2019-2020 Academic Calendar

Note: Dates subject to change without notice.

Quarter begins
Fall 2019: September 22, 2019
Winter 2020: January 6, 2020
Spring 2020: March 30, 2020

New Student Convocation
Fall 2019: September 23, 2019
Winter 2020: January 6, 2020
Spring 2020: March 30, 2020

Pre-instruction Activities
Fall 2019: September 23-25, 2019
Winter 2020: January 6, 2020
Spring 2020: March 30, 2020

First day of instruction
Fall 2019: September 26, 2019
Winter 2020: January 6, 2020
Spring 2020: March 30, 2020

Last day of instruction
Fall 2019: December 6, 2019
Winter 2020: March 13, 2020
Spring 2020: June 5, 2020

Final examinations
Fall 2019: December 7-13, 2019
Winter 2020: March 14-20, 2020
Spring 2020: June 6-12, 2020

Quarter ends
Fall 2019: December 13, 2019
Winter 2020: March 20, 2020
Spring 2020: June 12, 2020

Commencement
Fall 2019: December 13, 2019
Winter 2020: March 20, 2020
Spring 2020: June 13-14, 2020

2019 - 2020 Campus Holidays

Labor Day: Monday, September 2, 2019
Veterans’ Day: Monday, November 11, 2019
Thanksgiving: Thursday & Friday, November 28 & 29, 2019
Christmas: Tuesday & Wednesday, December 24 & 25, 2019
New Year: Tuesday & Wednesday, December 31, 2019 & January 1, 2020
Martin Luther King, Jr. Day: Monday, January 20, 2020
Presidents’ Day: Monday, February 17, 2020
Cesar Chavez Holiday: Friday, March 27, 2020
Memorial Day: Monday, May 25, 2020
Independence Day: Friday, July 3, 2020

EQUAL OPPORTUNITY AND NONDISCRIMINATION

The University of California, in accordance with applicable Federal and State law and University policy, does not discriminate on the basis of race, color, national origin, religion, sex, gender identity, pregnancy1, disability, age, medical condition (cancer related), ancestry, marital status, citizenship, sexual orientation, or status as a Vietnam-era veteran or special disabled veteran. The University also prohibits sexual harassment. This nondiscrimination policy covers admission, access, and treatment in University programs and activities.

Inquiries regarding the University’s student-related nondiscrimination policies may be directed to the Director of Equal Opportunity at (805) 893-3089.

1 Pregnancy includes pregnancy, childbirth, and medical conditions related to pregnancy or childbirth.

Produced by the College of Engineering, Student Advising Division
Glenn Beltz, Associate Dean for Undergraduate Studies
Andrew Masuda, Director of Marketing

This publication is available at:
https://engineering.ucsb.edu/undergraduate/academic-advising/gear-publications

All announcements herein are subject to revision without notice.
General Engineering Academic Requirements

College of Engineering • University of California • Santa Barbara

Volume 10, Summer 2019

Requirements and policies in the GEAR are subject to change each academic year.
Welcome to the College of Engineering at UC Santa Barbara. There are many reasons we are one of the top engineering schools in the nation. We bring together an amazing faculty, the members of which are highly acclaimed in the scientific communities in which they work. UCSB professors are, in fact, among the most cited by their colleagues worldwide, a testament to the quality and creativity of their research. UCSB faculty have been elected to the prestigious National Academy of Sciences and National Academy of Engineering. We have six Nobel Prize winners on this campus, five of whom are faculty in engineering and the sciences. We’re also home to an amazing group of smart, accomplished, high-energy students. These more than 1,400 undergraduates, pursuing a variety of interests, contribute greatly to the quality of the learning environment as well as to the overall richness of campus life.

We have crafted courses that balance theory and applied science so our students are well prepared for successful careers in academia and in industry. Students especially interested in engineering and industry can take advantage of our Technology Management Program. Through coursework and “real world” experiences, the program gives our students insight into the world of technology from a business perspective. We want our students to understand what transforms a good technical idea into a good business idea. We want to give them a head start at attaining leadership positions in the technology business sector.

With a thriving interdisciplinary environment, our campus culture fosters creativity and discovery. A truly interdisciplinary culture allows all sorts of ideas to cross-fertilize and makes it easy for faculty to work effectively between disciplines to tackle big questions. Visiting scholars tell us they don’t often see the kind of openness among departments and ease of collaboration that they find here.

As part of the prestigious and well-established University of California system, we have the resources as well as the breadth and depth of talent to pursue new fields of scientific inquiry. We also bring an entrepreneurial attitude to our research, focusing on applications as much as discovery. Our leading programs in areas as diverse as biotechnology, communications, computer security, materials, nanotechnology, networking, and photonic devices attest to the success of this approach.

At the core of this activity are our students, our central purpose. We encourage you to pursue every opportunity, both inside and outside the classroom, to enhance your education. We have a talented and wise faculty and staff, equipped with extensive knowledge and diverse experience, to help you make decisions about courses and other activities as you pursue your degree. We look forward to having you in our classes, laboratories, and offices as you discover where your interests lead you.

Glenn Beltz
Associate Dean for Undergraduate Studies
Table of Contents

Message from the Associate Dean .. 2

College Overview
Honors Programs ... 4
Education Abroad Program ... 4
Student Organizations .. 4
Change of Major and Change of College 5
Degree Requirements .. 5
Minimal Progress Requirements and College Policy 6
Five-Year B.S./M.S. Programs .. 6

General University Requirements ... 10
UC Entry Level Writing Requirement 10
American History and Institutions Requirement 10

College General Education Requirements 10
General Subject Area Requirements ... 11
Special Subject Area Requirements
 Writing Requirement .. 11
 Ethnicity Requirement .. 11
 European Traditions/World Cultures Requirement 11
General Education Course Listing ... 12
Checklist of General Education Requirements 21

Department and Program Information
Chemical Engineering ... 22
Computer Engineering .. 25
Computer Science ... 26
Electrical and Computer Engineering 30
Engineering Sciences ... 37
Materials .. 38
Mechanical Engineering ... 40
College of Engineering

A spirit of entrepreneurship in education, scholarly activity and participation in engineering practice infuses UCSB’s College of Engineering.

College of Engineering Honors Program

The Honors Program in the College of Engineering is designed to enrich the educational opportunities of its best students. Students in the Honors Program will be encouraged to participate in early experiences in scholarship through special seminars and individualized work in regular courses and, in later years, as members of research teams. Students in the Honors Program will be provided opportunities to become peer mentors and tutors within the College. Participation in the Honors Program offers preferential enrollment in classes for continuing students as well as graduate student library privileges. Housing is available to eligible first-year students in Scholars’ Halls located in several university-owned residence halls.

The College of Engineering invites approximately the top 10% of incoming freshmen into the Honors Program based on a combination of high school GPA and SAT or ACT scores. (Please note: eligibility criteria are subject to change at any time.) Select transfer students will be invited to join the Program upon admission. Students who do not enter the College of Engineering with honors at the time of admission to UCSB may apply to join the program between first and second year after completing at least 36 letter-graded units with a cumulative GPA of 3.5 or higher, or between second and third year after completing at least 72 letter-graded units with a cumulative GPA of 3.5 or higher. Students will not be permitted to join the Honors Program once they begin their senior curriculum year.

To graduate as an Honors Program Scholar, students must complete 6.0 total Honors units during their junior and senior years; comprised of coursework from departmental 196, 197, 199 or graduate level courses with grades of B or higher, complete a total of 10 hours of community service for each year they are program members and maintain a 3.5 or higher cumulative GPA at the end of each Spring quarter.

Continued participation in the College Honors Program is dependent on maintaining a cumulative GPA of 3.5 or greater and active participation in both the academic and community service components of the Program.

Dean’s Honors

The College of Engineering gives public recognition to its outstanding undergraduate students by awarding Dean’s Honors at the end of each regular academic term to students who have earned a 3.5 grade-point average for the quarter and have completed a program of 12 or more letter-graded units. (Grades of Not Passed automatically disqualify students for eligibility for Dean’s Honors.) The award is noted quarterly on the student’s permanent transcript.

Graduating students of the College of Engineering who have achieved distinguished scholarship while at the university may qualify for Honors, High Honors, or Highest Honors at graduation.

Tau Beta Pi

Tau Beta Pi is the nation’s oldest and largest engineering honor society. Its purpose is to honor academic achievement in engineering. Election to membership is by invitation only. To be eligible for consideration, students must be in the top one-eighth of their junior class or the top one-fifth of the senior class. Graduate students and faculty also belong to this honor society. In addition to regular meetings on campus, the organization participates in regional and national activities and sponsors local events, such as tutoring and leadership training, to serve the campus and community.

Education Abroad Program (EAP)

Students are encouraged to broaden their academic experience by studying abroad for a year, or part of a year, under the auspices of the University of California Education Abroad Program. See the EAP web site for more information: www.eap.ucsb.edu

Student Organizations

Student chapters of a number of engineering professional organizations are active on the UCSB campus. Students interested in any of these organizations may contact the Office of Undergraduate Studies of the College of Engineering for more information.

• American Indians in Science and Engineering Society
• American Institute of Chemical Engineers
• American Society of Mechanical Engineers
• Association for Computing Machinery
• Engineering Student Council
• Engineers without Borders
• Entrepreneurs Association
• Institute of Electrical and Electronics Engineers
• Los Ingenieros (Mexican-American Engineering Society/Society of Hispanic Professional Engineers)
• National Society of Black Engineers
• out in Science, Technology, Engineering, and Mathematics
• Society for Advancement of Chicano and Native Americans in Science
Change of Major and Change of College

Current UCSB students in a non-engineering major, as well as students wishing to change from one engineering major to another, are welcome to apply after the satisfactory completion of a pre-defined set of coursework. However, due to the current demand for engineering majors, students are cautioned that it is a very competitive process and not all applicants will be able to change their majors due to limited space availability. It is incumbent upon students to continue to make progress in a backup major while pursuing a new major in the College of Engineering, and to periodically consult academic advisors in both the desired major as well as the backup major regarding the viability of pursuing the change of major.

Students who enter UCSB as transfer students will not be able to change to or add an engineering major, if not initially accepted into one. Students who began as freshmen who plan to enter an engineering major or to change from one engineering major to another will be expected to complete at least 30 units at UCSB before petitioning for a change of major and usually must satisfy the prerequisites of the prospective major. Students who have completed more than 105 units will not be considered for a change of major/change of college in engineering or computer science.

Note: The College of Engineering will not accept students from the College of Creative Studies or the College of Letters and Science after they have completed 105 units, regardless of their expected unit total at graduation. Students must be at or below 105 units at the time required change of major courses are completed.

Notwithstanding any of the major-specific requirements described below, we caution that the capacity of any given program to accept new students changes, sometimes substantially, from year to year.

Chemical Engineering. Admission to the Chemical Engineering major is determined by a number of factors, including an overall UCSB grade point average of 3.0 or better, and satisfactory completion of the following courses or their equivalents: Math 3A-B, Math 4A, Chemistry 1A-1AL or 2A-2AC, 1B-1BL or 2B-2BC, 1C-1CL or 2C-2CC; Engineering 3; and Physics 1-2. Decisions involving factors beyond scores and grades are made exclusively by the chemical engineering faculty. Only a limited number of petitions will be approved.

Computer Engineering. Students may petition to enter the Computer Engineering major at any time both of the following requirements are met:
1. An overall UCSB grade point average of at least 3.0.
2. Satisfactory completion at UCSB, with a grade point average of 3.0 or better, of any five classes, including at least two Electrical & Computer Engineering (ECE) classes and two Computer Science (CMPSC) classes, from the following: Math 4B, ECE 10A/10AL, 10B/10BL, 10C/10CL (ECE 10A/10AL, 10B/10BL, 10C/10CL each count as one course), ECE 15A, CMPSC 16, 24, 32, 40.

Computer Science. Students may petition to enter the Computer Science major when the following requirements are met:
1. A cumulative grade point average of at least 3.0;
2. Satisfactory completion of Computer Science 16, 24, and 40 with a cumulative GPA of 3.2 or higher; First takes only
3. Satisfactory completion of Math 3A, 3B, 4A, and 4B with a cumulative GPA of 3.0 or higher; First takes only

The selection process is highly competitive and these milestones are minimum requirements for consideration, achieving them does not guarantee admission to the Computer Science major. Any petitions denied will be automatically considered a second time in the next quarter. Petitions denied a second time will not be reconsidered. More information can be found at http://cs.ucsb.edu/undergrad/admissions/.

Electrical Engineering. Students may petition to enter the Electrical Engineering major once both of the following requirements are met:
1. An overall UCSB grade point average of at least 3.0.
2. Satisfactory completion at UCSB, with a grade point average of 3.0 or better, of at least five classes, including at least two mathematics classes, from the following: Math 4B, Math 6A, Math 6B, ECE 10A/10AL, 10B/10BL, 10C/10CL (ECE 10A/10AL, 10B/10BL, 10C/10CL each count as one course), ECE 15A. The calculation of the minimum GPA will be based on all classes completed from this list at the time of petitioning.

Mechanical Engineering. Before petitioning for a change of major to mechanical engineering, six (6) of the following core courses or their UC equivalents must be completed: Math 3A-B; Math 4A-B; Math 6A-B; Physics 1-2; ME 14-15 (at least one of the 6 courses must include ME 14 or ME 15). Acceptance into the major will be based on UC grade point averages, applicable courses completed, and space availability. All students considering changing into Mechanical Engineering are required to meet with the ME Academic Advisor during their first year.

Degree Requirements
To be eligible for a bachelor of science degree from the College of Engineering, students must meet three sets of requirements: general university requirements, college general education requirements, and major degree requirements.

General University Requirements
All undergraduate students must satisfy university academic residency, UC Entry Level Writing Requirement, American History and Institutions, unit, and scholarship requirements. These requirements are described fully on page 10.

College General Education Requirements
All students must satisfy the general education requirements for the College of Engineering. These requirements are described on page 10 and includes a listing of courses which meet each requirement.

Major Degree Requirements
Preparation for the major and major requirements for each program must be satisfied, including unit and GPA requirements. These appear in subsequent sections of this publication.

Advanced Placement Credit
Students who complete special advanced placement courses in high school and who earn scores of 3, 4, or 5 on the College Board Advanced Placement taken before high school graduation will receive 2, 4, or 8 units of credit toward graduation at UCSB for each such test completed with the required scores, provided scores are reported to the Office of Admissions. The specific unit values assigned to each test, course equivalents, and the applicability of these credits to the General Education requirements are presented in the chart on page 8.

Note: Advanced Placement credit earned prior to entering the university will not be counted toward the minimum cumulative progress requirements (see General Catalog for more details).

International Baccalaureate Credit
Students completing the International Baccalaureate (IB) diploma with a score of 30 or above will receive 30 quarter units total toward their UC undergraduate degree. The university grants 8 quarter units for each IB Higher Level examination on which a student scores 5, 6, or 7. The university does not grant credit for standard level exams. The application of this credit to the General Education requirements and course equivalents for these exams are listed on page 7.

Note: International Baccalaureate Examination credit earned prior to entering the university will not be counted toward maximum unit limitation either for selection of a major or for graduation.
Minimal Progress Requirements

A student in the College of Engineering may be placed on academic probation if the total number of units passed at UCSB is fewer than what is prescribed by the prevailing academic Senate regulation regarding Minimum Cumulative Progress. At least three-fourths of the minimum number of academic units passed must include courses prescribed for the major.

The following courses may be counted toward the unit minimums: courses repeated to raise C-, D, or F grades; courses passed by examination; courses graded IP (In Progress); courses passed during summer session at UCSB or at another accredited college or university and transferred to UCSB.

Students must obtain the approval of the Associate Dean for Undergraduate Studies to deviate from these requirements. Approval normally will be granted only in cases of medical disability, severe personal problems, or accidents.

Students enrolled in dual-degree programs must submit their proposed programs of study to the Associate Dean for Undergraduate Studies in the College of Engineering for approval. The individual programs must contain comparable standards of minimal academic progress.

215-Unit and Quarter Enrollment Limitations

The college expects students to graduate within 12 regular quarters for students who are admitted as freshmen and 9 regular quarters for students admitted as junior transfers and with no more than 215 units. College credit earned before high school graduation does not count toward the 215-unit maximum. This includes credit for Advanced Placement and International Baccalaureate examinations, and also college or university credit earned while still in high school.

Students who are admitted as freshmen and remain continuously enrolled will be assessed after 12 regular quarters at UCSB, and transfer students admitted as juniors will be assessed after 9 regular quarters at UCSB. Summer session does not count as a regular quarter in this calculation, but units earned in summer session do apply toward the 215-unit maximum.

With the exception of summer sessions, if students leave UCSB and earn a large number of units at one or more other academic institutions while they are away, the number of quarters allowed at UCSB will be reduced in proportion to the number of terms completed elsewhere.

College policy requires students to secure specific approval to continue enrollment beyond the quarter and unit limits noted above. Students who think they may exceed both the quarter limitations and 215 units may submit a Proposed Schedule for Graduation (Study Plan) for consideration by the Associate Dean for Undergraduate Studies, but they should understand that approval is granted in limited circumstances.

Note: The College of Engineering will not accept students from the College of Creative Studies or the College of Letters and Science after they have completed 105 units, regardless of their expected unit total at graduation.

Five-Year B.S./M.S. Degree Programs

Five-Year B.S. / M.S. in Computer Science. A combined BS/MS Program in Computer Science provides an opportunity for outstanding undergraduates to earn both degrees in five years. Additional information about this program is available from the Computer Science graduate advisor. Interested students should make their interest known to the department early in their junior year. Advising and application materials are also available in the Department of Computer Science office.

Five-Year B.S. in Computer Engineering / M.S. in Computer Science. The Computer Engineering Program incorporates the design of computer hardware and software to meet the needs for various career applications. Students are trained to work with systems ranging from small integrated circuits to worldwide communications networks, from digital watches to supercomputers, and from single-line programs to operating systems. For more information on the program, please consult the Computer Engineering department.

Five-Year B.S. in Computer Engineering or Electrical Engineering / M.S. in Electrical and Computer Engineering. A combined BS/MS Program in Computer Science provides an opportunity for outstanding undergraduates to earn both degrees in five years. Additional information about this program is available from the Electrical and Computer Engineering graduate advisor. Interested students should make their interest known to the department early in their junior year. Advising and application materials are also available in the Department of Electrical and Computer Engineering office.

Five-Year B.S. in Chemical Engineering, Electrical Engineering, or Mechanical Engineering / M.S. in Materials. A combined B.S. Engineering/M.S. Materials program provides an opportunity for outstanding undergraduates in chemical, electrical, or mechanical engineering to earn both of these degrees in five years. This program enables students to develop all of the requisite knowledge in their core engineering disciplines and to complement this with a solid background in materials.

This combination provides highly desirable training from an industrial employment perspective and capitalizes on the strengths of our internationally renowned materials department.

There is a five-year option for students who are pursuing a B.S. in Chemistry in the College of Letters and Science to complete an M.S. degree in Materials. Interested students should contact the Undergraduate Advisor in the Department of Chemistry & Biochemistry for additional information.

Five-Year B.S. / M.S. in Mechanical Engineering. A combined B.S./M.S. program in Mechanical Engineering provides an opportunity for outstanding undergraduates to earn both degrees in five years. Additional information about this program is available from the Mechanical Engineering Undergrad Advising office. Interested students should contact the office fall quarter of their junior year. In addition to fulfilling undergraduate degree requirements, B.S./M.S. degree candidates must meet Graduate Division degree requirements, including university requirements for academic residence and units of coursework.
International Baccalaureate Higher Level Examinations

Students who earn scores of 5, 6, or 7 on International Baccalaureate (IB) Higher Level (HL) Examinations taken before high school graduation will receive 8 units of credit toward graduation at UCSB for each such test completed with the required scores, provided official scores are submitted to the Office of Admissions. Students who complete the IB diploma with a score of 30 or above will receive 30 quarter units total. The university does not grant credit for Standard Level (SL) exams. The application of this credit to the General Education requirements and course equivalents for these exams are listed below.

Students should be advised that college courses taken before or after attending UC may duplicate AP, IB and/or A Level examinations. Additionally, exams may duplicate each other (for example, an AP or IB exam in the same subject area). If the student does duplicate an exam with another exam of the same subject content, and/or an exam with a college course, we will award credit only once.

Note: International Baccalaureate credit earned prior to entering the university will not be counted toward maximum unit limitations either for selection of a major or for graduation.

International Baccalaureate Higher Level Exam

(With Score of 6 or Higher)

<table>
<thead>
<tr>
<th>Exam</th>
<th>Units</th>
<th>GE Credit</th>
<th>UCSB Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>8</td>
<td>none</td>
<td>EEMB 22, MCDB 20</td>
</tr>
<tr>
<td>Business Management</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Chemistry</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Computer Science</td>
<td>8</td>
<td>none</td>
<td>Computer Science 8</td>
</tr>
<tr>
<td>Dance</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Economics</td>
<td>8</td>
<td>D: 2 courses</td>
<td>Economics 1, 2</td>
</tr>
<tr>
<td>English A: Literature or English A Language and Literature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score of 5</td>
<td>8</td>
<td>Entry Level Writing Requirement Writing 1, 1E</td>
<td></td>
</tr>
<tr>
<td>Score of 6</td>
<td>8</td>
<td>A1</td>
<td>Writing 1, 1E, 2, 2E, 2LK</td>
</tr>
<tr>
<td>Score of 7</td>
<td>8</td>
<td>A1, A2</td>
<td>Writing 1, 1E, 2, 2E, 2LK, 50, 50E</td>
</tr>
<tr>
<td>English B</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Film</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Geography</td>
<td>8</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>Global Politics</td>
<td>8</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>History</td>
<td>8</td>
<td>E: 1 course^</td>
<td>none</td>
</tr>
<tr>
<td>History of Africa</td>
<td>8</td>
<td>D: 1 course+</td>
<td>none</td>
</tr>
<tr>
<td>History of the Americas</td>
<td>8</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>History of Asia and Oceania</td>
<td>8</td>
<td>D: 1 course+</td>
<td>none</td>
</tr>
<tr>
<td>History of Europe and the Middle East</td>
<td>8</td>
<td>D: 1 course+</td>
<td>none</td>
</tr>
<tr>
<td>Languages Other Than English</td>
<td>8</td>
<td>none</td>
<td>See department for level placement</td>
</tr>
<tr>
<td>Mathematics</td>
<td>8</td>
<td>none</td>
<td>Mathematics 2A, 2B, 3A, 3B, 34A, 34B, or equivalent</td>
</tr>
<tr>
<td>Mathematics, Further</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Music</td>
<td>8</td>
<td>F: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>Philosophy</td>
<td>8</td>
<td>E: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>Physics</td>
<td>8</td>
<td>none</td>
<td>Physics 10</td>
</tr>
<tr>
<td>Psychology</td>
<td>8</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>Social & Cultural Anthropology</td>
<td>8</td>
<td>D: 1 course</td>
<td>Anthropology 2</td>
</tr>
<tr>
<td>Theater</td>
<td>8</td>
<td>F: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>Visual Arts</td>
<td>8</td>
<td>F: 1 course</td>
<td>none</td>
</tr>
</tbody>
</table>

^ course also satisfies the European Traditions Requirement
^ course also satisfies the World Cultures Requirement
College Board Advanced Placement Credit

Students who earn scores of 3, 4, or 5 on College Board Advanced Placement Examinations taken before high school graduation will receive 2, 4, or 8 units of credit toward graduation at UCSB for each such test completed with the required scores, provided official scores are submitted to the Office of Admissions.

