g. For the purpose of this paper, the threshold voltage V_{th} is defined as the intercept of the x-axis and the tangent fitted to the steepest point of the transfer characteristics. There is some variation of V_{th} with V_d.

The minimum value is given as V_{th} in Table II. Note that there is a large negative shift of V_{th} from -550 to -810 mV when I_g is reduced from 500 to 200 nm.

S-parameters were measured on-wafer from 5–40 GHz employing on-wafer TRL calibration structures. From the measured S-parameters, we determined Y-parameters, the current gain h_{21}, and Mason’s unilateral power gain U. We fitted the Y-parameters to a simple equivalent circuit model, which included only the gate/source capacitance, C_{gs}, the gate-drain capacitance, C_{gd}, and the transconductance, g_m. The maximum frequency of oscillation, f_{max}, was obtained by extrapolating U by -20 dB/decade to unity. In the measurements we observe that $[h_{21}]^2$ rolls off more slowly than -20 dB/decade. This is due to two effects: First, C_{gd} is significant and leads to an additional high-frequency zero in the transfer function. Second, the gate leakage current limits $[h_{21}]^2$ at low frequencies. For this reason, the current gain cutoff frequency, f_T, is calculated from the extracted circuit elements, C_{gs}, C_{gd} and g_m by using $f_T = (1/2\pi) \cdot g_m / (C_{gs} + C_{gd})$. For our devices this approach leads to a more reliable and lower f_T than extrapolating the measured $[h_{21}]^2$ by -20 dB/decade. The 1000-, 500-, and 200-nm gate length devices have f_T of 40, 89, and 162 GHz, respectively, and f_{max} of 89, 140, and 137 GHz, respectively. As in nonrecessed devices [6], we find that the RF transconductance, g_m, is smaller than the dc value, $g_m^{(dc)}$, and that g_m has little frequency dependence between 5 and 40 GHz. The measured C_{gs} values agree with our expectations based upon capacitance per unit area calculations using 1-D-Poisson [15]. C_{gd}, however, is much larger than the value of 0.1–0.2 pF/mm, which we expect from two-dimensional field simulations of the device structure and which is commonly observed in III-V based HFETs [1]. We find that C_{gd} decreases with decreasing gate length. We observe variation in C_{gd} for nominally identical devices. For example, for the 500-nm gate length devices C_{gd} ranges from 0.8 pF/mm to 0.5 pF/mm. As expected, we find best device performance for small C_{gd} values.

The recessed-gate HFETs with 500-nm gate length, I_g, show robust performance with a low threshold voltage, V_{th}, of -550 mV. Their f_{max} of 140 GHz is the highest reported for an InAs-channel HFET with I_g of 500 nm. At $I_g = 200$ nm, however, unexplained scaling problems are observed. These scaling problems are evident in the dc characteristics in Fig. 5 as increased output conductance and as a negative gate shift. This can be caused by parasitic back-gating due to accumulation of impact-ionization generated holes in the buffer layers, the so-called kink-effect [4], [5], [13]. As the gate length shortens, the electric field along the channel increases leading to higher impact-ionization rates. At all gate length, the RF measurements show larger than expected C_{gd} ranging from 0.7 to 0.4 pF/mm. To improve device performance, particularly for short gate length devices, C_{gd} must be reduced. First, the large C_{gd} significantly reduces f_{max}. Second, the C_{gd} of 0.44 pF/mm is a significant fraction of the total input capacitance of the 200-nm I_g devices and reduces f_T from the expected 230 GHz to the observed 162 GHz. The physical origin of the large C_{gd} is not understood. However, we do know that the large C_{gd} is due to the recess design or the recess process. We observe a smaller C_{gd} of 0.1 to 0.2 pF/mm in nonrecessed devices fabricated in our laboratory. We speculate that unintentional charge accumulation in the recess structure or a too short lateral recess length causes the large C_{gd}. As discussed earlier, in our present process it is not possible to widen the recess laterally due to channel degradation.

VI. CONCLUSION

We have developed a self-aligned recess gate technology for mm-wave InAs-channel HFETs. The technology employs an n$^+$/InAs–InAlAs double cap layer structure and a selective citric-acid-based wet etch. The experiments demonstrate a reduction of the access sheet resistance by up to 50%. HFETs with gate lengths of 200, 500, and 1000 nm were fabricated. The dc and RF performance is robust at 1000- and 500-nm gate length. At 200-nm gate length, increased output conductance and an increased threshold voltage were observed. At 500-nm gate length, the devices have low thresholds (–550 mV), high drain current (575 mA/mm), high dc transconductance (1.6 S/mm), and low gate leakage (below 1.7 mA/mm). We have demonstrated f_T/f_{max} values of 89/140 GHz and 162/137 GHz for the 500- and 200-nm gate length devices, respectively. Presently, the device performance and further scaling is limited by an abnormally high C_{gd} value of 0.4 to 0.5 pF/mm.

REFERENCES

KADOW et al.: n+-InAs–InAlAs RECESS GATE TECHNOLOGY FOR HFETs

C. Kadow received the Diplom degree in physics from the Ludwig-Maximilian Universität, Munich, Germany, in 1996, and the Ph.D. degree in materials science and engineering from the University of California, Santa Barbara (UCSB), in 2000. He is a Project Scientist in the Department of Electrical and Computer Engineering at UCSB. His research interests are in semiconductor devices and materials. His current focus of his work is high-bandwidth transistor design and the associated process development. Previous research efforts include the development of ErAs–GaAs nanoscale materials for photoductive applications. He is the author or coauthor of 25 papers in technical journals.

