Frequency Limits of Bipolar Integrated Circuits

Mark Rodwell
University of California, Santa Barbara

Collaborators
Z. Griffith, E. Lind, V. Paidi, N. Parthasarathy, U. Singisetti
ECE Dept., University of California, Santa Barbara
M. Urteaga, R. Pierson, P. Rowell, B. Brar
Rockwell Scientific Company

Sponsors
J. Zolper, S. Pappert, M. Rosker
DARPA (TFAST, ABCS, SMART)
I. Mack, D. Purdy
Office of Naval Research
THz Transistors:
What does this mean?
What are they for?
How do we make them?
What could we do with a THz Transistor?

High-Resolution Microwave ADCs and DACs

- mm-wave radio: 40+ Gb/s on 250 GHz carrier
- 340 GHz imaging systems
- 320 Gb/s fiber optics

Why develop transistors for mm-wave & sub-mm-wave applications?

→ compact ICs supporting complex high-frequency systems.
THz Transistors: What does this mean?

A 1 THz current-gain cutoff frequency \(f_\tau \) alone has little value. A transistor with 1000 GHz \(f_\tau \) and 100 GHz \(f_{\text{max}} \) cannot amplify a 101 GHz signal.

RF-ICs & MIMICs need high power-gain cutoff frequency \(f_{\text{max}} \) also need high breakdown & high safe operating area (power density).

100+ GHz digital also needs low \(\left(C_{\text{depletion}} \frac{\Delta V}{I} \right) \) and low \(\left(I*R_{\text{parasitic}} / \Delta V \right) \).

So, how do we make a transistor with

- \(>1 \) THz \(f_\tau \)
- \(>1 \) THz \(f_{\text{max}} \)
- \(<50 \) fs \(C \Delta V / I \) charging delays

and \(< 100 \) mV \(I*R_{\text{parasitic}} \) parasitic voltage drops?
THz Transistors:
How do we make them?
Present Status of Fast III-V Transistors

\[f_t \text{ or } f_{\text{max}} \text{ alone} \]
\[\frac{(f_t + f_{\text{max}})}{2} \]
\[\sqrt{f_t f_{\text{max}}} \]
\[\frac{1}{f_t + 1/f_{\text{max}}} \]

popular metrics:
- Power amplifiers: PAE, associated gain, mW/\mu m
- Low noise amplifiers: \(F_{\text{min}} \), associated gain
- Digital: \(f_{\text{clock}} \), hence
 - \(\frac{C_{cb} \Delta V}{I_c} \)
 - \(\frac{R_{ex} I_c}{\Delta V} \)
 - \(\frac{R_{bb} I_c}{\Delta V} \)
 - \(\tau_b + \tau_c \)

Red = manufacturable technology for 10,000- transistor ICs

Updated July 5 2006
Bipolar Transistor Scaling Laws

Design changes required to double transistor bandwidth

<table>
<thead>
<tr>
<th>key device parameter</th>
<th>required change</th>
</tr>
</thead>
<tbody>
<tr>
<td>collector depletion layer thickness</td>
<td>decrease 2:1</td>
</tr>
<tr>
<td>base thickness</td>
<td>decrease 1.414:1</td>
</tr>
<tr>
<td>emitter junction width</td>
<td>decrease 4:1</td>
</tr>
<tr>
<td>collector junction width</td>
<td>decrease 4:1</td>
</tr>
<tr>
<td>emitter resistance per unit emitter area</td>
<td>decrease 4:1</td>
</tr>
<tr>
<td>current density</td>
<td>increase 4:1</td>
</tr>
<tr>
<td>base contact resistivity (if contacts lie above collector junction)</td>
<td>decrease 4:1</td>
</tr>
<tr>
<td>base contact resistivity (if contacts do not lie above collector junction)</td>
<td>unchanged</td>
</tr>
</tbody>
</table>
InP HBT Scaling Roadmaps

Key scaling challenges
-Emitter & base contact resistivity
-Current density

→ Device heating

Collector-base junction width scaling & Yield!