Students should be advised that college courses taken before or after attending UC may duplicate AP, IB and/or A Level examinations. Additionally, exams may duplicate each other (for example, and AP or IB exam in the same subject area). If the student does duplicate an exam with another exam of the same subject content, and/or an exam with a college course, we will award credit only once.

Note: Advanced Placement credit earned prior to entering the university will not be counted toward maximum unit limitations either for selection of a major or for graduation.

<table>
<thead>
<tr>
<th>Advanced Placement Exam with score of 3, 4, or 5</th>
<th>Units Awarded</th>
<th>General Ed. Course Credit</th>
<th>UCSB Course Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art History</td>
<td>8</td>
<td>F: 1 course</td>
<td>Art History 1</td>
</tr>
<tr>
<td>*Art Studio 2D Design</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>*Art Studio 3D Design</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>*Art Studio Drawing</td>
<td>8</td>
<td>none</td>
<td>Art 18</td>
</tr>
<tr>
<td>Biology</td>
<td>8</td>
<td>none</td>
<td>EEMB 22, MCDB 20</td>
</tr>
<tr>
<td>Chemistry</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Chinese Language and Culture</td>
<td>8</td>
<td>none</td>
<td>See department for level placement</td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>With score of 4</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>With score of 5</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Comparative Government and Politics</td>
<td>4</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>+Computer Science A</td>
<td>2 or 8+</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>none</td>
<td>Computer Science 8</td>
</tr>
<tr>
<td>With score of 4</td>
<td>8</td>
<td>none</td>
<td>Computer Science 8</td>
</tr>
<tr>
<td>With score of 5</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Computer Science Principles (effective S17 and S18)</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>With score of 4 or 5</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Computer Science Principles (effective S19)</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>With score of 4 or 5</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Economics – Microeconomics</td>
<td>4</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>*English – Composition and Literature or Language and Composition</td>
<td>8</td>
<td>Entry Level Writing</td>
<td>Writing 1, 1E</td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>A1</td>
<td>Writing 1, 1E, 2, 2E, 2LK</td>
</tr>
<tr>
<td>With score of 4</td>
<td>8</td>
<td>A1, A2</td>
<td>Writing 1, 1E, 2, 2E, 2LK, 50, 50E</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>8</td>
<td>E: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>European History</td>
<td>8</td>
<td>none</td>
<td>Environmental Studies 2</td>
</tr>
<tr>
<td>French Language and Culture</td>
<td>8</td>
<td>none</td>
<td>French 1-3</td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>none</td>
<td>French 1-4</td>
</tr>
<tr>
<td>With score of 4</td>
<td>8</td>
<td>none</td>
<td>French 1-5</td>
</tr>
<tr>
<td>With score of 5</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>German Language and Culture</td>
<td>8</td>
<td>none</td>
<td>German 1-3</td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>none</td>
<td>German 1-4</td>
</tr>
<tr>
<td>With score of 4</td>
<td>8</td>
<td>none</td>
<td>German 1-5</td>
</tr>
<tr>
<td>With score of 5</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Human Geography</td>
<td>4</td>
<td>D: 1 course</td>
<td>Geography 5</td>
</tr>
<tr>
<td>Italian Language and Culture</td>
<td>8</td>
<td>none</td>
<td>Italian 1-3</td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>none</td>
<td>Italian 1-5</td>
</tr>
<tr>
<td>With score of 4</td>
<td>8</td>
<td>none</td>
<td>Italian 1-6</td>
</tr>
<tr>
<td>With score of 5</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Japanese Language & Culture</td>
<td>8</td>
<td>none</td>
<td>See department for level placement</td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>With score of 4</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>With score of 5</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Latin</td>
<td>8</td>
<td>none</td>
<td>Latin 1-3</td>
</tr>
<tr>
<td>*Mathematics – Calculus AB (or AB subscore of BC exam)</td>
<td>4</td>
<td>none</td>
<td>Mathematics 2A, 3A, 34A, or equivalent</td>
</tr>
<tr>
<td>*Mathematics – Calculus BC</td>
<td>8</td>
<td>none</td>
<td>Mathematics 2A, 2B, 3A, 3B, 34A, 34B, or equivalent</td>
</tr>
<tr>
<td>Music – Theory</td>
<td>8</td>
<td>F: 1 course</td>
<td>Music 11</td>
</tr>
<tr>
<td>*Physics 1 (effective S’15)</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>*Physics 2 (effective S’15)</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>*Physics – B (last offered S’14)</td>
<td>8</td>
<td>none</td>
<td>Physics 10</td>
</tr>
<tr>
<td>*Physics – C (Mechanics)</td>
<td>4</td>
<td>none</td>
<td>Physics 6A and 6AL</td>
</tr>
<tr>
<td>*Physics – C (Electricity and Magnetism)</td>
<td>4</td>
<td>none</td>
<td>Physics 6B and 6BL</td>
</tr>
<tr>
<td>Psychology</td>
<td>4</td>
<td>D: 1 course</td>
<td>Psychology 1</td>
</tr>
<tr>
<td>Spanish Language and Culture</td>
<td>8</td>
<td>none</td>
<td>Spanish 1-3</td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>none</td>
<td>Spanish 1-4</td>
</tr>
<tr>
<td>With score of 4</td>
<td>8</td>
<td>none</td>
<td>Spanish 1-5</td>
</tr>
<tr>
<td>With score of 5</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Spanish Literature and Culture</td>
<td>8</td>
<td>none</td>
<td>Spanish 1-4</td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>none</td>
<td>Spanish 1-5</td>
</tr>
<tr>
<td>With score of 4</td>
<td>8</td>
<td>none</td>
<td>Spanish 1-6</td>
</tr>
<tr>
<td>With score of 5</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>
Students who earn grades of A, B, or C on UC-approved GCE and Hong Kong A Level examinations will receive 12 units of credit toward graduation at UCSB for each exam, provided that official grades are submitted to the Office of Admissions. Any general education credit or UCSB course equivalents listed in the chart below will be awarded only for Cambridge International A Level exams taken in 2013 or later, not for exams administered by any other agency. (Student may petition for GE or course credit for Cambridge International exams taken prior to 2013 or for exams administered by other agencies.)

Students should be advised that college courses taken before or after attending UC may duplicate AP, IB and/or A Level examinations. Additionally, exams may duplicate each other (for example, an AP or IB exam in the same subject area). If the student does duplicate an exam with another exam of the same subject content, and/or an exam with a college course, we will award credit only once.

Note: A Level examination credit earned prior to entering the university will not be counted toward maximum unit limitation either for selection of a major or for graduation.
General University Requirements

UC Entry Level Writing Requirement

All students entering the University of California must demonstrate an ability to write effectively by fulfilling the Entry Level Writing requirement. The requirement may be met in one of the following ways prior to admission:

1. 30 or better on the ACT, English Language Arts; or
2. 30 or better on the ACT, Combined English/Writing (last administered June 2015); or
3. 680 or better on the SAT, Evidence-Based Reading and Writing*; or
4. 680 or better on the SAT Reasoning Test, Writing (last administered January 2016); or
5. 3 or above on either Advanced Placement Examination in English; or
6. 5 or above on an International Baccalaureate Higher Level English A: Literature exam (formerly known as Higher Level English A1 exam); or
7. Passing the University of California system-wide Analytical Writing Placement Exam (AWPE) while in high school; or
8. Entering the university with transcripts showing the completion of an acceptable 3-semester unit or 4-quarter unit course in English composition equivalent to Writing 2 at UCSB, with a grade of C or better.

*UCSB is accepting a score of 680 or better on the SAT, Evidence-Based Reading and Writing to satisfy the Entry Level Writing Requirement on a pilot basis, beginning with new students entering UC in Fall 2018. It is not retroactive.

Students who have not taken the Analytical Writing Placement examination and who have not met the UC Entry Level Writing Requirement in one of the other ways listed above will be required to take the examination during their first quarter at UCSB (check with Writing Program for examination time and location). An appropriate score on the examination will satisfy the requirement. Only one UC examination may be taken – either the systemwide Entry Level Examination while in high school or the examination given at UCSB; and neither may be repeated.

Students who enter UCSB without having fulfilled the university’s Entry Level Writing requirement and (if they have not previously taken the systemwide examination) who do not achieve an appropriate score on the examination given on campus must enroll in Writing 1, 1E or Linguistics 12 within their first year at UCSB. A grade of C or higher is needed to satisfy the requirement. Students who earn a grade of C- or lower in will be required to repeat the course in successive quarters until the requirement is satisfied.

Once students matriculate at UCSB, they may not fulfill the requirement by enrolling at another institution. Transfer courses equivalent to Writing 2 or 50 will not be accepted for unit or subject credit unless the UC Entry Level Writing requirement has already been met. Students will only be allowed to meet the Area A requirement of the General Education Requirements with courses taken after satisfying the UC Entry Level Writing requirement. The Entry Level Writing requirement must be completed by the end of the third quarter of matriculation.

American History and Institutions Requirement

The American History and Institutions requirement is based on the principle that American students enrolled at an American university should have some knowledge of the history and government of their country. You may meet this requirement in any one of the following ways:

1. by achieving a score of 3 or higher on the College Board Advanced Placement Examination in American History or American Government and Politics; or
2. by passing a non-credit examination in American history or American institutions, offered in the Department of History during the first week of each quarter. Consult the department for further information; or
3. by achieving a score of 650 or higher on SAT II: Subject Test in American History; or
4. by completing one four-unit course from the following list of courses:

 Anthropology 131
 Art History 121A-B-C, 136H
 Asian American Studies 1, 2
 Black Studies 1, 6, 20, 60A-B, 103, 137E, 169AR-BR-CR
 Chicano Studies 1A-B-C, 168B, 174, 188C
 Economics 113A-B, 119
 English 133AA-ZZ, 134AA-ZZ, 191
 Environmental Studies 173
 Feminist Studies 155A, 159B
 Military Science 27
 Political Science 12, 115, 127, 151, 153, 155, 157, 158, 162, 165, 167, 180, 185
 Religious Studies 7, 14, 61A-B, 151A-B, 152
 Sociology 137E, 140, 144, 155A, 180A-B

Courses used to fulfill the American History and Institutions requirement may also be applied to General Education or major requirements, or both where appropriate. Equivalent courses taken at other accredited colleges or universities, in UC Extension, or in summer session may be acceptable. Students who transfer to UCSB from another campus of the University of California where the American History and Institutions Requirement has been considered satisfied will automatically fulfill the requirement at UCSB.

International students on a nonimmigrant visa may petition for a waiver of this requirement through the Director of International Students and Scholars.

College of Engineering General Education Requirements

The aims of the General Education Program in the College of Engineering are to provide a body of knowledge of general intellectual value that will give the student a broad cultural base and to meet the objectives of the engineering profession. An appreciation and understanding of the humanities and social sciences are important in making engineers aware of their social responsibilities and enabling them to consider related factors in the decision-making process.

Students in the College of Engineering must complete the General Education requirements in order to qualify for graduation. Students are reminded that other degree requirements exist and that they are responsible for familiarizing themselves with all bachelor’s degree requirements. Not all of the courses listed in this publication are offered every quarter. Please see the GOLD system for General Education courses offered during a particular quarter.

It should be noted that for College of Engineering transfers who completed IGETC (Interssegmental General Education Transfer Curriculum), it may be used to substitute for entire UCSB College of Engineering General Education pattern (IGETC does not satisfy the American History and Institutions requirement).

Students who have questions about the General Education requirements should consult with the advisors in College of Engineering Office of Undergraduate Studies.

GENERAL SUBJECT AREA REQUIREMENTS

A total of 8 courses is required to satisfy
the General Education requirements of the College of Engineering. All students must follow the pattern of distribution shown below:

I. Area A: English Reading and Composition
Two courses must be completed in this area and taken for letter grades. Writing 2 or 2E, and Writing 50, 50E, 107T, or 100ST are required.

Chemical Engineering, Computer Engineering, Electrical Engineering, and Mechanical Engineering majors are strongly encouraged to take Writing 2E and 50E in their first year at UCSB.

NOTE: Students must complete the UC Entry Level Writing Requirement before enrolling in courses that fulfill the Area A requirement of the General Education program. Please refer to page 10 of this publication or the UCSB General Catalog for a list of ways to satisfy the UC Entry Level Writing requirement.

II. Areas D, E, F, & G: Social Sciences, Culture and Thought, the Arts, and Literature
At least 6 courses must be completed in these areas:

Area D: A minimum of 2 courses must be completed in Area D.
Area E: A minimum of 2 courses must be completed in Area E.
Area F: A minimum of 1 course must be completed in Area F.
Area G: A minimum of 1 course must be completed in Area G.

The general provisions relating to General Education requirements, as listed later on this page, must be followed when completing courses in Areas D, E, F, and G.

A complete listing of courses, which will satisfy all these requirements starts on page 12.

SPECIAL SUBJECT AREA REQUIREMENTS
In the process of fulfilling the General Education General Subject Areas D through G requirements, students must complete the following Special Subject Area requirements:

1. **Writing Requirement**, Objective: To study and practice with writing, reading, and critical analysis within specific disciplines. Students will demonstrate abilities by producing written work totaling at least 1,800 words that is independent of or in addition to written examinations. Assessment of written work must be a significant consideration in total assessment of student performance in the course. At least four designated General Education courses that meet the following criteria: (1) the courses require one to three papers totaling at least 1,800 words, exclusive of elements such as footnotes, equations, tables of contents, or references; (2) the required papers are independent of or in addition to written examinations; and (3) the paper(s) is a significant consideration in the assessment of student performance in the course. Courses marked with an asterisk (*) on the lists in this document apply to this requirement. The writing requirement may be met only with designated UCSB courses approved by the Academic Senate.

NOTES: ENGR 101 may be used as a writing requirement class, even by those students for whom ENGR 101 is required.

New transfer students should consult with the College Undergraduate Studies Office regarding this requirement.

2. **Ethnicity Requirement**, Objective: To learn to identify and understand the philosophical, intellectual, historical, and/or cultural experiences of historically oppressed and excluded racial minorities in the United States. At least one course that focuses on the history and the cultural, intellectual, and social experience of one of the following groups: Native Americans, African Americans, Chicanos/Latinos, or Asian Americans. Alternatively, students may take a course that provides a comparative and integrative context for understanding the experience of oppressed and excluded racial minorities in the United States. Courses that meet this requirement are marked with an ampersand (&) on the lists in this document.

3. **European Traditions or World Cultures Requirement**, Objective: To learn to analyze early and/or modern European cultures and their significance in world affairs. Courses that meet this requirement are marked with a caret (^) on the lists in this document.

World Cultures objective: To learn to identify, understand, and appreciate the history, thought, and practices of one or more cultures outside of the European Tradition. Courses that meet this requirement are marked with a plus sign (+) on the lists in this document.

At least one course from either of these areas (European Traditions or World Cultures) is required.

Other Regulations:

- A course listed in more than one general subject area can be applied to only one of these areas. (Example: Art History 6A cannot be applied to both Areas E and F.) However, a course can be applied towards a single general subject area and any special subject areas which that course fulfills. (Example: Asian American Studies 4 can be applied to the Writing and Ethnicity requirements in addition to the Area F requirement.)
- Some courses taken to satisfy the General Education requirements may also be applied simultaneously to the American History and Institutions requirement. Such courses must be on the list of approved General Education courses and on the list of approved American History and Institutions courses.
- Courses taken to fulfill a General Education requirement may be taken on a P/NP basis, if the course is offered with that grading option (refer to GOLD for the grading option for a particular course).
GENERAL EDUCATION COURSES

NOTE: The course listing in this booklet reflects the courses accepted for use towards the General Education requirements at the time of this document’s publication and is subject to change. Please refer to GOLD for a listing of acceptable courses during the given quarter. Information in GOLD supersedes the information given here. Only Academic Senate approved courses can apply to GE.

AREA A: ENGLISH READING AND COMPOSITION (2 courses required)
Objective: To learn to analyze purposes, audiences, and contexts for writing through study of and practice with writing.

Writing 2 or 2E and Writing 50, 50E, 107T or 109ST are required, and must be taken for a letter grade.

AREA D: SOCIAL SCIENCES (2 courses minimum)
Objective: To apply perspectives, theories, and methods of social science research to understand what motivates, influences, and/or determines the behaviors of individuals, groups, and societies. Area D courses are based upon systematic studies of human behavior which may include observation, experimentation, deductive reasoning, and quantititative analysis.

<table>
<thead>
<tr>
<th>Area D Courses</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Anthropology 2</td>
<td>Introductory Cultural Anthropology</td>
</tr>
<tr>
<td>* Anthropology 3</td>
<td>Introductory Archaeology</td>
</tr>
<tr>
<td>+ Anthropology 3SS</td>
<td>Introduction to Archaeology</td>
</tr>
<tr>
<td>Anthropology 7</td>
<td>Introduction to Biosocial Anthropology</td>
</tr>
<tr>
<td>** Anthropology 25</td>
<td>Violence and the Japanese State</td>
</tr>
<tr>
<td>+ Anthropology 103A</td>
<td>Anthropology of China</td>
</tr>
<tr>
<td>+ Anthropology 103B</td>
<td>Anthropology of Japan</td>
</tr>
<tr>
<td>+ Anthropology 103C</td>
<td>Anthropology of Korea</td>
</tr>
<tr>
<td>Anthropology 109</td>
<td>Human Universals</td>
</tr>
<tr>
<td>+ Anthropology 110</td>
<td>Technology and Culture</td>
</tr>
<tr>
<td>* Anthropology 122</td>
<td>Anthropology of World Systems</td>
</tr>
<tr>
<td>+ Anthropology 130A</td>
<td>Coupled Human and Natural Systems: Risks, Vulnerability, Resilience, and Disasters</td>
</tr>
<tr>
<td>+ Anthropology 130B</td>
<td>Global Tourism and Environmental Conservation</td>
</tr>
<tr>
<td>& Anthropology 131</td>
<td>North American Indians</td>
</tr>
<tr>
<td>+ Anthropology 134</td>
<td>Modern Cultures of Latin America</td>
</tr>
<tr>
<td>* Anthropology 135</td>
<td>Modern Mexican Culture</td>
</tr>
<tr>
<td>+ Anthropology 136</td>
<td>Peoples and Cultures of the Pacific</td>
</tr>
<tr>
<td>+ Anthropology 137</td>
<td>The Ancient Maya</td>
</tr>
<tr>
<td>** Anthropology 141</td>
<td>Agriculture and Society in Mexico: Past and Present</td>
</tr>
<tr>
<td>+ Anthropology 142</td>
<td>Peoples and Cultures of India</td>
</tr>
<tr>
<td>+ Anthropology 156</td>
<td>Understanding Africa</td>
</tr>
<tr>
<td>** Anthropology 176</td>
<td>Representations of Sexuality in Modern Japan (Same as HIST 188S and JAPAN 162)</td>
</tr>
<tr>
<td>& Anthropology 191</td>
<td>Indigenous Movements in Asia, 1850-Present</td>
</tr>
<tr>
<td>@& Asian American Studies 1</td>
<td>Introduction to Asian American History, 1850-Present</td>
</tr>
<tr>
<td>@& Asian American Studies 2</td>
<td>American Migration since 1965</td>
</tr>
<tr>
<td>& Asian American Studies 7</td>
<td>Asian American Globalization</td>
</tr>
<tr>
<td>& Asian American Studies 8</td>
<td>Introduction to Asian American Gender and Sexuality</td>
</tr>
<tr>
<td>& Asian American Studies 9</td>
<td>Asian American Freedom Struggles and Third World Resistance</td>
</tr>
<tr>
<td>& Asian American Studies 100AA</td>
<td>Chinese Americans</td>
</tr>
<tr>
<td>& Asian American Studies 100BB</td>
<td>Japanese Americans</td>
</tr>
<tr>
<td>& Asian American Studies 100FF</td>
<td>South Asian Americans</td>
</tr>
<tr>
<td>& Asian American Studies 107</td>
<td>Third World Social Movements</td>
</tr>
<tr>
<td>& Asian American Studies 111</td>
<td>Asian American Communities and Contemporary Issues</td>
</tr>
<tr>
<td>& Asian American Studies 119</td>
<td>Asian Americans and Race Relations</td>
</tr>
<tr>
<td>& Asian American Studies 130</td>
<td>Colonialism and Migration in the Passage to America</td>
</tr>
<tr>
<td>* Asian American Studies 131</td>
<td>Asian American Women’s History</td>
</tr>
<tr>
<td>* Asian American Studies 136</td>
<td>Asian American Families</td>
</tr>
<tr>
<td>* Asian American Studies 137</td>
<td>Multicultural Asian Americans</td>
</tr>
<tr>
<td>& Asian American Studies 154</td>
<td>Race and Law in Early American History</td>
</tr>
<tr>
<td>& Asian American Studies 155</td>
<td>Racial Segregation from the Civil War to the Civil Rights Movement</td>
</tr>
<tr>
<td>& Asian American Studies 156</td>
<td>Race and Law in Modern America</td>
</tr>
<tr>
<td>& Asian American Studies 157</td>
<td>Asian Americans and Education</td>
</tr>
<tr>
<td>& Asian American Studies 165</td>
<td>Ethnographies of Asian Americans</td>
</tr>
<tr>
<td>@& Black Studies 1, 1H</td>
<td>Introduction to Afro-American Studies</td>
</tr>
</tbody>
</table>