G. C. DeSalvo, W. F. Tseng, and J. Comas, “Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, AlGaAs, InGaAs, In0.53Ga0.47As, In0.25Ga0.75As, In0.52Al0.48As, and InP,” J. Electrochem. Soc., vol. 139, pp. 831–835, 1992.

H.-K. Lin was born in Taipei, Taiwan, on October 28, 1971. He received the B.S. degree from the National Cheng-Kung University, Tainan, Taiwan, R.O.C., in 1994, the M.S. degree from the National Taiwan University, Taipei, in 1996, and the Ph.D. degree from the University of California, Santa Barbara (UCSB), in 2004, all in materials engineering.

His research experience includes the casting of non dendritic Al–Si alloys in semisolid states and the aetiological study of defects in powder injection-molded compacts especially on solvent debinding before 1996. At UCSB, he focuses on the epitaxial growth of III-V compound semiconductor using molecular-beam epitaxy, and the design and characterization of antimonide-based composite-channel HFETs.

M. Dahlstrom received the M.Sc. degree in engineering physics and the Ph.D. degree in electrical engineering from The Royal Institute of Technology (KTH), Stockholm, Sweden, in 2003. His Ph.D. thesis work involving ultrahigh-speed InP HBTs was performed at University of California, Santa Barbara under the leadership of Prof. M. Rodwell. His InP transistor work focused on achieving >300-GHz operation for transistors suitable for communication circuits. Key improvements were done in composite collector design, base transit time, parasitic resistances, and current density resulting in several state-of-the-art devices, with record breaking |f1| and |fMAX|. He is now with IBM, Essex Junction, VT, developing high-speed SiGe HBTs.

M. J. W. Rodwell (M’89–SM’99–F’03) received the B.S. degree from the University of Tennessee, Knoxville, in 1980, and the M.S. and Ph.D. degrees from Stanford University, Stanford, CA, in 1982 and 1988, respectively.

He is a Professor and the Director of the Compound Semiconductor Research Laboratories and the National Science Foundation’s Nanofabrication Users Network (NNTJN) at the University of California, Santa Barbara. He was with AT&T Bell Laboratories, Whippany, NJ, from 1982 to 1984. His research focuses on very high bandwidth bipolar transistors and multigigahertz bipolar circuit design for mixed-signal applications and fiber-optic transmission. Recent research activities also include bipolar and field-effect transistors in the 6.1-A material system, microwave power amplifier design, and monolithic transistor circuits operating above 100 GHz.

Dr. Rodwell was the recipient of the 1997 National Science Foundation Presidential Young Investigator Award. His work on GaAs Schottky-diode IC’s for subpicosecond/millimeter-wave instrumentation was awarded the 1997 IEEE Microwave Prize.

A. C. Gossard (SM’88–F’01) received the Ph.D. degree from the University of California, Berkeley in 1960.

He has been a Professor with the University of California, Santa Barbara since 1987. He was previously a Member of the Technical Staff at AT&T Bell Laboratories. His research is centered on the growth of artificially structured materials by molecular-beam epitaxy with an application to new optical and electrical devices. He is a Fellow of the American Physical Society and a member of the National Academy of Engineering and the National Academy of Sciences.

J.-U. Bae received the B.S. degree in materials engineering from Pusan National University, Pusan, Korea, in 1995, and the M.S. degree in materials science and engineering from the Korea Advanced Institute of Science and Technology (KAIST), Taejon, Korea, in 1998.

From 1998 to 2000, he worked at the research and development division of Hyundai Microelectronic Company, Ltd. (formerly LG Semicon). There he worked on device fabrication and characterization. In 2000, he joined the research and development center of LG Philips LCD Company, Ltd. and pursued a career in the development of poly-Si TFTs. Since 2002, he has studied device simulation and circuit modeling of InAs–AlSb–based HFETs in the Department of Electrical and Computer Engineering, University of California, Santa Barbara.
B. Brar (M’96) received the Ph.D. degree in electrical engineering from the University of California, Santa Barbara (UCSB), in 1995. At UCSB he studied the InAs–AlSb–GaSb material system for high-speed electronic and optoelectronic applications.

In 1995, he joined the nanoelectronics branch in the Central Research Laboratories, Texas Instruments to work on InP-based resonant tunneling devices and FETs for high-speed mixed-signal applications. Under the ultra program sponsored by DARPA, he also conducted research in ultrathin crystalline layers grown on silicon substrates to build resonant tunneling structures for silicon-based quantum devices. He joined the Rockwell Scientific Company, Thousand Oaks, CA, in 1998, and is presently Manager of the Advanced III-V Devices and Materials Department, overseeing research in InP, GaAs, and antimonide-based transistor technologies for high-performance ASICs and MMICs. He has published over 50 papers in technical journals.

G. J. Sullivan is with Rockwell Scientific Company, Thousand Oaks, CA, where he is involved in the design, growth, and characterization of a wide range of III-V materials and devices, including AlGaInAs HBTs, HFETs, detectors, and lasers on GaAs and InP substrates, n-channel and p-channel AlGaSb–InAs HFETs, and AlGaN HFETs and detectors. He has authored or coauthored over 60 papers in technical journals.

G. Nagy received the Ph.D. degree in physics from Clarkson University, Potsdam, NY, in 1996.

He is a Research Scientist at Rockwell Scientific Company (RSC), Thousand Oaks, CA where he is involved with process development for InP-, GaN-, GaSb-, and GaAs-based device technologies. Prior to working at RSC, he led efforts in nanoscale process development for compound semiconductors, first as a Postdoctoral Fellow at Columbia University, New York, and then as a Research Engineer at Cornell University’s Nanofabrication Facility, Ithaca, NY. He is the author or coauthor of approximately 20 publications, mostly in the area of semiconductor device processing.

J. I. Bergman (M’97), photograph and biography not available at the time of publication.