Key figures of merit for logic speed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>scaling law</th>
<th>Gen. 2 (500 nm)</th>
<th>Gen. 3 (250 nm)</th>
<th>Gen. 4 (125 nm)</th>
<th>Gen. 5 (62.5 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-DFF speed</td>
<td>γ^1</td>
<td>150 GHz</td>
<td>235 GHz</td>
<td>330 GHz</td>
<td>440 GHz</td>
</tr>
<tr>
<td>Amplifier center frequency</td>
<td>γ^1</td>
<td>245 GHz</td>
<td>400 GHz</td>
<td>650 GHz</td>
<td>750 GHz</td>
</tr>
<tr>
<td>Emitter Width</td>
<td>γ^2</td>
<td>1/500 nm</td>
<td>1/250 nm</td>
<td>1/125 nm</td>
<td>1/62.5 nm</td>
</tr>
<tr>
<td>Resistivity</td>
<td>γ^2</td>
<td>16 Ω-μm2</td>
<td>9 Ω-μm2</td>
<td>4 Ω-μm2</td>
<td>2 Ω-μm2</td>
</tr>
<tr>
<td>Base Thickness</td>
<td>$1/\gamma$</td>
<td>300 \AA</td>
<td>250 \AA</td>
<td>212 \AA</td>
<td>180 \AA</td>
</tr>
<tr>
<td>Contact width</td>
<td>$\sim1/\gamma$</td>
<td>300 nm</td>
<td>175 nm</td>
<td>120 nm</td>
<td>70 nm</td>
</tr>
<tr>
<td>Doping</td>
<td>γ^0</td>
<td>7×10^{19}/cm^2</td>
<td>7×10^{19}/cm^2</td>
<td>7×10^{19}/cm^2</td>
<td>7×10^{19}/cm^2</td>
</tr>
<tr>
<td>Sheet resistance</td>
<td>$\gamma^{1/2}$</td>
<td>500 Ω</td>
<td>600 Ω</td>
<td>707 Ω</td>
<td>830 Ω</td>
</tr>
<tr>
<td>Contact ρ</td>
<td>$1/\gamma^{1/2}$</td>
<td>20 Ω-μm2</td>
<td>10 Ω-μm2</td>
<td>5 Ω-μm2</td>
<td>5 Ω-μm2</td>
</tr>
<tr>
<td>Collector Width</td>
<td>γ^2</td>
<td>1.2 μm</td>
<td>0.60 μm</td>
<td>0.37 μm</td>
<td>0.20 μm</td>
</tr>
<tr>
<td>Thickness</td>
<td>γ</td>
<td>1500 \AA</td>
<td>1060 \AA</td>
<td>750 \AA</td>
<td>530 \AA</td>
</tr>
<tr>
<td>Current Density</td>
<td>γ^2</td>
<td>4.5 mA/μm2</td>
<td>9 mA/μm2</td>
<td>18 mA/μm2</td>
<td>36 mA/μm2</td>
</tr>
<tr>
<td>$A_{\text{collector}}/A_{\text{emitter}}$</td>
<td>γ^0</td>
<td>2.4</td>
<td>2.4</td>
<td>2.9</td>
<td>2.8</td>
</tr>
<tr>
<td>f_T</td>
<td>γ^1</td>
<td>370 GHz</td>
<td>530 GHz</td>
<td>730 GHz</td>
<td>1.0 THz</td>
</tr>
<tr>
<td>f_{max}</td>
<td>γ^1</td>
<td>490 GHz</td>
<td>801 GHz</td>
<td>1.30 THz</td>
<td>1.5 THz</td>
</tr>
<tr>
<td>I_E/I_E</td>
<td>γ^0</td>
<td>2.3 mA/μm2</td>
<td>2.3 mA/μm2</td>
<td>2.3 mA/μm2</td>
<td>2.3 mA/μm2</td>
</tr>
<tr>
<td>τ_f</td>
<td>$1/\gamma$</td>
<td>340 fs</td>
<td>240 fs</td>
<td>180 fs</td>
<td>130 fs</td>
</tr>
<tr>
<td>C_{cb}/I_c</td>
<td>$1/\gamma$</td>
<td>400 fs/V</td>
<td>280 fs/V</td>
<td>250 fs/V</td>
<td>190 fs/V</td>
</tr>
<tr>
<td>$C_{cb\Delta V_{\text{logic}}}/I_c$</td>
<td>$1/\gamma$</td>
<td>120 fs</td>
<td>85 fs</td>
<td>74 fs</td>
<td>57 fs</td>
</tr>
<tr>
<td>$R_{ob}/(\Delta V_{\text{logic}}/I_c)$</td>
<td>γ^0</td>
<td>0.76</td>
<td>0.54</td>
<td>0.34</td>
<td>0.39</td>
</tr>
<tr>
<td>$C_{je}(\Delta V_{\text{logic}}/I_c)$</td>
<td>$1/\gamma^{3/2}$</td>
<td>380 fs</td>
<td>180 fs</td>
<td>94 fs</td>
<td>50 fs</td>
</tr>
<tr>
<td>$R_{ex}/(\Delta V_{\text{logic}}/I_c)$</td>
<td>γ^0</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
</tbody>
</table>
2005: InP DHBTs @ 500 nm Scaling Generation