* This course applies toward the Writing requirement.
& This course applies toward the Ethnicity requirement.
+ This course applies toward the World Cultures requirement.
@& This course applies toward the American History & Institutions requirement.
^ This course applies toward the European Traditions requirement.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Studies 4</td>
<td>Critical Introduction to Race and Racism</td>
</tr>
<tr>
<td>Black Studies 6, 6H</td>
<td>The Civil Rights Movement</td>
</tr>
<tr>
<td>Black Studies 100</td>
<td>Africa and United States Policy</td>
</tr>
<tr>
<td>Black Studies 102</td>
<td>Black Radicals and the Radical Tradition</td>
</tr>
<tr>
<td>Black Studies 103</td>
<td>The Politics of Black Liberation-The Sixties</td>
</tr>
<tr>
<td>Black Studies 122</td>
<td>The Education of Black Children</td>
</tr>
<tr>
<td>Black Studies 124</td>
<td>Housing, Inheritance and Race</td>
</tr>
<tr>
<td>Black Studies 125</td>
<td>Queer Black Studies</td>
</tr>
<tr>
<td>Black Studies 129</td>
<td>The Urban Dilemma</td>
</tr>
<tr>
<td>Black Studies 131</td>
<td>Race and Public Policy</td>
</tr>
<tr>
<td>Black Studies 160</td>
<td>Analyses of Racism and Social Policy in the U.S.</td>
</tr>
<tr>
<td>Chicano Studies 1A-B-C</td>
<td>Introduction to Chicano/a Studies</td>
</tr>
<tr>
<td>Chicano Studies 114</td>
<td>Cultural and Critical Theory</td>
</tr>
<tr>
<td>Chicano Studies 124G</td>
<td>The Virgin of Guadalupe: From Tilma to Tattoo (Same as RG ST 124G)</td>
</tr>
<tr>
<td>Chicano Studies 137</td>
<td>Chicana/o Oral Traditions</td>
</tr>
<tr>
<td>Chicano Studies 140</td>
<td>The Mexican Cultural Heritage of the Chicanos</td>
</tr>
<tr>
<td>Chicano Studies 144</td>
<td>The Chicano Community</td>
</tr>
<tr>
<td>Chicano Studies 151</td>
<td>De-Colonizing Feminism</td>
</tr>
<tr>
<td>Chicano Studies 168A-B</td>
<td>History of the Chicanos (Same as HIST 168A-B)</td>
</tr>
<tr>
<td>Chicano Studies 172</td>
<td>Law and Civil Rights</td>
</tr>
<tr>
<td>Chicano Studies 173</td>
<td>Immigrant Labor Organizing</td>
</tr>
<tr>
<td>Chicano Studies 174</td>
<td>Chicana/o Politics (Same as POL S 174)</td>
</tr>
<tr>
<td>Chicano Studies 175</td>
<td>Comparative Social Movements</td>
</tr>
<tr>
<td>Chicano Studies 176</td>
<td>Theories of Social Change and Chicano Political Life</td>
</tr>
<tr>
<td>Chicano Studies 178A</td>
<td>Global Migration, Transnationalism in Chicano/a Contexts</td>
</tr>
<tr>
<td>Chicano Studies 179</td>
<td>Democracy and Diversity</td>
</tr>
<tr>
<td>Chicano Studies 187</td>
<td>Language, Power, and Learning</td>
</tr>
<tr>
<td>Communication 1</td>
<td>Introduction to Communication</td>
</tr>
<tr>
<td>Comparative Literature 19</td>
<td>Psychoanalytic Theory</td>
</tr>
<tr>
<td>Comparative Literature 186FL</td>
<td>Vegetarianism: Food, Literature, Philosophy</td>
</tr>
<tr>
<td>East Asian Cultural Studies 40</td>
<td>Introduction to Sociology</td>
</tr>
<tr>
<td>East Asian Cultural Studies 103A</td>
<td>Anthropology of China</td>
</tr>
<tr>
<td>East Asian Cultural Studies 103B</td>
<td>Anthropology of Japan</td>
</tr>
<tr>
<td>East Asian Cultural Studies 103C</td>
<td>Anthropology of Contemporary Korea</td>
</tr>
<tr>
<td>East Asian Cultural Studies 140</td>
<td>Indigenous Movements in Asian Studies 186</td>
</tr>
<tr>
<td>Economics 1</td>
<td>Principles of Economics - Micro</td>
</tr>
<tr>
<td>Economics 2</td>
<td>Principles of Economics - Macro</td>
</tr>
<tr>
<td>Economics 9</td>
<td>Introduction to Economics</td>
</tr>
<tr>
<td>Environmental Studies 130A</td>
<td>Introduction to Environmental Studies</td>
</tr>
<tr>
<td>Environmental Studies 130B</td>
<td>Coupled Human and Natural Systems: Risk, Vulnerability, Resilience, and Disasters</td>
</tr>
<tr>
<td>Environmental Studies 130C</td>
<td>Global Tourism and Environmental Conservation</td>
</tr>
<tr>
<td>Environmental Studies 132</td>
<td>Human Behavior and Global Environment</td>
</tr>
<tr>
<td>Feminist Studies 20 or 20H</td>
<td>Women, Society and Culture</td>
</tr>
<tr>
<td>Feminist Studies 20</td>
<td>Women, Society and Culture (Online course)</td>
</tr>
<tr>
<td>Feminist Studies 30 or 30H</td>
<td>Women, Development, and Globalization</td>
</tr>
<tr>
<td>Feminist Studies 50 or 50H</td>
<td>Global Feminisms and Social Justice</td>
</tr>
<tr>
<td>Feminist Studies 60 or 60H</td>
<td>Women of Color: Race, Class and Ethnicity</td>
</tr>
<tr>
<td>Feminist Studies 159B</td>
<td>Women in American History (Same as HIST 159B)</td>
</tr>
<tr>
<td>Feminist Studies 159C</td>
<td>Women in Twentieth-Century American History (Same as HIST 159C)</td>
</tr>
<tr>
<td>French 111</td>
<td>Great French Speeches</td>
</tr>
<tr>
<td>Geography 2</td>
<td>World Regions</td>
</tr>
<tr>
<td>Geography 5</td>
<td>People, Place and Environment</td>
</tr>
<tr>
<td>Geography 108</td>
<td>Urban Geography</td>
</tr>
<tr>
<td>Geography 108E</td>
<td>Urban Geography</td>
</tr>
<tr>
<td>Geography 150</td>
<td>Geography of the United States</td>
</tr>
<tr>
<td>Global Studies 11</td>
<td>Introduction to Law and Society</td>
</tr>
<tr>
<td>History 5</td>
<td>The History of the Present</td>
</tr>
<tr>
<td>History 7</td>
<td>Great Issues in the History of Public Policy</td>
</tr>
<tr>
<td>History 10A</td>
<td>History of America’s Racial and Ethnic Minorities</td>
</tr>
<tr>
<td>History 17A-B-C</td>
<td>The American People</td>
</tr>
<tr>
<td>History 17AH-BH-CH</td>
<td>The American People (Honors)</td>
</tr>
<tr>
<td>History 25</td>
<td>Violence and the Japanese State</td>
</tr>
<tr>
<td>History 105A</td>
<td>The Atomic Age</td>
</tr>
<tr>
<td>History 117A</td>
<td>Towns, Trade, and Urban Culture in the Middle Ages</td>
</tr>
<tr>
<td>History 117C</td>
<td>Women, the Family, and Sexuality in the Middle Ages</td>
</tr>
<tr>
<td>History 161A-B</td>
<td>Colonial and Revolutionary America</td>
</tr>
<tr>
<td>History 167CA-CB-CP</td>
<td>History of American Working Class</td>
</tr>
<tr>
<td>History 168A-B</td>
<td>History of the Chicanos (Same as CH ST 168A-B)</td>
</tr>
<tr>
<td>History 169AR-BR-CR</td>
<td>Afro-American History (Same as BL ST 169AR-BR-CR)</td>
</tr>
<tr>
<td>History 172A-B</td>
<td>American History of the United States (Same as HIST 172A-B)</td>
</tr>
<tr>
<td>History 175A-B</td>
<td>American History of the United States (Same as HIST 175A-B)</td>
</tr>
<tr>
<td>History 188S</td>
<td>Representations of Sexuality in Modern Japan</td>
</tr>
<tr>
<td>History 188S</td>
<td>The European Union</td>
</tr>
<tr>
<td>History 161AX</td>
<td>Violence and the Japanese State (Same as ANTH 25)</td>
</tr>
<tr>
<td>History 162</td>
<td>Sociology of Japan</td>
</tr>
<tr>
<td>History 164</td>
<td>African-American English Language and Linguistics</td>
</tr>
<tr>
<td>History 165</td>
<td>Language and Culture</td>
</tr>
<tr>
<td>History 166</td>
<td>African American Language and Culture</td>
</tr>
<tr>
<td>History 167</td>
<td>Language in Social Interaction</td>
</tr>
<tr>
<td>History 168</td>
<td>Language in African American Ethnic Minorities</td>
</tr>
<tr>
<td>History 169AR-BR-CR</td>
<td>American Military History and the Evolution of Western Warfare</td>
</tr>
<tr>
<td>History 174</td>
<td>Music Cultures of the World: China</td>
</tr>
<tr>
<td>History 175</td>
<td>Music Cultures of the World: Middle East</td>
</tr>
<tr>
<td>History 176</td>
<td>Music Cultures of the World: India</td>
</tr>
<tr>
<td>History 177</td>
<td>Music Cultures of the World: Indonesia</td>
</tr>
<tr>
<td>History 178A</td>
<td>American Government and Politics</td>
</tr>
<tr>
<td>History 178B</td>
<td>Contemporary International Relations</td>
</tr>
<tr>
<td>History 178C</td>
<td>The European Union</td>
</tr>
<tr>
<td>History 178D</td>
<td>Politics of the Middle East</td>
</tr>
<tr>
<td>History 178E</td>
<td>Voting and Elections</td>
</tr>
<tr>
<td>History 178F</td>
<td>Congress</td>
</tr>
<tr>
<td>History 178G</td>
<td>Introduction to Psychology</td>
</tr>
<tr>
<td>History 178H</td>
<td>Health Psychology</td>
</tr>
<tr>
<td>History 178I</td>
<td>Introduction to Social Psychology</td>
</tr>
<tr>
<td>History 178J</td>
<td>Psychology 101</td>
</tr>
<tr>
<td>History 178K</td>
<td>Psychology 102</td>
</tr>
<tr>
<td>History 178L</td>
<td>Psychology 103</td>
</tr>
<tr>
<td>History 178M</td>
<td>Psychology 105</td>
</tr>
<tr>
<td>History 178N</td>
<td>Religious Studies 7</td>
</tr>
<tr>
<td>History 178O</td>
<td>Religious Studies 14</td>
</tr>
<tr>
<td>History 178P</td>
<td>Religious Studies 15</td>
</tr>
<tr>
<td>History 178Q</td>
<td>Religious Studies 35</td>
</tr>
<tr>
<td>History 178R</td>
<td>Religious Studies 115A</td>
</tr>
<tr>
<td>History 178S</td>
<td>Religious Studies 124G</td>
</tr>
<tr>
<td>History 178T</td>
<td>The Virgin of Guadalupe: From Tilma to Tattoo (Same as CH ST 124G)</td>
</tr>
<tr>
<td>History 179A-B</td>
<td>Politics and Religion in the City: Jerusalem</td>
</tr>
<tr>
<td>History 179C</td>
<td>Sociology of Religion: The Classical Statements</td>
</tr>
<tr>
<td>History 179D-E</td>
<td>Religion and the American Experience</td>
</tr>
<tr>
<td>History 179F-G</td>
<td>Religion in America Today</td>
</tr>
<tr>
<td>History 179H-I</td>
<td>Anthropology of Religion</td>
</tr>
<tr>
<td>History 179J-L</td>
<td>South Asians in the U.S.</td>
</tr>
<tr>
<td>History 179M-N</td>
<td>Slavic and East European Folklore</td>
</tr>
<tr>
<td>History 179O-P</td>
<td>Language and Cultural Identity</td>
</tr>
<tr>
<td>History 179Q-R</td>
<td>Ideology and Representation</td>
</tr>
<tr>
<td>History 179S-T</td>
<td>Introduction to Sociology</td>
</tr>
</tbody>
</table>

* This course applies toward the Writing requirement.
& This course applies toward the American History & Institutions requirement.
* This course applies toward the Ethnicity requirement.
+ This course applies toward the World Cultures requirement.
@ This course applies toward the European Traditions requirement.
AREA E: CULTURE AND THOUGHT (2 courses minimum)

Objective: To learn to situate and investigate questions about world cultures through the study of human history and thought and to learn about the roles that citizens play in the construction and negotiation of human history and cultures.

* Anthropology 138TS
 Archaeology of Egypt

* Anthropology 176
 Representations of Sexuality in Modern Japan
Change to: Anthropology 176TS
 Ancient Egyptian Religion

As of 10/11/11

+ Anthropology 176TS
 Ancient Egyptian Religion

* Art History 64A-B-C
 CH ST 141

* Art History 6L
 Art Survey

* Art History 115E
 The Grand Tour: Experiencing Italy in the Eighteenth Century

Art History 136I
 The City in History

Art History 144D
 Russian Art

Art History 148A
 Contemporary Art History: 1960-2000

Art History 148B
 Global Art After 1980

& Asian American Studies 71
 Introduction to Asian American Studies

& Asian American Studies 138
 Asian American Sexualities

& Asian American Studies 161
 Asian American (Same as RG ST 123)

+ Black Studies 3
 Introduction to African Studies

+ Black Studies 7
 Introduction to Caribbean Studies

+ Black Studies 94A-B
 Survey of African History

& Black Studies 50
 Blacks in the Media

& Black Studies 104
 Black Marxism

& Black Studies 130A
 Negritude and African Literature

& Black Studies 130B
 The Black Francophone Novel

& Chicano Studies 113
 Critical Introduction to Ancient Mesoamerica

+ Chinese 26
 New Phenomena in 21st Century Chinese

+ Chinese 32
 Contemporary Chinese Religions

+ Chinese 148
 Historic Lives

+ Chinese 183B
 Religious Practice and the State in China

+ Chinese 185A
 Qing Empire

+ Chinese 185B
 Modern China (since 1911)

^ Classics 20B
 The Romans

^ Classics 50
 Introduction to Classical Archaeology

^ Classics 101
 The Greek Intellectual Experience: From Poetry to Philosophy

^ Classics 106
 Magic and Medicine in Ancient Greece

^ Classics 140
 Slavery and Freedom in the Ancient World

^ Classics 150
 The Fall of the Ancient Republic: Cicero, Caesar, and Rome

Classics 151
 Emporers and Gladiators: History of the Roman Empire to 180CE

^ Classics 152
 Citizenship: Ancient Origins and Modern Practices

** Classics 171
 Artfact and Text: The Archaeology and Literature of Early Greece

Comparative Literature 27
 Memory: Bridging the Humanities and Neurosciences (Same as FR 40X & MCDB 27)

* Comparative Literature 30A-B-C
 Major Works of European Literature

* Comparative Literature 35
 The Making of the Modern World

* Comparative Literature 113
 Trauma, Memory, Historiography

* Comparative Literature 119
 Psychoanalytic Theory

* Comparative Literature 122A
 Representations of the Holocaust (Same as GER 116A)

+ Comparative Literature 179A
 Post Colonial Cultures (Same as FR 154G)

+ Comparative Literature 179B
 Revolutions: Marx, Nietzsche, Freud (Same as GER 179A)

+ Comparative Literature 186RR
 Romantic Revolutions: Philosophy, History, and the Arts in Europe

+ East Asian Cultural Studies 3
 Introduction to Asian Religious Traditions (Same as RG ST 3)

+ East Asian Cultural Studies 4A
 East Asian Traditions: Pre-Modern

+ East Asian Cultural Studies 4B
 East Asian Traditions: Modern

+ East Asian Cultural Studies 5
 Introduction to Buddhism

+ East Asian Cultural Studies 7
 Asian Values

+ East Asian Cultural Studies 81
 Zen

+ East Asian Cultural Studies 82
 East Asian Civilization (Same as HIST 80)

+ English 22
 English 171

+ Environmental Studies 3
 Introduction to the Social and Cultural Environment

* Feminist Studies 171CN
 French 40X

^ French 50AX-BX-CX
 Reading Paris (1830-1890)

^ French 149C
 Time Off in Paris

+ French 154F
 Post-Colonial Cultures (Same as C LIT 171)

+ French 154G
 Modern France (1802-2018)

* French 155D
 Modern France (Same as FEMST 171CN)

* German 35
 Germany Today

* German 43A
 Contemporary German Art and Politics

* German 111
 Introduction to German Culture

* German 112
 Representations of the Holocaust (Same as C LIT 122A)

* German 177A
 Law, Rights, and Justice

* German 179A
 Revolutions: Marx, Nietzsche, Freud

* German 80
 Global History, Culture, and Ideology

* German 81
 World History

* German 82
 World History (Honors)

* German 83
 Western Civilization

* German 84
 Western Civilization (Honors)

* History 46
 Survey of Middle Eastern History

* History 49A-B
 Survey of African History

* History 80
 East Asian Civilization (Same as EACS 80)

* History 81
 Japanese History through Art and Literature

* History 82
 Survey of South Asian History

* History 83
 The Origins of Western Science, Antiquity to 1500

* History 84
 The Scientific Revolution, 1500 to 1800

* History 85
 History of Modern Science

* History 86
 The Darwinian Revolution and Modern Biology

* History 87
 History of Science

* History 88
 Science, Technology, and Medicine in Modern Society

* History 89
 Survey of Early Modern History

* History 90
 The United States of the World, 1898-1945

* History 91
 The United States and the World since 1945

* History 92
 Korean History and Civilization (Same as KOR 182A-B)

* History 93
 Qing Empire

* History 94
 Modern China (Since 1911)

* History 95
 Japan Under the Tokugawa Shoguns

* History 96
 Modern Japan

* History 97
 Recent Japan

* History 98
 Representations of Sexuality in Modern Japan

* History 99
 history of the Pacific

* History 100
 Introduction to Italian Culture

* History 101
 Cultural Representations in Italy

* History 102
 Cultural Representations in Italy

* History 103
 Gender and Sexuality in Italian Culture

* History 104
 Italy Mediterranean

* History 105
 Representations of Sexuality in Modern Japan

* History 106
 Modernity and the Masses of Taisho Japan
AREA F: ARTS (1 course minimum)

Objective: To develop an appreciation of fine and performing arts, popular arts, and visual culture and to express relationships between arts and historical or cultural contexts.

