A Mixed-Signal Row/Column Architecture for Very Large Monolithic mm-Wave Phased Arrays

Corrado Carta, Munky Seo and Mark Rodwell
- Think of a transmitter “generating” a plane wave traveling on an arbitrary direction, by producing the proper phases
- Same applies to the receiver (as for any antenna)
- A bi-dimensional array can steer azimuth and altitude just by electronically adjusting the phases
Overview

- mm-Wave communications and phased arrays
- Need for high directivity calls for large arrays
- Innovative row/column architecture
- IF bus design
- LO bus design
- Active microwave mixer design (ECL compatibility)
- Conclusion
mm-Wave communications

\[
\left(\frac{P_{\text{received}}}{P_{\text{transmitted}}} \right) = \left(\frac{D_i D_r}{16 \pi^2} \right) \left(\frac{\lambda^2}{R^2} \right) e^{-\alpha R}
\]

- mm-wave enables 1-10Gbps wireless communications
- Small \(\lambda \) and atmospheric attenuation imply short distance
- Directional antennas (large \(D_x \)) can increase link range
- mm-wave systems must use phased arrays
- High directivity requires electronic beam steering…
- …but small element area demands monolithic integration

\[\text{Area} = \left(\frac{\lambda}{2} \right)^2 \]

\[\text{How to make a large monolithic phased array?} \]
Mixed-signal row-column architecture

- 16 discrete phases of two LOs
- Phase on each element is set by row first, then by column
- This is enough to select any direction above array
- Element number scalable (N^{1/2} complexity)
- Limit in IF and LO buses (frequency and max N)
IF bus: design

- IF signal is analog and must travel on a linear bus
- Exploit long connections and periodic load to make a synthetic t-line:
 - Linear
 - 50Ω input
 - Well controlled amplitudes and phases at tap points
- It is entirely passive

\[Z_o = \sqrt{\frac{L_L}{C_S + C_L}} \]
Simulation of a 14 tap point t-line, on a standard 0.18μm RF BiCMOS technology

Application and frequency plan sets max frequency and N

Max RF might be quite higher than max IF, e.g.:
- LO\textsubscript{1} = 15GHz
- N = 12 @ IF\textsubscript{2} = 15GHz
- IF\textsubscript{1} < 1GHz (e.g. 1Gbps QAM)
- LO\textsubscript{2} = RF - LO\textsubscript{1}
- Much higher than max IF!!!
LO signals need no linearity, just phase and frequency information

Exploit robustness of digital design

ECL (fastest logic) inverters drive terminated t-lines

Periodic load are selector inputs or other inverters driving column lines

Full compatibility (DC levels) with Mixers and selectors, both feasible as ECL gates
LO bus: simulation

- Simulation of a 12 tap-point 30GHz LO bus (same tech. as before)
- Signal levels are steady and adequately recovered – no sensible sign of degradation
- Limit is only in max frequency of operation of ECL inverters
- Virtually no limit in number of tap-points (just the power consumption…)
- It is much faster than the analog IF bus
Mixer design (time buffer)

- ECL compatibility is very important
- It’s robust and avoids bulky capacitors
- An ECL XOR gate is “almost” a mixer…
- …just resistive degeneration needed to linearize the IF-to-RF conversion gain (analog path)
Conclusion

- We propose a scalable and robust architecture for the integration of large phased arrays in Silicon technologies.
- Row/Column phase distribution minimizes wiring complexity and reduces system design to IF and LO bus design.
- Analog design is necessary for IF bus, but it is limited in size or max frequency very early. Analog systems are hardly scalable!
- Digital design allows faster operation and larger sizes: mixed-signal design of phased arrays enables better performances (max frequency and directivity).