Target Performance:
400 GHz f_{τ}
500 GHz f_{max}
150 GHz digital clock rate (static dividers)
250 GHz power amplifiers

collector: 150 nm thick, 5 mA/μm² current density
10 mW/μm² power density @ 2V

emitter: 500 nm width, 15 Ω⋅μm² contact resistivity

base contact: 300 nm width, 20 Ω⋅μm² contact resistivity

InGaAs base
BC grade
collector

emitter contact
emitter

N-drift collector
N+ sub collector

S.l. InP substrate
Target Performance:
500 GHz f_τ
700 GHz f_{max}
230 GHz digital clock rate (static dividers)
400 GHz power amplifiers

emitter: 250 nm width, $7.5 \, \Omega \cdot \mu m^2$ contact resistivity

base contact: 150 nm width, $10 \, \Omega \cdot \mu m^2$ contact resistivity

collector: 100 nm thick, 10 mA/\mu m2 current density
20 mW/\mu m2 power density @ 2V
125 nm Scaling Generation → almost-THz HBT

Target Performance:
700 GHz f_τ
~1000 GHz f_{max}
330 GHz digital clock rate (static dividers)
600 GHz power amplifiers

emitter: 125 nm width, $5 \, \Omega \cdot \mu \text{m}^2$ contact resistivity

base contact: 75 nm width, $5 \, \Omega \cdot \mu \text{m}^2$ contact resistivity

collector: 75 nm thick,
20 mA/μm^2 current density
40 mW/μm^2 power density @ 2V
~3-4 V breakdown (BVCEO)

InGaAs base
BC grade
collector

N-drift collector
N+ sub collector

S.I. InP substrate
65 nm Scaling Generation → beyond 1-THz HBT

Target Performance:
1.0 THz f_τ
1.7 GHz f_{max}
450 GHz digital clock rate (static dividers)
1 THz power amplifiers

emitter: 62.5 nm width, 2.5 $\Omega\cdot\mu\text{m}^2$ contact resistivity

base contact: 70 nm width, 5 $\Omega\cdot\mu\text{m}^2$ contact resistivity

InGaAs base
BC grade
collector

N+ sub collector
N- drift collector
S.I. InP substrate

collector: 53 nm thick, 35 mA/μm^2 current density
70 mW/μm^2 power density @ 2V
→ 2-3 V breakdown (BVCEO)
THz Transistors: addressing the key scaling challenges
Our HBT Base Contacts Today Use Pd or Pt to Penetrate Oxides

TEM: Lysczek, Robinson, & Mohney, Penn State
Sample: Urteaga, RSC

Our HBT Base Contacts Today Use Pd or Pt to Penetrate Oxides

Wafer first cleaned in reducing
Pd & Pt react with III-V semiconductor
Penetrate surface oxide
Today provide 5 Ω-μm² resistivity (base)
→ investigate better cleaning, alternative reaction metals

Reducing Emitter Resistance: ErAs Emitter Contacts

<table>
<thead>
<tr>
<th>Material</th>
<th>Lattice constant</th>
<th>mismatch to ErAs</th>
<th>mismatch to ErSb</th>
</tr>
</thead>
<tbody>
<tr>
<td>ErAs</td>
<td>5.7427Å</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ErSb</td>
<td>6.108Å</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaAs</td>
<td>5.6532Å</td>
<td>-1.6%</td>
<td>-8.0%</td>
</tr>
<tr>
<td>InP</td>
<td>5.8687Å</td>
<td>2.1%</td>
<td>-4.0%</td>
</tr>
<tr>
<td>GaSb</td>
<td>6.0959Å</td>
<td>5.8%</td>
<td>-0.2%</td>
</tr>
</tbody>
</table>

Epitaxial semimetal similar crystal structure to III-V semiconductors can be grown by MBE

In-situ contacts → no oxides, no contaminants
Lattice matched → few defect states → no surface Fermi pinning
Thermodynamically stable → little intermixing
Well-controlled (atomic precision) interface
Temperature Rise Within Transistor & Substrate