* Art 1A Visual Literacy

Art 7A The Intersections of Art and Life

* This course applies toward the Writing requirement.
+ This course applies toward the World Cultures requirement.
& This course applies toward the Ethnicity requirement.
@ This course applies toward the American History & Institutions requirement.
^ This course applies toward the European Traditions requirement.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art History 132A</td>
<td>Mediterranean Cities</td>
</tr>
<tr>
<td>Art History 132I</td>
<td>Art of Empire</td>
</tr>
<tr>
<td>Art History 134A</td>
<td>Buddhist Art</td>
</tr>
<tr>
<td>Art History 134B</td>
<td>Early Chinese Art</td>
</tr>
<tr>
<td>Art History 134C</td>
<td>Chinese Painting</td>
</tr>
<tr>
<td>Art History 134D</td>
<td>Art and Modern China</td>
</tr>
<tr>
<td>Art History 134E</td>
<td>The Art of the Chinese Landscape</td>
</tr>
<tr>
<td>Art History 134F</td>
<td>The Art of Japan</td>
</tr>
<tr>
<td>Art History 134G</td>
<td>Japanese Painting</td>
</tr>
<tr>
<td>Art History 134H</td>
<td>Ukiyo-e: Pictures of the Floating World</td>
</tr>
<tr>
<td>Art History 136A</td>
<td>Nineteenth-Century Architecture</td>
</tr>
<tr>
<td>Art History 136B</td>
<td>Twentieth-Century Architecture</td>
</tr>
<tr>
<td>Art History 136C</td>
<td>Architecture of the United States</td>
</tr>
<tr>
<td>Art History 136D</td>
<td>Design & the American Architect</td>
</tr>
<tr>
<td>Art History 136H</td>
<td>Housing American Cultures</td>
</tr>
<tr>
<td>Art History 136I</td>
<td>The City in History</td>
</tr>
<tr>
<td>Art History 136J</td>
<td>Landscape of Colonialism</td>
</tr>
<tr>
<td>Art History 136K</td>
<td>Modern Architecture in Early Twentieth-Century Europe</td>
</tr>
<tr>
<td>Art History 136L</td>
<td>From Modernism to Postmodernism in European Architecture</td>
</tr>
<tr>
<td>Art History 136M</td>
<td>Revival Styles in Southern California</td>
</tr>
<tr>
<td>Art History 136O</td>
<td>Sustainable Architecture: History and Aesthetics</td>
</tr>
<tr>
<td>Art History 136R</td>
<td>Architecture of the Americas</td>
</tr>
<tr>
<td>Art History 136V</td>
<td>Modern Indian Visual Culture</td>
</tr>
<tr>
<td>Art History 136W</td>
<td>Introduction to 2D/3D Visualizations in Architecture</td>
</tr>
<tr>
<td>Art History 136Y</td>
<td>Modern Architecture in Southern California</td>
</tr>
<tr>
<td>Art History 141D</td>
<td>Birth of the Modern Museum</td>
</tr>
<tr>
<td>Art History 141G</td>
<td>The Architecture of Museums and Galleries</td>
</tr>
<tr>
<td>Art History 144A</td>
<td>The Avant-Garde in Russia</td>
</tr>
<tr>
<td>Art History 144C</td>
<td>Contemporary Art in Russia and Eastern Europe (Same as SLAV 130C)</td>
</tr>
<tr>
<td>Art History 144D</td>
<td>Russian Art</td>
</tr>
<tr>
<td>Art History 148A</td>
<td>Global Art After 1980</td>
</tr>
<tr>
<td>Asian American Studies 4</td>
<td>Introduction to Asian American Popular Culture</td>
</tr>
<tr>
<td>Asian American Studies 79</td>
<td>Introduction to Playwriting</td>
</tr>
<tr>
<td>Asian American Studies 118</td>
<td>Asian Americans in Popular Culture</td>
</tr>
<tr>
<td>Asian American Studies 120</td>
<td>Asian American Documentary</td>
</tr>
<tr>
<td>Asian American Studies 127</td>
<td>Asian American Film, Television, and Digital Media</td>
</tr>
<tr>
<td>Asian American Studies 140</td>
<td>Theory & Production of Social Experience</td>
</tr>
<tr>
<td>Asian American Studies 146</td>
<td>Racialized Sexuality on Screen and Scene</td>
</tr>
<tr>
<td>Asian American Studies 170KK</td>
<td>Special Topics in Asian American Studies</td>
</tr>
<tr>
<td>Black Studies 14</td>
<td>History of Jazz</td>
</tr>
<tr>
<td>Black Studies 45</td>
<td>Black Arts Expressions</td>
</tr>
<tr>
<td>Black Studies 142</td>
<td>Music in Afro-American Culture: U.S.A.</td>
</tr>
<tr>
<td>Black Studies 153</td>
<td>Black Popular Music in America</td>
</tr>
<tr>
<td>Black Studies 161</td>
<td>Third-World Cinema</td>
</tr>
<tr>
<td>Black Studies 162</td>
<td>African Cinema</td>
</tr>
<tr>
<td>Black Studies 170</td>
<td>Afro-Americans in the American Cinema</td>
</tr>
<tr>
<td>Black Studies 171</td>
<td>Africa in Film</td>
</tr>
<tr>
<td>Black Studies 172</td>
<td>Contemporary Black Cinema</td>
</tr>
<tr>
<td>Black Studies 175</td>
<td>Black Diaspora Cinema</td>
</tr>
<tr>
<td>Chicano Studies 125B</td>
<td>Contemporary Chicano and Chicana Art</td>
</tr>
<tr>
<td>Chicano Studies 138</td>
<td>Barrio Popular Culture</td>
</tr>
<tr>
<td>Chicano Studies 148</td>
<td>Chicana Art and Feminism</td>
</tr>
<tr>
<td>Chicano Studies 188C</td>
<td>Chicano Theater Workshop</td>
</tr>
<tr>
<td>Chinese 40</td>
<td>Popular Culture in Modern Chinese Societies</td>
</tr>
<tr>
<td>Chinese 170</td>
<td>New Taiwan Cinema</td>
</tr>
<tr>
<td>Chinese 176</td>
<td>Chinese Cinema: Nationalism and Globalism</td>
</tr>
<tr>
<td>Classics 102</td>
<td>Greek Tragedy in Translation</td>
</tr>
<tr>
<td>Classics 165</td>
<td>Greek Painting</td>
</tr>
<tr>
<td>Classics 170</td>
<td>Pompeii</td>
</tr>
<tr>
<td>Comparative Literature 186FF</td>
<td>NOIR: 1940’s Film and Fiction</td>
</tr>
<tr>
<td>Dance 35</td>
<td>History and Appreciation of World Dance</td>
</tr>
<tr>
<td>Dance 36</td>
<td>History of Modern Dance</td>
</tr>
<tr>
<td>Dance W36</td>
<td>History of Modern Dance (online course)</td>
</tr>
<tr>
<td>Dance 45</td>
<td>History and Appreciation of Dance</td>
</tr>
<tr>
<td>Dance 145A-B</td>
<td>Studies in Dance History</td>
</tr>
<tr>
<td>East Asian Cultural Studies 134A</td>
<td>Buddhist Art</td>
</tr>
<tr>
<td>Film & Media</td>
<td>Introduction to Cinema</td>
</tr>
<tr>
<td>Film & Media Studies 46</td>
<td>Japanese Cinema (Same as JAPAN 159)</td>
</tr>
<tr>
<td>Film & Media Studies 120</td>
<td>Chinese Cinema</td>
</tr>
<tr>
<td>Film & Media Studies 121</td>
<td>Topics in National Cinema</td>
</tr>
<tr>
<td>Film & Media Studies 124A</td>
<td>Modern Indian Visual Culture</td>
</tr>
<tr>
<td>Film & Media Studies 124W</td>
<td>Documentary Film</td>
</tr>
<tr>
<td>Film & Media Studies 125A-B</td>
<td>Cuban Cinema</td>
</tr>
<tr>
<td>Film & Media Studies 127A</td>
<td>Latin American Cinema</td>
</tr>
<tr>
<td>Film & Media Studies 127M</td>
<td>Mexican Film and Cinema</td>
</tr>
<tr>
<td>Film & Media Studies 134</td>
<td>French and Francophone Cinema</td>
</tr>
<tr>
<td>Film & Media Studies 136</td>
<td>British Cinema</td>
</tr>
<tr>
<td>Film & Media Studies 144</td>
<td>The Horror Film (Same as GER 183)</td>
</tr>
<tr>
<td>Film & Media Studies 163</td>
<td>Women and Film: Feminist Perspectives</td>
</tr>
<tr>
<td>Film & Media Studies 169</td>
<td>Film Noir</td>
</tr>
<tr>
<td>Film & Media Studies 175</td>
<td>Experimental Film</td>
</tr>
<tr>
<td>Film & Media Studies 178Z</td>
<td>Technology and Cinema (Same as FR 156D)</td>
</tr>
<tr>
<td>French 156A</td>
<td>French Cinema: History and Theory</td>
</tr>
<tr>
<td>French 156B</td>
<td>Modern Images of the Middle Ages: The Intellectuals of Text, History, and Film</td>
</tr>
<tr>
<td>French 156C</td>
<td>Traditonal Japanese Drama</td>
</tr>
<tr>
<td>German 55A</td>
<td>Contemporary German Pop Culture</td>
</tr>
<tr>
<td>Italian 124X</td>
<td>Italian Theatre</td>
</tr>
<tr>
<td>Italian 178X</td>
<td>Italian Cinema</td>
</tr>
<tr>
<td>Japanese 134F</td>
<td>Japanese Painting (Same as ARTIH 134G)</td>
</tr>
<tr>
<td>Japanese 134G</td>
<td>Ukiyo-e: pictures of the Floating World (Same as ARTIH 134H)</td>
</tr>
<tr>
<td>Japanese 134H</td>
<td>Traditional Japanese Drama</td>
</tr>
<tr>
<td>Japanese 139B</td>
<td>Introduction to Popular Culture in Korean Film</td>
</tr>
<tr>
<td>Music 3B</td>
<td>Writing about Music</td>
</tr>
<tr>
<td>Music 11</td>
<td>Fundamentals of Music</td>
</tr>
<tr>
<td>Music 15</td>
<td>Music Appreciation</td>
</tr>
<tr>
<td>Music 16</td>
<td>Listening to Jazz: Demystifying America’s Musical</td>
</tr>
<tr>
<td>Music 119A</td>
<td>Music in Western Music</td>
</tr>
<tr>
<td>Music 119B</td>
<td>Music in Political Films</td>
</tr>
<tr>
<td>Religious Studies 133B</td>
<td>From Superman to Speigelman: The Jewish Graphic Novel</td>
</tr>
<tr>
<td>Religious Studies 157G</td>
<td>Persian Cinema</td>
</tr>
<tr>
<td>Slavic 130A</td>
<td>The Avangarde in Russia</td>
</tr>
<tr>
<td>Slavic 130B</td>
<td>Russian Cinema</td>
</tr>
<tr>
<td>Slavic 130C</td>
<td>Contemporary Art in Russia and Eastern Europe (Same as ARTIH 144C)</td>
</tr>
<tr>
<td>Slavic 130D</td>
<td>Russian Art</td>
</tr>
<tr>
<td>Slavic 130E</td>
<td>Masters of Soviet Cinema</td>
</tr>
<tr>
<td>Spanish 126</td>
<td>Spanish Cinema</td>
</tr>
<tr>
<td>Theater 2A</td>
<td>Performance in Global Contexts: Africa and the Caribbean</td>
</tr>
<tr>
<td>Theater 2B</td>
<td>Performance in Global Contexts: Asia</td>
</tr>
<tr>
<td>Theater 2C</td>
<td>Performance in Global Contexts: Europe</td>
</tr>
<tr>
<td>Theater 3</td>
<td>Life of the Theater</td>
</tr>
<tr>
<td>Theater 5</td>
<td>Introduction to Acting</td>
</tr>
<tr>
<td>Theater 7</td>
<td>Performance of the Human Body</td>
</tr>
<tr>
<td>Theater 9</td>
<td>Introduction to Playwriting</td>
</tr>
<tr>
<td>Theater 143</td>
<td>The People’s Voice</td>
</tr>
<tr>
<td>Theater 180A-B</td>
<td>American Drama</td>
</tr>
<tr>
<td>Theater 180C</td>
<td>Contemporary American Drama and Theater</td>
</tr>
<tr>
<td>Theater 180E</td>
<td>Culture Clash: Studies in U.S. Latino Theater</td>
</tr>
<tr>
<td>Theater 180G</td>
<td>Race, Gender, and Performance</td>
</tr>
<tr>
<td>Theater 182A</td>
<td>Ancient Theater and Drama</td>
</tr>
<tr>
<td>Theater 182M</td>
<td>Modern Theater and Drama</td>
</tr>
</tbody>
</table>

* This course applies toward the Writing requirement.
& This course applies toward the Ethnicity requirement.
+ This course applies toward the World Cultures requirement.
@ This course applies toward the American History & Institutions requirement.
@ This course applies toward the European Traditions requirement.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theater 182MC</td>
<td>Modern Contemporary</td>
</tr>
<tr>
<td>Theater 182N</td>
<td>Neoclassical Theater and Drama</td>
</tr>
<tr>
<td>Theater 184AA</td>
<td>African American Performance</td>
</tr>
<tr>
<td>Theater 184CA</td>
<td>Contemporary African Theater and Performance</td>
</tr>
<tr>
<td>Theater 188S</td>
<td>Shakespeare on Film and Stage</td>
</tr>
<tr>
<td>English 15</td>
<td>Introduction to Shakespeare</td>
</tr>
<tr>
<td>English 22</td>
<td>Introduction to Literature and the Environment</td>
</tr>
<tr>
<td>English 25</td>
<td>Introduction to Literature and the Culture of Information</td>
</tr>
<tr>
<td>English 38A-B</td>
<td>Introduction to African American Literature</td>
</tr>
<tr>
<td>English 50</td>
<td>Introduction to U.S. Minority Literature</td>
</tr>
<tr>
<td>English 65AA-ZZ</td>
<td>Topics in Literature</td>
</tr>
<tr>
<td>English 101</td>
<td>English Literature from the Medieval Period to 1650</td>
</tr>
<tr>
<td>English 102</td>
<td>English and American Literature from 1650 to 1789</td>
</tr>
<tr>
<td>English 103A</td>
<td>American Literature from 1789 to 1900</td>
</tr>
<tr>
<td>English 103B</td>
<td>British Literature from 1789 to 1900</td>
</tr>
<tr>
<td>English 104A</td>
<td>American Literature from 1900 to Present</td>
</tr>
<tr>
<td>English 104B</td>
<td>British Literature from 1900 to Present</td>
</tr>
<tr>
<td>English 105A</td>
<td>Shakespeare: Poems and Earlier Plays</td>
</tr>
<tr>
<td>English 105B</td>
<td>Shakespeare: Later Plays</td>
</tr>
<tr>
<td>English 113AA-ZZ</td>
<td>Literary Theory and Criticism</td>
</tr>
<tr>
<td>English 114AA-ZZ</td>
<td>Women and Literature</td>
</tr>
<tr>
<td>English 114BW</td>
<td>Black Women Authors</td>
</tr>
<tr>
<td>English 115</td>
<td>Medieval Literature</td>
</tr>
<tr>
<td>English 116A</td>
<td>Biblical Literature: The Old Testament</td>
</tr>
<tr>
<td>English 117</td>
<td>Medieval Literature in Translation</td>
</tr>
<tr>
<td>English 120</td>
<td>Modern Drama</td>
</tr>
<tr>
<td>English 121</td>
<td>The Art of Narrative</td>
</tr>
<tr>
<td>English 122AA-ZZ</td>
<td>Cultural Representations</td>
</tr>
<tr>
<td>English 122NE</td>
<td>Cultural Representations of Nature and the Environment (Same as ENV S 122NE)</td>
</tr>
<tr>
<td>English 124</td>
<td>Readings in the Modern Short Story</td>
</tr>
<tr>
<td>English 126B</td>
<td>Survey of British Fiction</td>
</tr>
<tr>
<td>English 128AA-ZZ</td>
<td>Literary Genres</td>
</tr>
<tr>
<td>English 131AA-ZZ</td>
<td>Studies in American Literature</td>
</tr>
<tr>
<td>English 133AA-ZZ</td>
<td>Studies in American Regional Literature</td>
</tr>
<tr>
<td>English 134AA-ZZ</td>
<td>Literary Culture and Ethnic Communities in the United States</td>
</tr>
<tr>
<td>English 136</td>
<td>Seventeenth and Eighteenth Century American Literature</td>
</tr>
<tr>
<td>English 137A-B</td>
<td>Poetry in America</td>
</tr>
<tr>
<td>English 140</td>
<td>Contemporary American Literature</td>
</tr>
<tr>
<td>English 150</td>
<td>Anglo-Irish Literature</td>
</tr>
<tr>
<td>English 152A</td>
<td>Chaucer: Canterbury Tales</td>
</tr>
<tr>
<td>English 152B</td>
<td>Literature of Chivalry</td>
</tr>
<tr>
<td>English 157</td>
<td>English Renaissance Drama</td>
</tr>
<tr>
<td>English 162</td>
<td>Milton</td>
</tr>
<tr>
<td>English 165AA-ZZ</td>
<td>Topics in Literature</td>
</tr>
<tr>
<td>English 170AA-ZZ</td>
<td>Studies in Literature and the Mind</td>
</tr>
<tr>
<td>English 179</td>
<td>Studies in the Enlightenment</td>
</tr>
<tr>
<td>English 180</td>
<td>British Romantic Writers</td>
</tr>
<tr>
<td>English 181AL,MT</td>
<td>The Victorian Era</td>
</tr>
<tr>
<td>English 184</td>
<td>Studies in the Nineteenth Century</td>
</tr>
<tr>
<td>English 185</td>
<td>Modern European Literature</td>
</tr>
<tr>
<td>English 187AA</td>
<td>Modernism in English</td>
</tr>
<tr>
<td>English 187BB-ZZ</td>
<td>Studies in Modern Literature</td>
</tr>
<tr>
<td>English 189</td>
<td>Contemporary Literature</td>
</tr>
<tr>
<td>English 190AA-ZZ</td>
<td>World Literature in English</td>
</tr>
<tr>
<td>English 191</td>
<td>Afro-American Fiction and Criticism, 1920s to Present</td>
</tr>
<tr>
<td>English 192</td>
<td>Science Fiction</td>
</tr>
<tr>
<td>English 193</td>
<td>Detective Fiction</td>
</tr>
<tr>
<td>Environmental Studies 122CC</td>
<td>Cultural Representations: The Rhetoric of Climate Change</td>
</tr>
<tr>
<td>Environmental Studies 122LE</td>
<td>Cultural Representations: Literature and the Environment</td>
</tr>
<tr>
<td>Environmental Studies 122NE</td>
<td>Cultural Representations of Nature and the Environment (Same as ENV L 122NE)</td>
</tr>
<tr>
<td>Environmental Studies 160</td>
<td>American Environmental Literature</td>
</tr>
<tr>
<td>Feminist Studies 40 or 40H</td>
<td>Women, Representation, and Cultural Production</td>
</tr>
<tr>
<td>Feminist Studies 171CN</td>
<td>Citywomen: Women and Politics in Modern France (Same as FR 155D)</td>
</tr>
<tr>
<td>French 101A-B-C</td>
<td>Literary and Cultural Analysis</td>
</tr>
<tr>
<td>French 147A</td>
<td>French and Francophone Poetry</td>
</tr>
<tr>
<td>French 147B</td>
<td>French and Francophone Theater</td>
</tr>
<tr>
<td>French 148C</td>
<td>Women in the Middle Ages</td>
</tr>
<tr>
<td>French 148E</td>
<td>The Age of Louis XIV</td>
</tr>
<tr>
<td>French 149B</td>
<td>The Politics of Paradise</td>
</tr>
</tbody>
</table>

* This course applies toward the Writing requirement.
& This course applies toward the Ethnicity requirement.
+ This course applies toward the World Cultures requirement.
@ This course applies toward the American History & Institutions requirement.
@ This course applies toward the European Traditions requirement.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slavic 164C</td>
<td>Women in Russian Literature</td>
</tr>
<tr>
<td>Spanish 31</td>
<td>Literatures of the Spanish Speaking World</td>
</tr>
<tr>
<td>Spanish 102L</td>
<td>Introduction to Hispanic Literary Studies</td>
</tr>
<tr>
<td>Spanish 120A-B</td>
<td>Contemporary Spanish American Fiction in English Translation</td>
</tr>
<tr>
<td>Spanish 131</td>
<td>Spanish Golden Age Poetry</td>
</tr>
<tr>
<td>Spanish 135</td>
<td>Survey of Chicanos Literature</td>
</tr>
<tr>
<td>Spanish 137A-B</td>
<td>Golden Age Drama</td>
</tr>
<tr>
<td>Spanish 138</td>
<td>Contemporary Mexican Literature</td>
</tr>
<tr>
<td>Spanish 139</td>
<td>U.S. Latino Literature</td>
</tr>
<tr>
<td>Spanish 140A-B</td>
<td>Cervantes: Don Quijote</td>
</tr>
<tr>
<td>Spanish 174</td>
<td>The Hispanic Novel and Cinema</td>
</tr>
<tr>
<td>Spanish 179</td>
<td>Chicano Novel</td>
</tr>
<tr>
<td>Spanish 181</td>
<td>Hispanic Poetry: 1900-1945</td>
</tr>
</tbody>
</table>

Literature Courses Taught in the Original Language

- Chinese 124A-B
- Chinese 132A
- Chinese 142
- French 101A-B-C
- French 147A
- French 147B
- French 148C
- French 148E
- French 149B
- French 149C
- French 149D
- French 149E
- German 115A-B-C
- Greek 100
- Greek 101
- Hebrew 114A-B-C
- Italian 101
- Italian 111
- Italian 126-A-AA-AB-BB
- Latin 100
- Latin 101
- Latin American & Iberian Studies 102
- Music 187
- Portuguese 31
- Portuguese 105A-B-C
- Portuguese 106A-B-C
- Portuguese 115 A-AA-BB-ED EE-EO
- Religious Studies 22
- Religious Studies 114X
- Religious Studies 129
- Religious Studies 133D
- Religious Studies 133E
- Religious Studies 137PP
- Slavic 35
- Slavic 117F
- Slavic 117G
- Slavic 117H
- Slavic 123A-B
- Slavic 123C-D
- Slavic 151C
- Slavic 164B

Special Subject Area Supplementary List of Courses

- Anthropology 102A
- Anthropology 116A
- Anthropology 116B
- Anthropology 143
- Anthropology 148A
- Anthropology 169
- Anthropology 172
- Anthropology 176B
- Art History 186AA-ZZ
- Art History 187H
- Asian American Studies 113
- Asian American Studies 100C
- Asian American Studies 100D
- Asian American Studies 109
- Asian American Studies 113
- Asian American Studies 121
- Filipino Americans
- Korean Americans
- Asian American Women and Work
- The Asian American Movement
- Asian American Autobiographies

* This course applies toward the Writing requirement.
& This course applies toward the Ethnicity requirement.
+ This course applies toward the World Cultures requirement.
@ This course applies toward the American History & Institutions requirement.
This course applies toward the European Traditions requirement.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>GENERAL EDUCATION</td>
<td></td>
</tr>
<tr>
<td>Asian American Studies 124</td>
<td>Biographies of Asian American Literature in Comparative Frameworks</td>
<td>This course applies toward the World Cultures requirement.</td>
</tr>
<tr>
<td>Asian American Studies 134</td>
<td>Asian American Men and Contemporary Men's Issues</td>
<td>This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Asian American Studies 138</td>
<td>Asian American Sexualities</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the American History & Institutions requirement.</td>
</tr>
<tr>
<td>Asian American Studies 148</td>
<td>Introduction to Video Production</td>
<td>This course applies toward the American History & Institutions requirement. This course applies toward the Women's & Gender Studies requirement.</td>
</tr>
<tr>
<td>Asian American Studies 149</td>
<td>Screenwriting</td>
<td>This course applies toward the Ethnicity requirement. This course applies toward the World Cultures requirement.</td>
</tr>
<tr>
<td>Asian American Studies 162</td>
<td>Asian American Mental Health</td>
<td>This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Black Studies 108</td>
<td>Obama as a Political and Cultural Phenomenon</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Black Studies 137E</td>
<td>Sociology of the Black Experience</td>
<td>This course applies toward the Ethnicity requirement. This course applies toward the World Cultures requirement.</td>
</tr>
<tr>
<td>Chicano Studies 168C</td>
<td>History of the Chicano Movement</td>
<td>This course applies toward the Ethnicity requirement. This course applies toward the World Cultures requirement.</td>
</tr>
<tr>
<td>Chicano Studies 168F</td>
<td>Racism in American History</td>
<td>This course applies toward the Ethnicity requirement. This course applies toward the World Cultures requirement.</td>
</tr>
<tr>
<td>Chicano Studies 171</td>
<td>The Brown/Black Metropolis: Race, Class, & Resistance in the City</td>
<td>This course applies toward the Ethnicity requirement. This course applies toward the World Cultures requirement.</td>
</tr>
<tr>
<td>Chicano Studies 189</td>
<td>Immigration and the US Border</td>
<td>This course applies toward the Ethnicity requirement. This course applies toward the World Cultures requirement.</td>
</tr>
<tr>
<td>Chinese 132B</td>
<td>Special Topics in Modern Chinese Poetry</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Chinese 150</td>
<td>The Language of Vernacular Chinese</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Chinese 166B</td>
<td>Taoist Traditions in China</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Chinese 166C</td>
<td>Confucian Tradition: The Classical Period</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Classics 60</td>
<td>Science and Medicine in Ancient Greece</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Communication 130</td>
<td>Political Communication</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Communication 137</td>
<td>Global Communication, International Relations and the Media</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Communication 153</td>
<td>Communication and Global Advocacy</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Comparative Literature 36</td>
<td>Global Humanities: The Politics and Poetics of Witnessing</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Counseling, Clinical & School Psychology 101</td>
<td>Introduction to Applied Psychology</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Earth Science 6</td>
<td>Mountains, Boots and Backpaks: Field Study of the High Sierra</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Earth Science 104A</td>
<td>Field Studies in Geological Methods</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Earth Science 104B</td>
<td>Field Methods</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Earth Science 117</td>
<td>Earth Surface Processes and Landforms</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Earth Science 123</td>
<td>The Solar System</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Earth Science 130</td>
<td>Global Warming - Science and Society</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Economics 107A</td>
<td>History of Economics</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Economics 117A</td>
<td>Law and Economics</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Education 20</td>
<td>Introduction to the University Experience</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>EEBM 124</td>
<td>Biochemical Ecology</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>EEBM 134</td>
<td>Biology of Seaweeds and Phytoplankton</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>EEBM 135</td>
<td>Evolutionary Ecology</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>EEBM 138</td>
<td>Ethology and Behavioral Ecology</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>EEBM 142BL</td>
<td>Chemical and Physical Methods of Aquatic Environments</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>EEBM 142CL</td>
<td>Methods of Aquatic Biology</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>EEBM 149</td>
<td>Mariculture for the Twenty-First Century</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>EEBM 179</td>
<td>Modeling Environmental and Ecological Change</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>English 18</td>
<td>Public Speaking</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>English 36</td>
<td>Global Humanities</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Engineering 101</td>
<td>Ethics in Engineering</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Engineering 103</td>
<td>Advanced Engineering Writing</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Environmental Studies 2</td>
<td>Introduction to Environmental Science</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Environmental Studies 20</td>
<td>Shoreline Issues</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Environmental Studies 106</td>
<td>Critical Thinking About Human-Environment Problems and Solutions</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Environmental Studies 110</td>
<td>Disease and the Environment</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Environmental Studies 143</td>
<td>Endangered Species Management</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Environmental Studies 146</td>
<td>Animals in Human Society: Ethical Issues of Animal Use</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Environmental Studies 161</td>
<td>Environmental Journalism: A Survey</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Environmental Studies 173</td>
<td>American Environmental History</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Environmental Studies 189</td>
<td>Religion and Ecology in the Americas</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Feminist Studies 80 or 80H</td>
<td>Introduction to LGBTQ Studies</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Feminist Studies 142</td>
<td>Black Women Filmmakers</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Feminist Studies 150, 150H</td>
<td>Sex, Love, and Romance</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Feminist Studies 154A</td>
<td>Sociology of the Family</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Feminist Studies 155A</td>
<td>Women in American Society</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Feminist Studies 162</td>
<td>Critical LGBTQ Studies</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Film & Media Studies 101A-B-C</td>
<td>History of Cinema</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Film & Media Studies 191</td>
<td>Film Criticism</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Film & Media Studies 193</td>
<td>Film Narrative</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Geography 8</td>
<td>Living with Global Warming</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Geography W8</td>
<td>Living with Global Warming (online course)</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Geography W8</td>
<td>Living with Global Warming (online course)</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
<tr>
<td>Geography W8</td>
<td>Living with Global Warming (online course)</td>
<td>This course applies toward the World Cultures requirement. This course applies toward the Ethnicity requirement.</td>
</tr>
</tbody>
</table>

* This course applies toward the Writing requirement.
& This course applies toward the Ethnicity requirement.
+ This course applies toward the World Cultures requirement.
@ This course applies toward the American History & Institutions requirement.
& This course applies toward the World Cultures requirement.
This course applies toward the European Traditions requirement.
* Psychology 111L Laboratory in Biopsychology
* Psychology 112L Laboratory in Social Behavior
* Psychology 116L Laboratory in Animal Learning
* Psychology 117L Laboratory in Human Memory and Cognition
* Psychology 118L Laboratory in Attention
* Psychology 120L Advanced Research Laboratory
* Psychology 135A-B-C Field Experience in Psychological Settings
* Psychology 153L Laboratory in Developmental and Evolutionary Psychology
* Religious Studies 84 Introduction to Islamic Civilization
* Religious Studies 106 Modernity and the Process of Secularization
& Religious Studies 110D Ritual Art and Verbal Art of the Pacific Northwest
& Religious Studies 114D Religion and Healing in Native America
* Religious Studies 127B Christian Thought and Cultures of the Middle Ages
& Religious Studies 131F The History of Anti-Semitism
* Religious Studies 131J Introduction to Rabbinic Literature
* Religious Studies 140A Islamic Traditions
* Religious Studies 140B Religion, Politics, and Society in the Persian Gulf Region
* Religious Studies 140C Islamic Mysticism and Religious Thought
* Religious Studies 140D Islam in South Asia
& Religious Studies 140E Islam in America
* Religious Studies 140F Modern Islamic Movements
* Religious Studies 145 Patterns in Comparative Religion
* Religious Studies 160A Religious Traditions of India
* Religious Studies 162A Indian Philosophy
* Religious Studies 166C Confucian Traditions: The Classical Period
* Religious Studies 167A Religion in Japanese Culture
& Religious Studies 169 Hindu Devotional Traditions
& Religious Studies 193 Religion and Ecology of the Americas
& Sociology 128 Interethnic Relations
* Sociology 130 Development and its Alternatives
* Sociology 130LA Development and Social Change in Latin America
* Sociology 130ME Development and Social Change in the Middle East
* Sociology 134R The Sociology of Revolutions
* Sociology 134RC Radical Social Change
& Sociology 137E Sociology of the Black Experience
& Sociology 139A Black and White Relations
& Sociology 140 Aging in American Society
* Sociology 154A Sociology of the Family
& Sociology 154F The Chicano Family
& Sociology 155A Women in American Society
& Sociology 155M Contemporary U.S. Women’s Movements
& Sociology 155W Chicanas and Mexican Women in Contemporary Society
* Sociology 156A Introduction to Women, Culture, and Development
& Sociology 157 Radicalism in Contemporary Life
* Sociology 170 Sociology of Deviant Behavior
* Sociology 176A Sociology of AIDS
& Spanish 109 Spanish in the United States: The Language and its Speakers
* Speech & Hearing Sciences 50 Introduction to Communication Disorders
* Theater 1 Play Analysis
* Theater 91 Summer Theater in Orientation
& Theater 180F Asian American Theater
* Theater 185TH Theory
* Writing 18 Public Speaking
* Writing 24 Journalism Today
* Writing 110L Advanced Legal Writing
* Writing 110MK Professional Communications in Marketing and Public Relations
* Writing 126 Journalism for the Web and Social Media
* Writing 160 Theory and Practice of Writing Center Consulting

* This course applies toward the Writing requirement.
& This course applies toward the Ethnicity requirement.
+ This course applies toward the World Cultures requirement.
@ This course applies toward the American History & Institutions requirement.
^ This course applies toward the European Traditions requirement.
CHECKLIST OF GENERAL UNIVERSITY AND GENERAL EDUCATION REQUIREMENTS

GENERAL UNIVERSITY REQUIREMENTS

UC Entry Level Writing Requirement — (Must be fulfilled within three quarters of admission.)

Passed Exam ________ or Writing 1, 1E or Ling 12 ________ or transferred appropriate course ________

American History and Institutions* — (Refer to page 8 for the list of acceptable courses.)

One course ________ or Advanced Placement ________ or International waiver ________

*This course may also apply to the General Education requirements, if appropriate.

GENERAL EDUCATION REQUIREMENTS

A course listed in more than one General Subject Area can be applied to only one area. Course total in Areas D, E, F, and G must be at least 6.

General Subject Areas

1. Area A: English Reading and Composition

 Writing 2 or 2E ________________ and Writing 50, 50E, 107T or 109ST ________________

2. Area D: Social Sciences (2 courses minimum)

 ________________ ________________

3. Area E: Culture and Thought (2 courses minimum)

 ________________ ________________

4. Area F: The Arts (1 course minimum)

5. Area G: Literature (1 course minimum)

Special Subject Areas

In the process of fulfilling the G.E. General Subject Area requirements, students must fulfill the following Special Subject Area requirements, as outlined on page 11. Only approved courses can be used to fulfill these requirements.

a. Writing Requirement — At least four courses which require the writing of one or more papers totaling at least 1,800 words.

 ________________ ________________ ________________ ________________

b. Ethnicity Requirement — (1 course) ________________

c. European Traditions or World Cultures Requirement — (1 course) ________________
Chemical Engineering

Department of Chemical Engineering, Engineering II, Room 3357; Telephone (805) 893-3412; Web site: www.chemengr.ucsb.edu; Chair: Rachel A. Segalman; Vice-Chairs: Michael J. Gordon and M. Scott Shell

Faculty

Joseph Chada, Ph.D., University of Wisconsin, Lecturer with Potential Security of Employment

Brady R. Chmelka, Ph.D., UC Berkeley, Distinguished Professor (self-assembled materials, heterogeneous catalysis, surfactants and polymers, porous and composite solids, magnetic resonance)

Phillip N. Christopher, Ph.D., University of Michigan, Associate Professor (catalysis, photocatalysis, plasmonics, nanomaterials synthesis, in-situ characterization)

Siddharth S. Dey, Ph.D., UC Berkeley, Assistant Professor (systems biology, single-cell genomics, epigenetics, stem cell biology)

Michael F. Doherty, Ph.D., Cambridge University, Distinguished Professor (process design and synthesis, separations, crystal engineering)

Glenn Fredrickson, Ph.D., Stanford University, Distinguished Professor (polymer theory, block copolymers, phase transitions, statistical mechanics, glass transitions, composite media)

Michael J. Gordon, Ph.D., California Institute of Technology, Professor (surface physics, scanning probe microscopy, nanoscale materials, plasmonics, laser spectroscopy)

Song-I Han, Ph.D., Aachen University of Technology, Professor (magnetic resonance methods and applications, protein biophysics, spectroscopy)

Matthew E. Helgeson, Ph.D., University of Delaware, Associate Professor (colloidal thermodynamics and rheology, polymer and surfactant self-assembly, nanomaterials, microfluidics)

Eric McFarland, Ph.D., Massachusetts Institute of Technology, M.D., Harvard, Professor (energy production, catalysis, reaction engineering, charge and energy transfer)

Arnab Mukherjee, Ph.D., University of Illinois at Urbana-Champaign, Assistant Professor (protein and cell engineering, genetic tools for molecular imaging, fluorescence imaging, magnetic resonance imaging, anaerobic biosystems, synthetic biology)

Michelle A. O'Malley, Ph.D., University of Delaware, Associate Professor (genetic and cellular engineering, membrane protein characterization for drug discovery, protein biophysics, metagenomics, biofuel production)

James B. Rawlings, Ph.D., University of Wisconsin, Distinguished Professor (chemical process monitoring and control, reaction engineering, computational modeling)

Baron G. Peters, Ph.D., UC Berkeley, Professor (molecular simulation, chemical kinetics, catalytic reaction mechanisms, nucleation, electron transfer)

Susan Scott, Ph.D., Iowa State University, Distinguished Professor (heterogeneous catalysis, surface organometallic chemistry; analysis of electronic structure and stoichiometric reactivity to determine catalytic function)

Rachel A. Segalman, Ph.D., UC Santa Barbara, Professor (polymer design, self-assembly, and properties)

M. Scott Shell, Ph.D., Princeton, Professor (molecular simulation, statistical mechanics, complex materials, protein biophysics)

Todd M. Squires, Ph.D., Harvard, Professor (fluid mechanics, microfluidics, microhydrology, complex fluids)

Sho Takatori, Ph.D., California Institute of Technology, Assistant Professor (statistical mechanics and fluid dynamics of biological systems, microbial and cellular communities)

Emeriti Faculty

Sanjoy Banerjee, Ph.D., University of Waterloo, Professor Emeritus (transport processes, multiphase systems, process safety)

Owen T. Hanna, Ph.D., Purdue University, Professor Emeritus (theoretical methods)

Gene Lucas, Ph.D., Massachusetts Institute of Technology, Professor (structural materials, mechanical properties)

L. Gary Leal, Ph.D., Stanford University, Schlinger Distinguished Professor in Chemical Engineering (fluid mechanics, physics of complex fluids, rheology)

Duncan A. Mellichamp, Ph.D., Purdue University, Professor Emeritus (process dynamics and control, digital computer control)

Robert G. Rinker, Ph.D., California Institute of Technology, Professor Emeritus (chemical kinetics, reaction engineering, catalysis)

Orville C. Sandall, Ph.D., UC Berkeley, Professor Emeritus (transport of mass, energy, and momentum; separation processes)

Dale E. Seborg, Ph.D., Princeton University, Professor Emeritus (process dynamics and control, monitoring and fault detection, system identification)

Theofanis G. Theofanous, Ph.D., University of Minnesota, Professor, Center for Risk Studies and Safety Director (transport phenomena in multiphase systems, risk analysis)

Affiliated Faculty

Christopher Bates, Ph.D. (Materials)

David Gay, Ph.D. (ICB)

Mahdi Abu Omar, Ph.D. (Chemistry)

Philip Alan Pincus, Ph.D. (Materials)

We live in a technological society which provides many benefits including a very high standard of living. However, our society must address critical problems that have strong technological aspects. These problems include: meeting our energy requirements, safeguarding the environment, ensuring national security, and delivering health care at an affordable cost. Because of their broad technical background, chemical engineers are uniquely qualified to make major contributions to the resolution of these and other important problems. Chemical engineers develop processes and products that transform raw materials into useful products.

The Department of Chemical Engineering offers the B.S., M.S., and Ph.D. degrees in chemical engineering. The B.S. degree is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

At the undergraduate level, emphasis is placed on a thorough background in the fundamental principles of science and engineering, strongly reinforced by laboratory courses in which students become familiar with the application of theory. At the graduate level, students take advanced courses and are required to demonstrate competence in conducting basic and applied research.

The B.S. degree provides excellent preparation for both challenging industrial jobs and graduate degree programs. Interdisciplinary B.S./M.S degree programs are also available which result in M.S. degrees in other fields. Students who complete a major in chemical engineering may be eligible to pursue a California teaching credential. Interested students should consult the credential advisor in the Graduate School of Education as soon as possible.

Under the direction of the Associate Dean for Undergraduate Studies, academic advising services are jointly provided by advisors in the College of Engineering, as well as advisors in the department. Each undergraduate also is assigned a faculty advisor, to assist in selection of elective courses, plan academic programs, and provide advice on professional career objectives. Undergraduates in other majors who plan to change to a major in the Department of Chemical Engineering should consult the department academic advisor for the requirements.

Mission Statement

The program in Chemical Engineering has a dual mission:

• Education. Our program seeks to produce chemical engineers who will contribute to the process industries worldwide. Our program provides students with a strong fundamental technical education designed to meet the needs of a changing and rapidly developing technological environment.

• Research. Our program seeks to develop innovative science and technology that addresses the needs of industry, the scientific community, and society.

Objectives for the Undergraduate Program

Educational Objectives
• Our graduates will be innovative, competent, contributing chemical engineers.
• Our graduates will demonstrate their flexibility and adaptability in the workplace, so that they remain effective engineers, take on new responsibilities, and assume leadership roles.
• Our graduates will continually develop new skills and knowledge through formal and informal mechanisms.

Student Outcomes

Upon graduation, students from the ChE program at UCSB are expected to have:
1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. An ability to communicate effectively with a range of audiences.
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. An ability to function effectively on a team whose members together create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering to draw conclusions.
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Undergraduate Program

Bachelor of Science—Chemical Engineering

A minimum of 187 units is required for graduation. A complete list of requirements for the major can be found on page 46. Schedules should be planned to meet both General Education and major requirements. Courses required for the major, inside or outside of the Department of Chemical Engineering, cannot be taken for the pass/not pass grading option. They must be taken for letter grades.

Fifteen units of technical electives selected from a wide variety of upper-division science and engineering courses are also required. The list of approved technical electives is included on curriculum sheets. Prior approval of technical electives must be obtained from the department faculty advisor and the technical elective worksheet must be submitted to the department by fall quarter of the senior year.

Transfer students who have completed most of the lower-division courses listed above and are entering the junior year of the chemical engineering program may take Chemical Engineering 10 concurrently with Chemical Engineering 120A in the fall quarter.

Chemical Engineering Courses

LOWER DIVISION

5. Introduction to Chemical Engineering Design
 (P) DORIETY, SHELL, CHADA
 Introduction to the design and analysis of processes involving chemical change in the context of chemical and biomolecular engineering. Students learn mathematical, empirical, and conceptual strategies to analyze.

10. Introduction to Chemical Engineering Thermodynamics
 (3) SHELL
 Prerequisites: Chemical Engineering 10; Mathematics 4B or 4BI; Engineering majors only.
 Use of the laws of thermodynamics to analyze processes encountered in engineering practice, including cycles and flows. Equations-of-state for describing properties of fluids and mixtures. Applications, including engines, turbines, refrigeration and power plant cycles, phase equilibria, and chemical-reaction equilibria.

110A. Chemical Engineering Thermodynamics
 (3) NAM, SCOTT
 Prerequisite: Chemical Engineering 110A with a minimum grade of C-; Mathematics 4B or 4BI; Engineering majors only.
 Extension of Chemical Engineering 110A to cover mixtures and multiphase equilibrium. Liquid-vapor separations calculations are emphasized. Introduction to equations of state for mixtures.

118. Technical Communication of Chemical Engineering
 (1-3) STAFF
 Prerequisites: Chemical Engineering 110A.
 Provides an introduction to technical communication in the form of writing reports and oral presentations. Emphasis placed on how to analyze and present data; critical thinking; organization, logic and constructing a technical narrative; literature searching and citations for written reports; and how to give oral presentations. Includes various lectures on technical communication, individual and group assignments, and peer-review exercises.

120A. Transport Processes
 (4) SQUIRES, DEY
 Prerequisites: Chemical Engineering 10 with a minimum grade of C- (may be taken concurrently); Mathematics 4B or 4BI; Mathematics 6A or 4AI-6B.
 Introductory course in conceptual understanding and mathematical analysis of problems in fluid dynamics of relevance to Chemical Engineering. Emphasis is placed on performing microscopic and macroscopic mathematical analysis to understand fluid motion in response to forces.

120B. Transport Processes
 (3) HELGESON, CHMELKA
 Prerequisite: Chemical Engineering 10 with minimum grade of C-; Chemical Engineering 110A with minimum grade of C- (may be taken concurrently); Chemical Engineering 120A.
 Introductory course in the mathematical analysis of conductive, convective and radiative heat transfer with practical applications to design of heat exchanger equipment and use.

120C. Transport Processes
 (3) DEY, SQUIRES
 Prerequisite: Chemical Engineering 10 with a minimum grade of C-; Chemical Engineering 110A with minimum grade of C-; Chemical Engineering 110B (may be taken concurrently) and Chemical Engineering 120B.
 Introductory course in the fundamentals of mass transfer with applications to the design of mass transfer equipment.

121. Colloids and Biosurfaces
Probability concepts and distributions, random variables, error analysis, point estimation and confidence intervals, hypothesis testing, development of empirical chemical engineering models using regression techniques, design of experiments, process monitoring based on statistical quality control techniques.

140A. Chemical Reaction Engineering
(3) MCFARLAND, SCOTT, CHRISTOPHER
Prerequisites: Chemical Engineering 10 with minimum grade of C-; Chemical Engineering 110A with a minimum grade of C-. Chemical Engineering 110B (may be taken concurrently). Chemical Engineering 120A-B.
Fundamentals of chemical reaction engineering with emphasis on kinetics of homogeneous and heterogeneous reacting systems. Reaction rates and reaction design are linked to chemical conversion and selectivity. Batch and continuous reactor designs with and without catalysts are examined.

140B. Chemical Reaction Engineering
(3) CHMELKA, MCFARLAND, RAWLINGS
Prerequisites: Chemical Engineering 110A-B, 120A-B and 140A.
Thermodynamics, kinetics, mass and energy transport considerations associated with complex homogeneous and heterogeneous reacting systems. Catalysts and catalytic reaction rates and mechanisms. Adsorption and reaction at solid surfaces, including effects of diffusion in porous materials. Chemical reactor using heterogeneous catalysts.

141. The Science and Engineering of Energy Conversion
(3) MCFARLAND
Prerequisites: Chemical Engineering 110A and 140A.
Equivalent upper-division coursework in thermodynamics and kinetics from outside of department will be considered. Framework for understanding the energy supply issues facing society with a focus on the science, engineering, and economic principles of the major alternatives. Emphasis will be on the physical and chemical fundamentals of energy conversion technologies.