For each doubling in digital clock rate
emitter width W_e decreases $4:1$
HBT spacing D decreases $2:1$

HBT scaling → logarithmic temperature increase

$$\Delta T_{InP,1} \approx \frac{P}{\pi K_{InP} L_E} \ln \left(\frac{L_e}{W_e} \right) + \ldots$$

Thinning the substrate aggressively allows acceptable substrate temperature rise even at 300 GHz digital clock rate

$$T_{sub} = 15 \ \mu m \times \left(160 \ \text{GHz}/f_{\text{clock}} \right)$$
Temperature Rise Within Package

For each doubling in digital clock rate
- emitter width W_e decreases 4 : 1
- HBT spacing D decreases 2 : 1
- chip dimensions W_{chip} decrease 2 : 1

Total Package Temperature Rise

$$\Delta T_{package} \approx \left(\frac{2 + \pi}{2\pi} \right) \frac{P_{chip}}{K_{Cu} W_{chip}}$$

At 3 mA per transistor (100 Ω loading)
acceptable package temperature rise
with 1000 transistors / IC
even at 300 GHz digital clock rate.

Assumptions:
- Transistor spacing : 20 μm (150 GHz/f_{max})
- $V_c = 2$ V bias
- 1000 transistors/IC
- IC power = 1.5 x (transistor dissipation)
UCSB DHBTs: 500-600 nm Scaling Generation

1.7 μm base-collector mesa

1.3 μm base-collector mesa

600 nm emitter width
InP DHBT: 600 nm lithography, 120 nm thick collector, 30 nm thick base

$\beta \approx 40$, $V_{BR,CEO} = 3.9$ V.

Emitter contact $R_{cont} < 10 \Omega \cdot \mu m^2$

Base: $R_{sheet} = 610 \Omega /sq$, $R_{cont} = 4.6 \Omega \cdot \mu m^2$

Collector: $R_{sheet} = 12.1 \Omega /sq$, $R_{cont} = 8.4 \Omega \cdot \mu m^2$
InP DHBT: 600 nm lithography, 75 nm collector, 20 nm base

DC characteristics

\[
\begin{align*}
A_{je} &= 0.65 \times 4.3 \ \mu m^2, \ I_{b, \text{step}} = 175 \ \mu A \\
\text{Average } \beta &\approx 50, B V_{CEO} = 3.2 \ V, B V_{CBO} = 3.4 \ V (I_c = 50 \ \mu A) \\
\text{Emitter contact (from RF extraction), } R_{\text{cont}} &\approx 8.6 \ \Omega \cdot \mu m^2 \\
\text{Base (from TLM)} : \ R_{\text{sheet}} = 805 \ \Omega / \text{sq}, \ R_{\text{cont}} = 16 \ \Omega \cdot \mu m^2 \\
\text{Collector (from TLM)} : \ R_{\text{sheet}} = 12.0 \ \Omega / \text{sq}, \ R_{\text{cont}} = 4.7 \ \Omega \cdot \mu m^2
\end{align*}
\]

\[
\begin{align*}
V_{cb} = 0 \ V &\quad \text{Peak } f_c \quad f_t = 544 \ \text{GHz}, f_{\text{max}} = 347 \ \text{GHz} \\
V_{cb} = 0.0 \ V \ (\text{dashed}) &\quad \text{Peak } f_{\text{max}} \\
V_{cb} = 0.3 \ V \ (\text{solid}) \\
I_b, I_c &\quad V_{be} \ (\text{A}) \\
H_{21} &\quad U \\
\text{RF characteristics}
\end{align*}
\]
UCSB / RSC / GCS 150 GHz Static Frequency Dividers

<table>
<thead>
<tr>
<th>units</th>
<th>data current steering</th>
<th>data emitter followers</th>
<th>clock current steering</th>
<th>clock emitter followers</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>µm²</td>
<td>0.5 x 3.5</td>
<td>0.5 x 4.5</td>
<td>0.5 x 4.5</td>
</tr>
<tr>
<td>current density</td>
<td>mA/µm²</td>
<td>6.9</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>C_{cb/ lc}</td>
<td>psec / V</td>
<td>0.59</td>
<td>0.99</td>
<td>0.74</td>
</tr>
<tr>
<td>V_{cb}</td>
<td>V</td>
<td>0.6</td>
<td>0</td>
<td>0.6</td>
</tr>
<tr>
<td>f_{c}</td>
<td>GHz</td>
<td>301</td>
<td>260</td>
<td>301</td>
</tr>
<tr>
<td>f_{max}</td>
<td>GHz</td>
<td>358</td>
<td>268</td>
<td>358</td>
</tr>
</tbody>
</table>