146. Heterogenous Catalysis
(3) STAFF
Prerequisites: Chemical Engineering 140A-B or consent of instructor.
Concepts and definitions. Physical and chemical methods of catalyst characterization. Adsorption, desorption, and surface reaction on well-defined surfaces. Thermodynamic and kinetic treatments of overall reactions on uniform and nonuniform surfaces. Mathematical and theoretical approaches in chemical engineering catalysis.

152A. Process Dynamics and Control
(4) CHMELKA, CHRISTOPHER
Prerequisites: Chemical Engineering 120A-B and 140A.
Development of theoretical and empirical models for chemical and physical processes, dynamic behavior of processes, transfer function and block diagram representation, process instrumentation, control system design and analysis, stability analysis, computer simulation of controlled processes.

152B. Advanced Process Control
(3) RAWLINGS
Prerequisites: Chemical Engineering 152A.
The theory, design, and experimental application of advanced process control strategies including feedback control, cascade control, enhanced single-loop strategies, and model predictive control. Analysis of multi-loop control systems. Introduction to on-line optimization.

154. Engineering Approaches to Systems Biology
(3) STAFF
Prerequisites: Chemical Engineering 170 or Chemical Engineering 107; Mathematics 4B or 4BI; Mathematics 6A or 6AI and 6B.
Applications of engineering tools and methods to solve problems in systems biology. Emphasis is placed on integrative approaches that address multi-scale and multi-rate phenomena in biological regulation. Modeling, optimization, and sensitivity analysis tools are introduced.

160. Introduction to Polymer Science
(3) SEGALMAN
Prerequisites: Chemical Engineering 110A or Chemistry 173A or equivalent.
Same course as Materials 160. Introductory course covering synthesis, characterization, structure, and mechanical properties of polymers. The course is taught from a materials perspective and includes polymer thermodynamics, chain architecture, measurement and control of molecular weight as well as crystallization and glass transitions.

170. Molecular and Cellular Biology for Engineers
(3) O’MALLEY, DEY
Prerequisites: Chemical Engineering 120A-B-C, 140A and Chemistry 109C.
Familiarizes engineering students with key concepts from biochemistry, molecular biology, cell biology, and genetics. Students will apply chemical engineering principles to describe different biological systems at multiple scales, including an introduction to bioproduction.

171. Introduction to Biochemical Engineering
(3) DEY, O’MALLEY
Prerequisites: Chemical Engineering 170 or Chemical Engineering 107.
Introduction to biochemical engineering covering cell growth kinetics, bioreactor design, enzyme processes, biotechnologies for modification of cellular information and molecular and cellular engineering.

173. Omnis-Enabled Biotechnology
(3) O’MALLEY
Prerequisites: MCDB 1A
This course will integrate genomic, transcriptomic, metabolomic, and proteomic approaches to quantify and understand intricate biological systems.

174. Model-Guided Engineering of Biological Systems
(3) O’MALLEY
Prerequisites: Chemical Engineering 10; Chemical Engineering 107 or equivalent, or consent of instructor.
Introduces students to fundamental principles underlying synthetic biology with an emphasis on mathematical modeling of gene regulation using differential equations and mass action kinetics. Students will also learn to design and predict the functional outcomes of synthetic gene circuits and review primary literature in the field.

180A Chemical Engineering Laboratory
(3) STAFF
Prerequisites: Chemical Engineering 110A and 120A-B.
Experiments in thermodynamics, fluid mechanics, heat transfer, mass transfer, and chemical processing. Analysis of results, and preparation of reports.

180B Chemical Engineering Laboratory
(3) STAFF
Prerequisites: Chemical Engineering 120C, 128, 140A, and 152A.
Experiments in mass transfer, reactor kinetics, process control, and chemical and biochemical processing. Analysis of results, and preparation of reports.

184A. Design of Chemical Processes
(3) DOHERTY, MCFARLAND, CHADA
Prerequisites: Chemical Engineering 110A-B, 120A-B-C, 128, 132B, 140A-B, and 152A.
A application of chemical engineering principles to plant design. Conceptual design of chemical processes. Flowsheeting methods. Engineering cost principles and economic aspects.

184B. Design of Chemical Processes
(3) DOHERTY, MCFARLAND, CHADA
Prerequisites: Chemical Engineering 184A.
The solution to comprehensive plant design problems. Use of computer process simulators.
Optimization of plant design, investment and operations.

193. Internship in Industry
1-4 STAFF

196. Undergraduate Research
2-4 STAFF
Prerequisite: Upper-division standing; completion of 2 upper-division courses in Chemical Engineering; consent of the instructor.

Must have a minimum 3.0 grade-point average for the preceding three quarters. May be repeated for up to 12 units. Not more than 3 units may be applied to departmental electives.

Research opportunities for undergraduate students. Students will be expected to give regular oral presentations, actively participate in a weekly seminar, and prepare at least one written report on their research.

198. Independent Studies in Chemical Engineering
1-5 STAFF
Prerequisites: consent of instructor; upper-division standing; completion of two upper-division courses in chemical engineering.

Must have a minimum 3.0 grade-point average for the preceding three quarters. May be repeated to up to twelve units. Students are limited to five units per quarter and 30 units total in all 98/99/198/199/199DC/199RA courses combined.

Directed individual studies.

GRADUATE COURSES
Graduate courses for this major can be found in the UCSB General Catalog.

Computer Engineering

Computer Engineering Major, Trailer 380, Room 101;
Telephone (805) 893-5615
E-mail: info@ce.ucsb.edu
Web site: www.ce.ucsb.edu
Director: Li-C. Wang

Faculty
Kaustav Banerjee, Ph.D., UC Berkeley, Professor (high performance VLSI and mixed signal system-on-chip designs and their design automation methods; single electron transistors; 3D and optoelectronic integration)

Forrest D. Brewer, Ph.D., University of Illinois at Urbana-Champaign, Professor (VLSI and computer system design automation, theory of design and design representations, symbolic techniques in high level synthesis)

Tevfik Bultan, Ph.D., University of Maryland, College Park, Professor (specification and automated analysis of concurrent systems, computer-aided verification, model checking)

Ben Hardeko, Ph.D., University of Texas at Austin, Associate Professor (programming languages: design, analysis, and implementation)

Yogananda Isukapalli, Ph.D., UC San Diego (Low power hardware design, Multi-antenna wireless communications, Transmit beam forming, Vector quantization, Performance analysis of communication systems)

Chandra Krintz, Ph.D., University of California, San Diego, Professor (dynamic and adaptive compilation systems, high-performance internet (mobile) computing, runtime and compiler optimizations for Java/CIL, efficient mobile program transfer formats)

Behrooz Parhami, Ph.D., UC Los Angeles, Professor (parallel architectures and algorithms, computer arithmetic, computer design, dependable and fault-tolerant computing)

Tim Sherwood, Ph.D., UC San Diego, Professor (computer architecture, dynamic optimization, network and security processors, embedded systems, program analysis and characterization, and hardware support of software systems)

Dmitri B. Strukov, Ph.D., Stony Brook University, Assistant Professor (hybrid circuits, nanoelectronics, resistance switching devices, memristors, digital memories, programmable circuits, bio-inspired computing)

Luke Theogarajan, Ph.D., Massachusetts Institute of Technology, Associate Professor (low-power analog VLSI, biomimetic nanosystems, neural prostheses, biosensors, block co-polymer synthesis, self-assembly, and microfabrication)

Li-C. Wang, Ph.D., University of Texas at Austin, Professor (design verification, testing, computer-aided design of microprocessors)

Richard Wolski, Ph.D., UC Davis/Livermore, Professor (high-performance distributed computing, computational grids, computational economies for resource allocation and scheduling)

Yuan Xie, Ph.D., Princeton University, Professor (EDA, VLSI design, computer architecture, embedded systems, high-performance computing)

Zheng Zhang, Ph.D., Massachusetts Institute of Technology, Assistant Professor (Design Automation Algorithms for VLSI/MEMS/Photonics; Uncertainty Quantification and Data Analysis; Modeling and Control for Robotic and Autonomous Systems; Computation for Biomedical Imaging)

Mission Statement
To prepare our students to reach their full potential in computer engineering research and industrial practice through a curriculum emphasizing the mathematical tools, scientific basics, fundamental knowledge, engineering principles, and practical experience in the field.

Educational Objectives
The Computer Engineering Program seeks to produce graduates who:
1) Make positive contributions to society by applying their broad knowledge of computer engineering theories, techniques, and tools
2) Create processes and products, involving both hardware and software components, that solve societal and organizational problems effectively, reliably, and economically.
3) Are committed to the advancement of science, technical innovation, lifelong learning, professionalism, and mentoring of future generations of engineers.
4) Understand the ethical, social, business, technical, and human contexts of the world in which their engineering contributions will be utilized.

Program Outcomes
Upon completion of this program, students will have:
1) Acquired strong basic knowledge and skills in those fundamental areas of mathematics, science, and engineering necessary to facilitate specialized professional training at an advanced level. Developed a recognition of the need for and the ability to engage in lifelong learning.
2) Experienced in-depth training in state-of-the-art specialty areas in computer engineering.
3) Benefited from hands-on, practical laboratory experiences where appropriate throughout the program. The laboratory experiences will be closely integrated with coursework and will make use of up-to-date instrumentation and computing facilities. Students will have completed both hardware-oriented and software-oriented assignments.
4) Experienced design-oriented challenges that exercise and integrate skills and knowledge acquired during their course of study. These challenges may include design of components or subsystems with performance specifications. Graduates should be able to demonstrate an ability to design and test a system, analyze experimental results, and draw logical conclusions from them.
5) Learned to function well in multidisciplinary teams and collaborative environments. To this end, students must advisors are also available to help with academic program planning. Students who hope to change to this major should consult the department advisor.

develop communication skills, both written and oral, through teamwork and classroom participation. Teamwork and individual originality will be evidenced through written reports, webpage preparation, and public presentations.

6) Completed a well-rounded and balanced education through required studies in selected areas of fine arts, humanities, and social sciences. This outcome provides for the ability to understand the impact of engineering solutions in a global and societal context. A required course in engineering ethics will have prepared students for making professional contributions while maintaining institutional and individual integrity.

Undergraduate Program

Bachelor of Science—Computer Engineering

A minimum of 191 units is required for graduation. A complete list of requirements for the major can be found on page 48. Schedules should be planned to meet both General Education and major requirements.

The curriculum contains a core required of all computer engineers, a choice of at least 48 units of senior year elective courses including completion of two out of ten elective sequences and a senior year capstone design project.

Because the Computer Engineering degree program is conducted jointly by the Department of Computer Science and the Department of Electrical and Computer Engineering, several of the upper-division courses have equivalent versions offered by ECE or CMPSC. These courses are considered interchangeable, but only one such course of a given equivalent ECE/CMPS pair may be taken for credit.

Courses required for the major, whether inside or outside of the Departments of Electrical and Computer Engineering or Computer Science, must be taken for letter grades. They cannot be taken for the passed/not passed grading option.

The upper-division requirements consist of a set of required courses and a minimum of 48 units (12 classes) of additional departmental elective courses comprised of at least two sequences chosen from a set of eight specialty sequences. Each sequence must consist of two or more courses taken from the same course/sequence group. The department electives must also include a capstone design project (CMPSC 189A-B/ECE 189A-B-C). Upper-division courses required for the major are: Computer Science 130A; ECE 152A,154A; either ECE 139 or PSTAT 120A; Engineering 101.

The required departmental electives are taken primarily in the senior year; they permit students to develop depth in specialty areas of their choice. A student’s elective course program and senior project must be approved by a departmental faculty advisor. A variety of elective programs will be considered acceptable. Sample programs include those with emphasis in: computer-aided design (CAD); computer systems design; computer networks; distributed systems; programming languages; real-time computing and control; multimedia; and very large-scale integrated (VLSI) circuit design.

The defined sequences from which upper-division departmental electives may be chosen are:

- Computer Systems Design: ECE/CMPSC 153A, ECE 153B
- Computer Networks: ECE 155A/CMPSC 176A, ECE 155B/CMPSC 176B
- Distributed Systems: ECE 151/CMPSC 171 and one or both of the Computer Networks courses
- Programming Languages: CMPSC 160, 162
- Real-Time Computing & Control: ECE 147A-B, 157
- Multimedia: ECE 178, ECE/CMPSC 181B, ECE 160/CMPSC 182
- VLSI: ECE 122A, ECE 122B/ECE 124A, 124D
- Signal Processing: ECE 130A-B
- Robotics: ECE 179D & ECE 179P
- Design & Test Automation: ECE 156A, ECE 156B
- Machine Learning: CMPSC 165A, CMPSC 165B
- System Software Architecture: CMPSC 170, CMPSC 171/ECE 151

Satisfactory Progress and Prerequisites

A majority of Computer Science and Electrical and Computer Engineering courses have prerequisites which must be completed successfully. Successful completion of prerequisite classes requires a grade of C or better in Mathematics 3A-B and 4A, and a grade of C- or better in ECE classes. Students will not be permitted to take any ECE or CMPSC course if they received a grade of D or F in one or more of its prerequisites.

Students who fail to maintain a grade-point average of at least 2.0 in the major may be denied the privilege of continuing in the major.

Computer Engineering Courses

See listings for Computer Science starting on page 25 and Electrical and Computer Engineering starting on page 30.

Computer Science

Department of Computer Science, Harold Frank Hall, Room 2104; Telephone (805) 893-4321 Web site: www.cs.ucsb.edu
Chair: Tevfik Bultan

Vice Chair: Elizabeth Belding
John Gilbert

Faculty

Divyakant Agrawal, Ph.D., State University of New York at Stony Brook, Distinguished Professor (distributed systems and databases)

Kevin Almeroth, Ph.D., Georgia Institute of Technology, Professor (computer networks and protocols, large-scale multimedia systems, performance evaluation and distributed systems)

Elizabeth Belding, Ph.D., University of California, Santa Barbara, Professor (mobile wireless networking, network performance evaluation, advanced service support, solutions for developing and under-developed regions)

Tevfik Bultan, Ph.D., University of Maryland, College Park, Professor (software verification, program analysis, software engineering, computer security)

Phillip Conrad, Ph.D., University of Delaware, Lecturer SOE (computer science education, web technologies, computer networks and communication, transport protocols, multimedia computing)

Wim van Dam, Ph.D., University of Oxford and University of Amsterdam, Associate Professor (quantum computation, quantum algorithms, quantum communication, quantum information theory)

Yufei Ding, Ph.D., North Carolina State University, Assistant Professor (high-level large-scale program optimizations, high-performance domain-specific languages, heterogeneous massively parallel computing, high-performance machine learning, and quantum computing)

Ömer Egecioglu, Ph.D., University of California, San Diego, Professor (bijective and enumerative combinatorics, parallel algorithms, approximation algorithms, combinatorial algorithms)

Amr El Abbadi, Ph.D., Cornell University, Distinguished Professor (information and data management; distributed systems, cloud computing)

Frederic Gibou, Ph.D., University of California, Los Angeles, Professor (High resolution multiscale simulation, scientific computing, tools and software for computational science and engineering, engineering applications)

John R. Gilbert, Ph.D., Stanford University, Professor (combinatorial scientific computing, high-performance graph algorithms, tools and software for computational science and engineering, numerical linear algebra)

Trinabh Gupta, Ph.D., University of Texas at Austin, Assistant Professor (computer systems with a focus on privacy)

Ben Hardekopf, Ph.D., University of Texas at Austin, Associate Professor (programming languages: design, analysis and implementation)

Tobias Höllerer, Ph.D., Columbia University, Professor (human computer interaction; augmented reality; virtual reality; visualization; computer graphics; 3D displays and interaction; wearable and ubiquitous
Many of the greatest challenges facing our world today are increasingly reliant on computing for their solutions — from conquering disease to eliminating hunger, from improving education to protecting the climate and environment. Information is key to all of these efforts, and computer scientists make it possible to visualize, see, explore, transmit, and transform this information in ways never before thought possible. Solving problems through computation means teamwork, collaboration, and gaining the interdisciplinary skills that modern careers demand. Our goal with the Computer Science curriculum at UCSB is to impart to students the knowledge and experience required for them to participate in this exciting and high-impact discipline.

Mission Statement

The Computer Science Department seeks to prepare undergraduate and graduate students for productive careers in industry, academia, and government, by providing an outstanding environment for teaching and research in the core and emerging areas of the discipline. The department places high priority on establishing and maintaining innovative research programs that enhance educational opportunity.

The Department of Computer Science offers programs leading to the degree of Bachelor of Science in computer science, and the M.S. and Ph.D. in computer science. The B.S. degree program in computer science is accredited by the Computing Accreditation Commission of ABET, http://www.abet.org.

One of the most important aspects of the Computer Science program at UCSB is the wealth of "hands-on" opportunities for students. UCSB has excellent computer facilities. Campus Instructional Computing makes accounts available to all students. Computer Science majors and premajors use the workstations in the Computer Science Instructional Lab and Engineering Computing Infrastructure computing facilities. Students doing special projects can gain remote access to machines at the NSF Supercomputing Centers. Additional computing facilities are available to graduate students in the Graduate Student Laboratory. Students working with faculty have access to further specialized research facilities within the Department of Computer Science.

The undergraduate major in computer science has a dual purpose: to prepare students for advanced studies and research and to provide training for a variety of careers in business, industry, and government.

The Department of Computer Science seeks to prepare future generations of computer professionals for long-term careers in research, technical development, and applications. Gradu-
ates of the B.S. program that wish to seek immediate employment are prepared for a wide range of computer science positions in industry and government. Outstanding graduates interested in highly technical careers, research, and/or academia, might consider furthering their education in graduate school.

The primary computer science departmental emphasis is on problem solving using computer program design, analysis and implementation, with both a theoretical foundation and a practical component.

Program Outcomes for Undergraduate Programs

The program enables students to achieve, by the time of graduation:

1. An ability to apply knowledge of computing and mathematics appropriate to computer science.
2. An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution.
3. An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
4. An ability to function effectively on teams to accomplish a common goal.
5. An understanding of professional, ethical, and social responsibilities.
6. An ability to communicate effectively.
7. An ability to analyze the impact of computing on individuals, organizations, and society, including ethical, legal, security, and global policy issues.
8. Recognition of the need for and an ability to engage in continuing professional development.
9. An ability to use current techniques, skills, and tools necessary for computing practice.
10. An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the trade-offs involved in design choices.

Computer Science Courses

LOWER DIVISION

4. Computer Science Boot Camp
(4) KOC
NOT open to CMPSC or CMPEN Majors.
An introduction to computational thinking, computing, data management, and problem solving using computers, for non-majors. Topics include coding basics, representing code and data using a computer, and applications of computing that are important to society.

8. Introduction to Computer Science
(4) KHARITONOVA, MIRZA, MATNI
Not open for credit to students who have completed Computer Science 16 or Engineering 3.
Legal repeat for CMPSC 1A.
Introduction to computer program development for students with little to no programming experience. Basic programming concepts, variables and expressions, data and control structures, algorithms, debugging, program design, and documentation.

16. Problem Solving with Computers I
(4) KHARITONOVA, MIRZA
Prerequisite: Math 3A with a grade of C or better (may be taken concurrently), Computer Science 8 or Engineering 3 or Electrical and Computer Engineering 3 with a grade of C or better, another university-level intro to programming course, or significant prior programming experience.
Legal repeat of CMPSC 10.
Fundamental building blocks for solving problems using computers. Topics include basic computer organization and programming constructs: memory, CPU, binary arithmetic, variables, expressions, statements, conditionals, iteration, functions, parameters, recursion, primitive and composite data types, and basic operating system and debugging tool.

24. Problem Solving with Computers II
(4) AGRAWAL, MIRZA
Prerequisite: Computer Science 16 with a grade of C or better and Math 3B (may be taken concurrently).
Not open for credit to students who have completed Computer Science 20.
Intermediate building blocks for solving problems using computers. Topics include intermediate object-oriented programming, data structures, object-oriented design, algorithms for manipulating these data structures and their run-time analyses. Data structures introduced include stacks, queues, lists, trees, and sets.

32. Object Oriented Design and Implementation
(4) WANG, R.
Prerequisite: Computer Science 24 with a grade of C or better.
Computer Science 32 is a legal repeat for Computer Science 60.
Advanced topics in object-oriented computing. Topics include encapsulation, data hiding, inheritance, polymorphism, compilation, linking and loading, memory management, and debugging; recent advances in design and development tools, practices, libraries, and operating system support.

40. Foundations of Computer Science
(5) VAN DAM, SU
Prerequisites: Computer Science 16 with a grade of C or better and Mathematics 4A with a grade of C or better.
Introduction to the theoretical underpinnings of computer science. Topics include propositional predicate logic, set theory, functions and relations, counting, mathematical induction and recursion (generating functions).

48. Computer Science Project
(4) CONRAD, KRINTZ
Prerequisite: Computer Science 32 with a grade of C or better.
Team-based project development. Topics include software engineering and professional development practices, interface design, advanced library support; techniques for team-oriented design and development, testing and test-driven development, and software reliability and robustness. Students present and demonstrate their final projects.

56. Advanced Applications Programming
(4) CONRAD
Prerequisite: Computer Science 24 and 32 with a grade of C or better.
Not open for credit to students who have completed Computer Science 20.
Advanced application programming using a high-level, virtual-machine-based language. Topics include generic programming, exception handling, programming language implementation; automatic memory management, and application development, management, and maintenance tools; event handling, concurrency and threading, and advanced library use.

64. Computer Organization and Logic Design
(4) MATNI
Prerequisite: Computer Science 32 with a grade of C or better.
Prerequisite: Computer Science 16 with a grade of C or better; and Mathematics 3C or 4A with a grade of C or better.

Not open for credit to students who have completed ECE 15 or ECE 15B or Computer Science 30.

Course counts as a legal repeat of CMPSC 30.

Assembly language programming and advanced computer organization; Digital logic design topics including gates, combinational circuits, flip-flops, and the design and analysis of sequential circuits.

95AA-ZZ. Undergraduate Seminar in Computer Science

(1-4) STAFF

Prerequisites: Open to pre-computer science and pre-computer engineering majors only; consent of instructor.

Seminars on introductory topics in computer science. These seminars provide an overview of the history, technology, applications, and impact in various areas of computer science, including: A. Foundations, B. Software Systems, C. Programming languages and software engineering, D. Information management, E. Architecture, F. Networking, G. Security, H. Scientific computing, I. Intelligent and interactive systems, J. History, N. General.

99. Independent Studies in Computer Science

(1-4) STAFF

Must have a minimum 3.0 grade point average. May be repeated. Students are limited to 5 units per quarter and 30 units total in all 99/198/199 courses combined.

Independent studies in computer science for advanced students.

UPPER DIVISION

111. Introduction to Computational Science

(4) GILBERT, Matni

Prerequisites: Mathematics 5A or 4B with a grade of C or better; Mathematics 5B or 6A with a grade of C or better; Computer Science 24 with a grade of C or better.

Not open for credit to students who have completed Computer Science 110A.

Introduction to computational science, emphasizing basic numerical algorithms and the informal use of mathematical software. Matrix computation, systems of linear and nonlinear equations, interpolation and zero finding, differential equations, numerical integration. Students learn and use the Matlab language.

130A. Data Structures and Algorithms I

(4) EL Abbadi, Sing Suri

Prerequisites: Computer Science 40 with a grade of C or better; Computer Science 32 with a grade of C or better; PSTAT 120A or ECE 139; open to computer science, computer engineering, and electrical engineering majors only.

The study of data structures and their applications. Correctness proofs and techniques for the design of correct programs. Internal and external searching. Correctness proofs and techniques for the design of correct programs. Internal and external searching.

130B. Data Structures and Algorithms II

(4) Lokshtanov, Sing Suri

Prerequisite: Computer Science 130A.

Design and analysis of computer algorithms. Correctness proofs and solution of recurrence relations. Design techniques; divide and conquer, greedy strategies, dynamic programming, branch and bound, backtracking, and local search. Applications of techniques to problems from several disciplines. NP - completeness.

138. Automata and Formal Languages

(4) Egecioglu

Prerequisite: Computer Science 40 with a grade of C or better; open to computer science and computer engineering majors only.

Formal languages; finite automata and regular expressions; properties of regular languages; pushdown automata and context-free grammars; properties of context-free languages; introduction to computability and unsolvability. Introduction to Turing machines and computational complexity.

140. Parallel Scientific Computing

(4) Yang, T., Gilbert

Prerequisite: Mathematics 4B or 5A with a grade of C or better; Mathematics 6A or 5B with a grade of C or better; Computer Science 130A.

Not open for credit to students who have completed ECE 130A.

Fundamentals of high performance computing and parallel algorithm design for numerical computation. Topics include parallel architecture and clusters, parallel programming with message-passing libraries and threads, program parallelization methodologies, parallel performance evaluation and optimization, parallel numerical algorithms and applications with performance trade-offs.

153A. Hardware/Software Interface

(4) Krintz, Brewer

Prerequisite: Upper-division standing in computer science, computer engineering, or electrical engineering.

Same course as ECE 153A.

Issues in interfacing computing systems and software to practical I/O interfaces. Rapid response, real-time events and management of tasks, threads, and scheduling required for efficient design of embedded software and systems is discussed. Techniques for highly constrained systems.

154. Computer Architecture

(4) Koc, Matni

Prerequisite: Computer Science 32 with a grade of C or better; Computer Science 48 with a grade of C or better, and Computer Science 64 with a grade of C or better.

Not open for credit to students who have received credit for ECE 154, ECE 154A, or ECE 154B.

Introduction to the architecture of computer systems. Topics include: central processing units, memory systems, channels and controllers, peripheral devices, interrupt systems, software versus hardware trade-offs.

160. Translation of Programming Languages

(4) Ding, Hardekopf

Prerequisite: Computer Science 64 or Electrical Engineering 154 or Electrical Engineering 154A, Computer Science 130A, and Computer Science 138; open to computer science and computer engineering majors only.

Study of the structure of compilers. Topics include lexical analysis; syntax analysis including LL and LR parsers; type checking; run-time environments; intermediate code generation; and compiler-construction tools.

162. Programming Languages

(4) Hardekopf, Y."U.

Prerequisite: Computer Science 130A and Computer Science 138; open to computer science and computer engineering majors only.

Concepts of programming languages: scopes, parameter passing, storage management; control flow, exception handling; encapsulation and modularization mechanism; reusability through genericity and inheritance; type systems; programming paradigms (imperative, object-oriented, functional, and others). Emerging programming languages and their development infrastructures.

165A. Artificial Intelligence

(4) Wang, T., Yan

Prerequisite: Computer Science 130A.

Introduction to the field of artificial intelligence, which seeks to understand and build intelligent computational systems. Topics include intelligent agents, problem solving and heuristic search, knowledge representation and reasoning, uncertainty, probabilistic reasoning, and applications of AI.

165B. Machine Learning

(4) Wang, W., Ding

Prerequisite: Computer Science 130A.

Covers the most important techniques of machine learning (ML) and includes discussions of: well-posed learning problems; artificial neural networks; concept learning and general to specific ordering; decision tree learning; genetic algorithms; Bayesian learning; analytical learning; and others.

170. Operating Systems

(4) Wolski, Gupta T.

Prerequisite: Computer Science 130A; and, Computer Science 154 or ECE 154 (may be taken concurrently); open to computer science, computer engineering or electrical engineering majors only. Basic concepts of operating systems. The notion of a process; interprocess communication and synchronization; input-output, file systems, memory management.

171. Distributed Systems

(4) Abbadi

Prerequisite: Computer Science 130A.

Not open for credit to students who have completed ECE 151.

Distributed systems architecture, distributed programming, network of computers, message passing, remote procedure calls, group communication, naming and membership problems, asynchrony, logical time, consistency, fault-tolerance, and recovery.

174A. Fundamentals of Database Systems

(4) Su

Prerequisite: Computer Science 130A.

Recommended Preparation: Students are strongly encouraged to complete Computer Science 56 prior to enrolling in Computer Science 174A. Database system architectures, relational data model, relational algebra, relational calculus, SQL, QBE, query processing, integrity constraints (key constraints, referential integrity), database design, ER and object-oriented data model, functional dependencies, lossless join and dependency preserving decompositions, Boyce-Codd and Third Normal Forms.

176A. Introduction to Computer Communication Networks

(4) Almeroth, Belenkie

Prerequisite:CMPSC 32 with a grade of C or better; PSTAT 120A or ECE 139; open to computer science, electrical engineering, and computer engineering majors only.

Not open for credit to students who have completed Computer Science 176 or ECE 155 or ECE 155A.

Recommended preparation: PSTAT 120B. Basic concepts in networking, the OSI model, error detection codes, flow control, routing, medium access control, and high-speed networks.

176B. Network Computing

(4) Almeroth

Prerequisite: Computer Science 176A.

Not open for credit to students who have completed ECE 155B or 194W.

Focus on networked Web technologies used in the Internet. The class covers socket programming and web-based techniques that are used to build distributed applications.

176C. Advanced Topics in Internet Computing

(4) Gupta

Prerequisite: Computer Science 176B.

General overview of wireless and mobile networking, multimedia, security multicast, quality of service, IPv6, and web caching. During the second half of the course, one or more of the above topics are studied in greater detail.

177. Computer Security

(4) Kriegel, Vigna

Prerequisite: Computer Science 170 (may be taken concurrently).

Introduction to the basics of computer security and privacy. Analysis of technical difficulties of producing secure computer systems that provide guaranteed controlled sharing. Examination and critique of current systems, methods, certification.

178. Introduction to Cryptography

(4) Egecioglu

Prerequisites: Computer Science 24 and Computer Science 40 with a grade of C or better; and PSTAT 120A or 121A or ECE 139 or permission of instructor.

An introduction to the basic concepts and techniques of cryptography and cryptanalysis. Topics
studying visual processing, object recognition, and issues in cognitive modeling and representation. (2) Students will develop and deploy a web application using a combination of HTML, CSS, and JavaScript.

Prerequisite: Computer Science 174 or equivalent.

185. Human-Computer Interaction (4) HOLLERER
Prerequisite: Upper-division standing.

Courses to be offered:

- 180. Computer Graphics
- 184. Mobile Application Development
- 185. Human-Computer Interaction
- 189. Senior Computer Systems Projects
- 192. Projects in Computer Science
- 193. Internship in Industry
- 194. Special Topics in Computer Science
- 199. Independent Studies in Computer Science
- 219. Undergraduate Research

May be repeated with consent of the department chair. Courses provide for the study of topics of current interest in computer science: A. Foundations; B. Software Systems; C. Programming languages and software engineering; D. Information management; E. Architecture; F. Networking; G. Security; H. Scientific computing; I. Intelligent and interactive systems; N. General

192. Projects in Computer Science (1-5) STAFF
Prerequisite: consent of instructor.

Students must have a minimum 3.0 GPA. They must be a maximum of 8 units with consent of the department chair but only 4 units may be applied to the major. Projects in computer science for advanced undergraduate students.

193. Internship in Industry (1-4) STAFF
Prerequisites: consent of instructor and department chair.

May be repeated for up to 12 units. No more than 2 units may be applied to departmental electives. Research opportunities for undergraduate students. Students will be expected to give regular presentations, actively participate in a weekly seminar, and prepare at least one written report on their research.

199. Independent Studies in Computer Science (1-4) STAFF
Prerequisites: upper-division standing; must have completed at least two upper-division courses in computer science. Must have a minimum 3.0 grade-point average for the preceding three quarters. May be repeated with consent of chair. Students are limited to 5 units per quarter and 30 units total in all 184/199 courses combined. May not be used for credit towards the major.

Independent study in computer science for advanced students.

GRADUATE COURSES

Graduate courses for this major can be found in the UCSB General Catalog.

Electrical & Computer Engineering

Department of Electrical and Computer Engineering, Building 380, Room 101;
Telephone (805) 893-2269 or (805) 893-3821
Web site: www.ece.ucsb.edu

Chair: Nadir Dagli
Vice Chair: Luke Theogarajan

Faculty
Rod C. Alferness, Ph.D., University of Michigan, Distinguished Professor and Dean (integrated optoelectronics, optical switching technology and switched optical networks)
Mahnoosh Alizadeh, Ph.D., UC Davis, Assistant Professor (Smart power grids, demand response and renewable energy integration, cyber-physical systems, network control)
Kau斯塔 Banerjee, Ph.D., UC Berkeley, Professor (high performance VLSI and mixed signal system-on-chip designs and their design automation methods; single electron transistors; 3D and optoelectronic integration)
Ilan Ben-Yaacov, Ph.D., UC Santa Barbara, Lecturer (semiconductor device physics and electronic devices, power electronics, engineering education)
Daniel J. Blumenthal, Ph.D., University of Colorado at Boulder, Professor (fiber-optic networks, wavelength and subcarrier division multiplexing, photonic packet switching, signal processing in semiconductor optical devices, wavelength conversion, microwave photonics)
John E. Bowers, Ph.D., Stanford University, Distinguished Professor (high-speed photonic and electronic devices and integrated circuits, fiber optic communication, lasers and mode-locking phenomena, compound semiconductor materials and processing)
Forrest D. Brewer, Ph.D., University of Illinois at Urbana-Champaign, Professor (VLSI and computer system design automation, theory of design and design representations, symbolic techniques in high level synthesis)
James Buckwalter, Ph.D., California Institute of Technology, Professor (RF and mixed-signal CMOS integrated circuits, high-speed communications systems)
Katie A. Byl, Ph.D., Massachusetts Institute of Technology, Associate Professor (robotics, autonomous systems, dynamics, control, manipulation, locomotion, machine learning)
Shivkumar Chandrasekaran, Ph.D., Yale University, Professor (numerical
analysis, numerical linear algebra, scientific computation)

Nadir Dagli, Ph.D., Massachusetts Institute of Technology, Professor (design, fabrication, and modeling of photonic integrated circuits, ultralow-power electronics, imaging, solid state microwave and millimeter wave devices; experimental study of ballistic transport in quantum confined structures)

Steven P. DenBaars, Ph.D., University of Southern California, Distinguished Professor (metalorganic vapor phase epitaxy, optoelectronic materials, compound semiconductors, indium phosphide and gallium nitride, photonic devices) ¹

Jerry Gibson, Ph.D., Southern Methodist University, Distinguished Professor (digital signal processing, data, speech, image and video compression, and communications via multi-use networks, data embedding, adaptive filtering)

Joo Hespanha, Ph.D., Yale University, Professor (hybrid and switched systems, multi-agent control systems, game theory, optimization, distributed control over communication networks also known as networked control systems, coordination and control of groups of unmanned air vehicles, the use of vision in feedback control, network security)

Yogananda Isukapalli, Ph.D., UC San Diego (Low power hardware design. Multi-antenna wireless communications, Transmit beam forming, Vector quantization, Performance analysis of communication systems)

Jonathan Klamkin, Ph.D., UC Santa Barbara, Associate Professor (Integrated Photonics, Silicon Photonics, Optical Communications, Nonphotonic, Microwave Photonics, Compound Semiconductors, Photonic Integration Techniques, Electronic-photon Integration)

Hua Lee, Ph.D., UC Santa Barbara, Distinguished Professor (image system optimization, high-performance image formation algorithms, synthetic-aperture radar and sonar systems, acoustic microscopy, microwave nondestructive evaluation, dynamic vision systems)

Upamanyu Madhow, Ph.D., University of Illinois, Distinguished Professor (spread-spectrum and multiple-access communications, space-time coding, and internet protocols)

B.S. Manjunath, Ph.D., University of Southern California, Distinguished Professor (image processing, computer vision, pattern recognition, neural networks, learning algorithms, content based search in multimedia databases)

Jason R. Marden, Ph.D., UC Los Angeles, Assistant Professor (Feedback Control and Systems Theory: Game Theoretic Methods for Coordination of Large Scale Distributed Systems; Application to Distributed Traffic Routing, Dynamic Resource Allocation, Queueing Systems, and Sensor Networks)

Umesh Mishra, Ph.D., Cornell University, Distinguished Professor (high-speed transistors, semiconductor device physics, quantum electronics, wide band gap materials and devices, design and fabrication of millimeter-wave devices, in situ processing and integration techniques)

Yasamin Mostofi, Ph.D., Stanford University, Professor (RF sensing, robotics, wireless systems, multi-agent systems, mobile sensor networks)

Behrooz Parhami, Ph.D., UC Los Angeles, Professor (parallel architectures and algorithms, computer arithmetic, computer design, dependable and fault-tolerant computing)

Ramin Pedarsani, Ph.D., UC Berkeley, Assistant Professor (information and coding theory, machine learning, applied probability, network control, transportation systems, game theory)

Mark J.W. Rodwell, Ph.D., Stanford University, Distinguished Professor Director of Compound Semiconductor Research Laboratories, Director of National Nanofabrication Users Network (heterojunction bipolar transistors, high frequency integrated circuit design, electronics beyond 100 GHz)

Kenneth Rose, Ph.D., California Institute of Technology, Professor, Co-Director of Center for Information Processing Research (information theory, source and channel coding, image coding, communications, pattern recognition)

Loai Salem, PhD, UC San Diego (power management integrated circuits, power electronics using new devices/passesives, low-power mixed-signal circuits)

Clint Schow, PhD, University of Texas, Austin, Professor (optoelectronic/electronic co-design and integration, equalization techniques for high-speed optical links, photonic switching, optoelectronic devices, integrated transceiver packaging)

Jon A. Schuller, Ph.D., Stanford University, Assistant Professor (nanophotonics, organic optoelectronics, plasmonics, metamaterials)

Pradeep Sen, Ph.D., Stanford University, Associate Professor (computer graphics and imaging)

Spencer L. Smith, PhD, UC Los Angeles, Associate Professor (neuroengineering, neuroscience, optical imaging, visual processing neuronal circuitry)

Dmitri B. Strukov, Ph.D., Stony Brook University, Professor (hybrid circuits, nanoelectronics, resistance switching devices, memristors, digital memories, programmable circuits, bio-inspired computing)

Andrew Teel, Ph.D., UC Berkeley, Distinguished Professor (control design and analysis for nonlinear dynamical systems, input-output methods, actuator nonlinearities, applications to aerospace problems)

Luke Theogarajan, Ph.D., Massachusetts Institute of Technology, Professor (low-power analog VLSI, biomimetic nanosystems, neural prostheses, biosensors, block co-polymer synthesis, self-assembly, and microfabrication)

Christos Thrampoulidis, PhD, Caltech, Assistant Professor (high-dimensional inference, statistical signal-processing, optimization, compressed sensing, learning theory)

Li C. Wang, Ph.D., University of Texas, Austin, Professor (design verification, testing, computer-aided design of microprocessors)

Yuan Xie, Ph.D., Princeton University, Professor (EDA, VLSI design, computer architecture, embedded systems, high-performance computing)

Robert York, Ph.D., Cornell University, Professor (high-power high-frequency devices and circuits, quasi-optics, antennas, electromagnetic theory, nonlinear circuits and dynamics, microwave photonics)

Zheng Zhang, Ph.D., Massachusetts Institute of Technology, Assistant Professor (Photonic, Electronic, and MEMS Design Automation; Modeling and Verification of Robots & Autonomous Driving; High-Dimensional Data Analysis and Machine Learning; Magnetic Resonance Imaging (MRI))

Emeriti Faculty

Steven E. Butner, Ph.D., Stanford University, Professor (computer architecture, VLSI design of CMOS and gallium-arsenide IC's with emphasis on distributed organizations and fault-tolerant structures)

Kwang-Ting (Tim) Cheng, Ph.D., UC Berkeley, Distinguished Professor (design automation, VLSI testing, desing synthesis, design verification, algorithms)

Larry A. Coldren, Ph.D., Stanford University, Distinguished Professor in Optoelectronics and Sensors, Director of Optoelectronics Technology Center (semiconductor integrated optoelectronics, vertical-cavity lasers, wide-tunable lasers, optical fiber communication, growth and planar processing techniques) ¹

Jorge R. Fontana, Ph.D., Stanford University, Professor Emeritus (quantum electronics, particularly lasers, interaction with charged particles)

Allen Gersho, Ph.D., Cornell University, Professor Emeritus, Director of Center for Information Processing Research (speech, audio, image, and video compression, quantization and signal compression techniques, and speech processing)

Arthur C. Gossard, Ph.D., UC Berkeley, Professor Emeritus, (epitaxial crystal growth, artificially structured materials, semiconductor structures for optical and electronic devices, quantum confinement structures) ¹

Glenn R. Heidbreder, D. Eng., Yale University, Professor Emeritus (communication theory, signal processing in radar and digital communication systems; digital image processing)

Evelyn Hu, Ph.D., Columbia University, Professor Emeritus, (high-resolution fabrication techniques for semiconductor device structures, process-related materials damage, contact/interfase studies, superconductivity) ¹

Ronald Itlis, Ph.D., UC San Diego, Professor (digital spread spectrum communications, spectral estimation, and adaptive filtering)

Petar V. Kokotovic, Ph.D., USSR Academy of Sciences, Professor Emeritus, Director of Center for Control Engineering and Computation, Director of Center for Robust Nonlinear Control of Aeroengines (sensitivity analysis, singular perturbations, large-scale systems, non-linear systems, adaptive control, automotive and jet engine control)

Herbert Kroemer, Dr. rer. nat., University of Göttingen, Donald W. Whittier Professor in
Educational Engineering, 2000 Physics Nobel Laureate (general solid-state and device physics, heterostructures, molecular beam epitaxy; compound semiconductor materials and devices, superconductivity) *1

Stephen I. Long, Ph.D., Cornell University, Professor Emeritus, (semiconductor devices and integrated circuits for high speed digital and RF analog applications)

Malgorzata Marek-Sadowska, Ph.D., Technical University of Warsaw, Poland, Distinguished Professor (design automation, computer-aided design, integrated circuit layout, logic synthesis)

George L. Matthaei, Ph.D., Stanford University, Professor Emeritus (circuit design techniques for passive and active microwave, millimeter-wave and optical integrated circuits, circuit problems of high-speed digital integrated circuits)

P. Michael Melliar-Smith, Ph.D., University of Cambridge, Professor (fault tolerance, formal specification and verification, distributed systems, communication networks and protocols, asynchronous systems)

James L. Morz, Ph.D., Harvard University, Professor Emeritus (optical properties of semiconductors, including guided-wave and integrated optical devices, semiconductor lasers, optoelectronic devices, native defects in semiconductors, low-dimensional quantum structures) *1

Sanjit K. Mita, Ph.D., UC Berkeley, Professor Emeritus, (digital signal and image processing, computer-aided design and optimization)

Louise E. Moser, Ph.D., University of Wisconsin, Professor (distributed systems, computer networks, software engineering, fault-tolerance, formal specification and verification, performance evaluation)

Venkatesh Narayanamurti, Ph.D., Cornell University, Professor Emeritus (transport, semiconductor heterostructures, nanostructures, scanning tunneling microscopy and ballistic electron emission microscopy, phonon physics)

Pierre M. Petroff, Ph.D., UC Berkeley, Professor (self assembling nanostructures in semiconductors and ferromagnetic materials, spectroscopy of nanostructures, nanostructure devices, semiconductor device reliability) *1

Lawrence Rabiner, Ph.D., Massachusetts Institute of Technology, Distinguished Professor (digital signal processing: intelligent human-machine interaction, digital signal processing, speech processing and recognition; telecommunications)

Ian B. Rhodes, Ph.D., Stanford University, Professor Emeritus (mathematical system theory and its applications with emphasis on stochastic control, communication, and optimization problems; especially those involving decentralized information structures or parallel computational structures)

John I. Shynk, Ph.D., Stanford University, Professor (adaptive filtering, array processing, wireless communications, blind equalization, neural networks)

John G. Skalnik, D. Eng., Yale University, Professor Emeritus (solar cells, general device technology, effects of non-ideal structures)

Pochi Yeh, Ph.D., California Institute of Technology, Professor (phase conjugation, nonlinear optics, dynamic holography, optical computing, optical interconnection, neural networks, and image processing)

E. Eng. appointment with Materials

2 Joint appointment with Computer Science

Affiliated Faculty

Bassam Bamieh, Ph.D. (Mechanical Engineering)

Elizabeth Belding, Ph.D. (Computer Science)

Francesco Bullo, Ph.D. (Mechanical Engineering)

Chandra Krintz, Ph.D. (Computer Science)

Eric McFarland, Ph.D. (Chemical Engineering)

Kunal Mukherjee, Ph.D. (Materials)

Shuju Nakamura, Ph.D. (Materials)

Tim Sherwood, Ph.D. (Computer Science)

Matthew Turk, Ph.D. (Computer Science)

William Wang, Ph.D. (Computer Science)

Electrical and Computer Engineering is a broad field encompassing many diverse areas such as computers and digital systems, control, communications, computer engineering, electronics, signal processing, electromagnetics, electro-optics, physics and fabrication of electronic and photonic devices. As in most areas of engineering, knowledge of mathematics and the natural sciences is combined with engineering fundamentals and applied to the theory, design, analysis, and implementation of devices and systems for the benefit of society.