P_{DC, total} = 659.8 mW
divider core without output buffer ≈ 594.7 mW

Minimum input power (dBm) vs. frequency (GHz)

IC design: Z. Griffith, UCSB
HBT design: RSC / UCSB / GCS
IC Process / Fabrication: GCS
Test: UCSB / RSC / Mayo

probe station chuck @ 25°C
175 GHz Amplifiers with 300 GHz f_{max} Mesa DHBTs

- 7.5 mW output power
- 7 dB gain measured @ 175 GHz
- 2 fingers x 0.8 um x 12 um, ~250 GHz f_t, 300 GHz f_{max}, V_{br} ~ 7V, ~ 3 mA/um2 current density
- S_{21}, S_{11}, S_{22} dB
- 7-dB small-signal gain at 176 GHz
- 8.1 dBm output power at 6.3 dB gain
250 nm scaling generation DHBTs

- 100 % I-line lithography
- Emitter contact resistance reduced 40%: from 8.5 to 5 $\Omega \cdot \mu$m2
- Base contact resistance is < 5 $\Omega \cdot \mu$m2 --hard to measure
- Recall, 1/8 μm scaling generation needs ≤ 5 $\Omega \cdot \mu$m2 emitter ρ_c
0.30 µm emitter junction, \(W_c/W_e \sim 1.6 \)
First mm-wave results with 250 nm InP DHBTs

150 nm material
250 nm emitter width

\[f_\tau = 420 \text{ GHz} \]
\[f_{\text{max}} = 650 \text{ GHz} \]
\[\sim 6 \text{ V breakdown} \]
\[30 \text{ mW/\(\mu m^2\) power handling} \]

results submitted postdeadline to 2006 DRC, E. Lind et al
330 GHz Cascode Power Amplifiers In Design

Thin-film microstrip lines
Output $P_{\text{sat}} = 50$ mW (17 dBm)
10-dB associated power gain
use the 650 GHz f_{max} transistors
Frequency Limits of Bipolar Integrated Circuits

Done:

- ~ 475 GHz f_t & f_{max}
- 150 GHz static dividers
- 160 Gb/s MUX & DMUX (Chalmers/Vitesse)

250 nm results coming very soon.

- expect ~ 200 GHz digital clock rate, 340 GHz amplifiers

THz transistors will come

The approach is scaling.

The limits are contact and thermal resistance.
Performance Parameters for Fast Logic & Mixed-Signal

Gate Delay Determined by:

Depletion capacitance charging through the logic swing

\[\left(\frac{\Delta V_{\text{LOGIC}}}{I_c} \right) \left(C_{cb} + C_{be, \text{depletion}} \right) \]

Depletion capacitance charging through the base resistance

\[R_{bb} \left(C_{cb} + C_{be, \text{depletion}} \right) \]

Supplying base + collector stored charge through the base resistance

\[R_{bb} \left(\tau_b + \tau_c \right) \left(\frac{I_c}{\Delta V_{\text{LOGIC}}} \right) \]

The logic swing must be at least

\[\Delta V_{\text{LOGIC}} > 4 \cdot \left(\frac{kT}{q} + R_{ex} I_c \right) \]

(\(\tau_b + \tau_c\)) typically 10 - 25% of total delay;

Delay not well correlated with \(f_t\)

\[\left(\frac{\Delta V_{\text{LOGIC}}}{I_c} \right) \left(C_{cb} + C_{be, \text{depletion}} \right) \] is 55% - 80% of total.

High \((I_c / C_{cb})\) is a key HBT design objective.

\(R_{ex}\) must be very low for low \(\Delta V_{\text{logic}}\) at high \(J\)

Design HBTs for fast logic, not for high \(f_t\) & \(f_{\text{max}}\)
Performance Parameters for mm-wave Power

Gain...under large-signal conditions

![Graph showing MSG and MAG gain for common base, common emitter, and common collector configurations.]

...gain is less than MAG/MSG...

Breakdown AND power density

![Graph showing breakdown voltage BVCEO and power density.]

\[P_{\text{max}} = \left(\frac{1}{8}\right)(V_{\text{max}} - V_{\text{min}})I_{\text{max}} \]