The Department of Electrical and Computer Engineering offers programs leading to the degrees of bachelor of science in electrical engineering or bachelor of science in computer engineering. (Please see the “Computer Engineering” section for further information.) The undergraduate curriculum in electrical engineering is designed to provide students with a solid background in mathematics, physical sciences, and traditional electrical engineering topics as presented above. A wide range of program options, including computer engineering; microwaves; communications, control, and signal processing; and semiconductor devices and applications, is offered. The department’s Electrical Engineering undergraduate program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. It is one of the degrees recognized in all fifty states as leading to eligibility for registration as a professional engineer. The undergraduate major in Electrical Engineering prepares students for a wide range of positions in industry, government, and private industrial research, development, and manufacturing organizations. Students who complete a major in electrical engineering may be eligible to pursue a California teaching credential. Interested students should consult the credential advisor in the Graduate School of Education. Under the direction of the Associate Dean for Undergraduate Studies, academic advising services are jointly provided by advisors in the College of Engineering, as well as advisors in the department. Students who plan to change to a major in the department should consult the ECE student office. Departmental faculty advisors are assigned to students to assist them in choosing senior elective courses.

Counseling is provided to graduate students through the ECE graduate advisor. Individual faculty members are also available for help in academic planning.

Mission Statement

The Department of Electrical and Computer Engineering seeks to provide a comprehensive, rigorous and accredited educational program for the graduates of California’s high schools and for postgraduate students, both domestic and international. The department has a dual mission:

1. Education: We will develop and produce excellent electrical and computer engineers who will support the high-tech economy of California and the nation. This mission requires that we offer a balanced and timely education that includes not only strength in the fundamental principles but also experience with the practical skills that are needed to contribute to the complex technological infrastructure of our society. This approach will enable each of our graduates to continue learning throughout an extended career.

2. Research: We will develop relevant and innovative science and technology through our research that addresses the needs of industry, government and the scientific community. This technology can be transferred through our graduates, through industrial affiliations, and through publications and presentations.

We provide a faculty that is committed to education and research, is accessible to students, and is highly qualified in their areas of expertise.

Educational Objectives

The educational objectives of the Electrical Engineering Program identify what we hope that our graduates will accomplish within a few years after graduation.

1. We expect our graduates to make positive contributions to society in fields including, but not limited to, engineering.
2. We expect our graduates to have acquired the ability to be flexible and adaptable, showing that their educational background has given them the foundation needed to remain effective, take on new responsibilities and assume leadership roles.
3. We expect some of our graduates to pursue their formal education further, including graduate study for master’s and doctoral degrees.

Program Outcomes

The EE program expects our students upon graduation to have:

1. Acquired strong basic knowledge and skills in those fundamental areas of mathematics, science, and electrical engineering that are required to support
specialized professional training at the advanced level and to provide necessary breadth to the student's overall program of studies. This provides the basis for lifelong learning.

2. Experienced in-depth training in state-of-the-art specialty areas in electrical engineering. This is implemented through our senior electives. Students are required to take two sequences of at least two courses each at the senior level.

3. Benefited from imaginative and highly supportive laboratory experiences where appropriate throughout the program. The laboratory experience will be closely integrated with coursework and will make use of up-to-date instrumentation and computing facilities. Students should experience both hardware-oriented and simulation-oriented exercises.

4. Experienced design-oriented challenges that exercise and integrate skills and knowledge acquired in several courses. These may include design of components or subsystems with performance specifications. Graduates should be able to demonstrate an ability to design and conduct experiments as well as analyze the results.

5. Learned to function well in teams. Also, students must develop communication skills, written and oral, both through team and classroom experiences. Skills including written reports, webpage preparation, and public presentations are required.

6. Completed a well-rounded and balanced education through required studies in selected areas of fine arts, humanities, and social sciences. This provides for the ability to understand the impact of engineering solutions in a global and societal context. A course in engineering ethics is also required of all undergraduates.

Undergraduate Program

Bachelor of Science—Electrical Engineering

A minimum of 189 units is required for graduation. A complete list of requirements for the major can be found on page 52. Schedules should be planned to meet both General Education and major requirements.

The department academic advisor can suggest a recommended study plan for electrical engineering freshmen and sophomores. Each student is assigned a departmental faculty advisor who must be consulted in planning the junior and senior year programs.

The required 32 units (8 courses) of departmental electives are taken primarily in the senior year, and they permit students to develop depth in specialty areas of their choice. The 32 units of departmental electives must include at least 2 sequences, one of which must be an approved EE Senior Capstone Design/Project course sequence. A student's elective course program must be approved by a departmental faculty advisor. The advisor will check the program to ensure satisfaction of the departmental requirements. A wide variety of elective programs will be considered acceptable.

Three matters should be noted: (1) students who fail to attain a grade-point average of at least 2.0 in the major may be denied the privilege of continuing in the major, (2) a large majority of electrical and computer engineering courses have prerequisites which must be completed successfully. Successful completion of prerequisite courses means receiving a grade of C- or better in prerequisite courses except for Mathematics 3A-B, Mathematics 4A-B and Mathematics 6A and 6B which require a grade of C or better to apply these courses as prerequisites, (3) courses required for the pre-major or major, inside or outside of the Department of Electrical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.

Bachelor of Science—Computer Engineering

This major is offered jointly by the Department of Computer Science and the Department of Electrical and Computer Engineering. For information about this major, see page 25.

Electrical & Computer Engineering Courses

Many of the ECE courses are restricted to ECE majors only. Instructor and quarter offered are subject to change.

LOWER DIVISION

1A. Computer Engineering Seminar

(1) Staff
Prerequisite: Open to computer engineering majors only. Seminar: 1 hour

Introductory seminar to expose students to a broad range of topics in Computer Engineering.

1B. Ten Puzzling Problems in Computer Engineering

(1) Parkham
Prerequisite: Open to pre-computer engineering and computer engineering majors only.

Open to students who have taken ECE 1. Gaining familiarity with, and motivation to study, the field of computer engineering, through puzzle-like problems that represent a range of challenges facing computer engineers in their daily problem-solving efforts and at the frontiers of research.

2A. Circuits, Devices, and Systems

(5) York
Prerequisites: Mathematics 3A-B, and Mathematics 3C or 4A and Physics 1 with minimum grades of C; and, Mathematics 5A or 4B with a minimum grade of C (may be taken concurrently); Physics 3 or 23 (may be taken concurrently); Mathematics 5A or 4B with a minimum grade of C (may be taken concurrently); Physics 3 or 23 (may be taken concurrently); open only to electrical engineering and computer engineering majors. Lecture: 3 hours; laboratory: 2 hours

Not open for credit for those who have received a C- or higher in ECE 2A.

The objective of the course is to establish the foundations of analog and digital circuits. The course will introduce the student to the power of abstraction, resistive networks, network analysis, nonlinear analysis and the digital abstraction.

10A. Foundations of Analog and Digital Circuits & Systems

(3) Staff
Prerequisite: Mathematics 2A-B or 3A-B or Mathematics 3AH-3BH, and Mathematics 3C or 4A or 4A1 with a minimum grade of C; and, Math 4B or 4BI or 5A with a minimum grade of C (may be taken concurrently); Physics 3 or 23 (may be taken concurrently); open only to electrical engineering and computer engineering majors. Lecture: 3 hours; laboratory: 4 hours

Prerequisites: ECE 2A with a grade of C- or better; open to electrical engineering, computer engineering, and pre-computer engineering majors only. Lecture: 3 hours; laboratory: 4 hours.

Second order circuits. Laplace transform and solution of steady state and transient circuit problems in the s-domain: Bode plots; Fourier series and transforms; filters. Transistor as a switch; load lines; simple logic gates; latches and flip-flops.

2C. Circuits, Devices, and Systems

(5) York
Prerequisites: ECE 2B with a grade of C- or better (may be taken concurrently); open to electrical engineering, computer engineering, and pre-computer engineering majors only. Lecture: 3 hours; laboratory: 4 hours.

Not open for credit for those who have received a C- or higher in ECE 2A.

The goal of 10AL is to provide the student with a hands-on application of the concepts discussed in ECE 10A. The lab will introduce the use of microcontrollers as a data acquisition system, network analysis, resistors, nonlinear analysis and digital abstraction.
10B. Foundations of Analog and Digital Circuits and Systems

(3) STAFF
Prerequisite: ECE 10A with a C- or better grade. Lecture: 3 hours
Not open for credit for those who have received a C- or higher in ECE 2B.

The objective of the course is to introduce the MOSFET both as a simple digital switch and as a controlled current source for analog design. The course will cover basic digital design, small-signal analysis, charge storage elements and operational amplifiers. (W)

10BL. Foundations of Analog and Digital Circuits and Systems Lab

(2) STAFF
Prerequisite: ECE 10B (may be taken concurrently) with a C- or better grade. Laboratory: 4 hours
Not open for credit for those who have received a C- or higher in ECE 2B.

The goal of 10BL is to provide the student with a hands-on application of the concepts discussed in ECE 10B. The lab will utilize the microcontroller to introduce students to the understanding of datasheets for both digital and analog circuits, single-stage amplifier design and basic instrumentation.

10C. Foundations of Analog and Digital Circuits and Systems

(3) STAFF
Prerequisite: ECE 10B with a C- or better grade. Lecture: 3 hours
Not open for credit for those who have received a C- or higher in ECE 2C.

The objective of the course is to introduce the student to the basics of transient analysis. The course will cover energy and power dissipation in digital circuits, first-order and second-order linear time-invariant circuits, sinusoidal steady-state, impedance representation, feedback and resonance. (S)

10CL. Foundations of Analog and Digital Circuits and Systems Lab

(2) STAFF
Prerequisite: ECE 10C (may be taken concurrently) with a C- or better grade. Laboratory: 4 hours
Not open for credit for those who have received a C- or higher in ECE 2C.

The goal of 10CL is to provide the student with a hands-on application of the concepts discussed in ECE 10C. The lab will utilize the microcontroller to introduce students to the understanding of propagation delay in digital circuits and the resulting power dissipation, first order linear networks, second-order linear networks, sinusoidal steady-state, impedance analysis and op-amp circuits.

15A. Fundamentals of Logic Design

(4) MAREK-SADOWSKA
Prerequisites: Open to electrical engineering, computer engineering, and pre-computer engineering majors only.

Not open for credit to students who have completed ECE 15. Lecture, 3 hours; discussion, 1 hour.

Boolean algebra, logic propositions, minterm and maxterm expansions, Karnaugh maps, Quine-McCluskey methods, m-ell-level circuits, combinational circuit design and simulation, multiplexers, decoders, programmable logic devices.

92. Projects in Electrical and Computer Engineering

(4) STAFF
Prerequisite: Consent of instructor; for Electrical Engineering and Computer Engineering majors only
Projects in electrical and computer engineering for advanced undergraduate students.

94AA-2Z. Group Studies in Electrical and Computer Engineering

(1-4) STAFF
Prerequisite: consent of instructor.
Group studies intended for small number of advanced students who share an interest in a topic not included in the regular departmental curriculum.

96. Undergraduate Research

(2-4) STAFF
Prerequisite: Consent of instructor. Must have a 3.0 GPA. May be repeated for up to 12 units.

Research opportunities for undergraduate students. Students will be expected to give regular oral presentations, actively participate in a weekly seminar, and prepare at least one written report on their research.

UPPER DIVISION

120A. Integrated Circuit Design and Fabrication

(4) BOWERS
Prerequisite: ECE 132 with a minimum grade of C-. Lecture: 3 hours; Laboratory: 3 hours
Not open for credit for those who have taken ECE 124B.

Theory, fabrication, and characterization of solid-state devices including P-N junctions, capacitors, bipolar and MOS devices. Devices are fabricated using modern VLSI processing techniques including lithography, oxidation, diffusion, and evaporation. Physics and performance of processing steps are discussed and analyzed.

120B. Integrated Circuit Design and Fabrication

(4) BOWERS
Prerequisite: Either ECE 120A or ECE 124B with a minimum grade of C-. Lecture: 3 hours; Laboratory: 3 hours
Not open for credit for those who have taken ECE 124C.

Design, simulation, fabrication, and characterization of NMOS integrated circuits. Circuit design and layout is performed using commercial layout software. Circuits are fabricated using modern VLSI processing techniques. Circuit and discrete device electrical performance are analyzed.

121A. The Practice of Science

(3) HU, AWSCHALOM
Prerequisite: Consent of instructor.

Same course as Physics 121A.

Provides experience in pursuing careers within science and engineering through discussions with researchers, lectures on ethics, funding, intellectual property, and commercial innovation. Students prepare a focused research proposal that is pursued in the second quarter of the course.

121B. The Practice of Science

(4) HU, AWSCHALOM
Prerequisite: ECE 121A or Physics 121A; consent of instructor.

Same course as Physics 121B.

Provides experience in pursuing careers within science and engineering through discussions with researchers, lectures on ethics, funding, intellectual property, and commercial innovation. Students prepare a focused research proposal that is pursued in the second quarter of the course.

122A. VLSI Principles

(4) BANERJEE
Prerequisite: ECE 152A with a minimum grade of C-. Lecture: 3 hours; Laboratory: 3 hours
Not open for credit for those who have taken ECE 124A or ECE 123.

Introduction to CMOS digital VLSI design: CMOS devices and manufacturing technology; transistor level design of static and dynamic logic gates and components and interconnections; circuit characterization: delay, noise margins, and power dissipation; combinational and sequential circuits; arithmetic operations and memories.

122B. VLSI Architecture and Design

(4) BREWER
Prerequisite: ECE 124A or ECE 123 or ECE 122A with a minimum grade of C-
Lecture: 3 hours; Laboratory: 2 hours
Not open for credit for those who have taken ECE 124A or ECE 123.

Practical issues in VLSI circuit design, pad-pin limitations, clocking and interfacing standards, electrical packaging for high-speed and high-performance designs, on-chip noise and crosstalk, clock and power distribution, architectural and circuit design constraints, interconnection limits and transmission line effects.

123. High-Performance Digital Circuit Design

(4) THEODORAJAN
Prerequisite: ECE 10A-B-C and ECE 10AL-BL or ECE 2A-C with a minimum grade of C- in each of those courses; open to both electrical engineering and computer engineering majors only.

Not open for credit for those who have taken ECE 124A or ECE 122A.

Introduction to high-performance digital circuit design techniques. Basics of device physics including deep submicron effects; device sizing and logical effort; Circuit analysis, clocking, timing issues; memory & datapath design; Low-power design; VLSI design flows and associated EDA tools.

125. High Speed Digital Integrated Circuit Design

(4) BANERJEE
Prerequisite: ECE 124A or 137A with a minimum grade of C- in either. Lecture, 4 hours.
Advanced digital VLSI design: CMOS scaling, nanoscale circuit and system design; mixed signal, thermal management, interconnects, reliability; non-clocked, clocked and self-timed logic gates; clocked storage elements; high-speed components, PLLs and DLLs; clock and power distribution; memory systems; signaling and I/O design; low-power design.

130A. Signal Analysis and Processing

(4) STAFF
Prerequisite: ECE 34 or 4B or 5A with a minimum grade of C and ECE 2B or ECE 108 & ECE 10B with a minimum grade of C- in each course; open to EE and computer engineering majors only. Lecture: 3 hours; Discussion: 2 hours

130B. Signal Analysis and Processing

(4) CHANDRASEKARAN
Prerequisite: ECE 130A with a grade of C- or better; open to EE and computer engineering majors only. Lecture: 3 hours; Discussion: 2 hours
Analysis of discrete time linear systems in the time and frequency domains. Z transforms, Discrete Fourier transforms. Sampling and aliasing.

130C. Signal Analysis and Processing

(4) STAFF
Prerequisites: ECE 130A-B with a minimum grade of C- in both. Lecture, 3 hours; discussion, 2 hours.

132. Introduction to Solid-State Electronic Devices

(4) MISHRA
Prerequisite: Physics 4 or 24 with a minimum grade of C; Mathematics 4B or 5A with a minimum grade of C and ECE 10A-B and ECE 10AL-BL or ECE 2A-B (may be taken concurrently) with a minimum grade of C in each; open to EE and computer engineering majors only. Lecture: 3 hours; Discussion: 2 hours.
Electrons and holes in semiconductors; doping (P and N); state occupation statistics, transport properties of electrons and holes; P-N junction diodes; I-V, C-V, and switching properties of P-N junctions; introduction of bipolar transistors, MOSFET’s and JFET’s.

134. Introduction to Fields and Waves

(4) DAGLI, YORK
Prerequisite: Physics 3 or 23 with a minimum grade of C; Mathematics 4B or 4BI or 5A and Mathematics 2B or 6A or 6AI with a minimum grade of C in each, and Mathematics 5C or 6B with a minimum grade of C- open to EE and computer engineering majors only. Lecture: 3 hours; Discussion: 2 hours.
Introduction to applied electromagnetics and wave phenomena in high frequency electron circuits and systems. Waveion transmission-lines, elements of electrostatics and magnetostatics and applications, plane waves, examples and applications to RF, microwave, and optical systems.
135. Optical Fiber Communication
(4) DAGLI
Prerequisites: ECE 132 and 134 with a minimum grade of C- in both. Lecture, 3 hours; discussion, 1 hour.
Optical fiber as a transmission medium, dispersion and nonlinear effects in fiber transmission, fiber and semiconductor optical amplifiers and lasers, optical modulators, photo detectors, optical receivers, wavelength division multiplexing components, optical filters, basic transmission system analysis and design.

137A. Circuits and Electronics I
(4) ROowell
Prerequisites: ECE 10A-B and ECE 10AL-BC-L, or ECE 2A-B-C, 130A, and 132 all with a minimum grade of C- in all; open to EE majors only. Lecture, 3 hours; laboratory, 3 hours.
Analysis and design of single stage and multistage transistor circuits including biasing, gain, impedances and maximum signal levels.

137B. Circuits and Electronics II
(4) ROowell
Prerequisites: ECE 10C and 10CL or ECE 2C and 137A with a minimum grade of C- in both; open to EE majors only. Lecture, 3 hours; laboratory, 3 hours.
Analysis and design of single stage and multistage transistor circuits at low and high frequencies. Transient response. Analysis and design of feedback circuits. Stability criteria.

139. Probability and Statistics
(4) LTL
Prerequisite: Open to Electrical Engineering, Computer Engineering and pre-Computer Engineering majors only. Lecture, 3 hours; discussion, 2 hours.
Fundamentals of probability, conditional probability, Bayes rule, random variables, expectation and high-order moments, Markov, hypothesis testing.

141A. Introduction to Nanoelectromechanical and Microelectromechanical Systems (NEMS/MEMS)
(3) PENNIATUR, TURNER
Prerequisites: ME 16 & 17, ME 152A, ME 151A (may be concurrent); or ECE 130A and 137A with a minimum grade of C- in both.
Introduction to nano- and microtechnology. Scaling laws and nanoscale physics are stressed. Individual subjects at the nanoscale including materials, mechanics, photonics, electronics, and fluidics will be described, with an emphasis on differences of behavior at the nanoscale and real-world examples.

141B. MEMS: Processing and Device Characterization
(4) PENNIATUR, TURNER
Prerequisites: ME 141A, ME 163 (may be concurrent); or ECE 141A.
Lectures and laboratory on semiconductor-based processing for MEMS. Description of key equipment and characterization tools used for MEMS and design, fabrication, characterization and testing of MEMS. Emphasis on current MEMS devices including accelerometers, comb drives, micro-reactors and capacitor-actuators. (W)

141C. Introduction to Microfluidics and BioMEMS
(3) MEINHART
Prerequisites: ME 141A or ECE 141A; open to ME and EE majors only.
Introduces physical phenomena associated with micro/nanoscale fluid mechanics, microfluidics, and bioMEMS. Elements of physical methods and numerical simulation tools are used for analysis of microfluids.

142. Introduction to Power Electronics
(4) YORK
Prerequisite: ECE 132, ECE 134, and ECE 137A with a minimum grade of C- in all; open to EE majors only. Lecture, 3 hours; laboratory, 2 hours.
An introduction to modern switched-mode power electronics and associated devices. Covers modern converter/inverter topologies for the control and conversion of electrical power with high efficiency with applications in power supplies, renewable energy systems, lighting, electric/hybrid vehicles, and motors.

144. Electromagnetic Fields and Waves
(4) YORK
Prerequisite: ECE 134 with a minimum grade of C-. Lecture, 3 hours; laboratory, 3 hours.
Waves on transmission lines, Maxwell’s equations, skin effect, propagation and reflection of electromagnetic waves, microwave integrated circuit principles, metal and dielectric waveguides, resonant cavities, antennas. Microwave and optical device examples and experience with modern microwave and CAD software.

145A. Communication Electronics I
(5) STAFF
Prerequisites: ECE 137A-B with a minimum grade of C- in both. Lecture, 3 hours; laboratory, 6 hours.

145B. Communication Electronics II
(5) STAFF
Prerequisite: ECE 145A with a minimum grade of C- in both. Lecture, 3 hours; laboratory, 6 hours.

145C. Communication Electronics III
(5) YUE
Prerequisites: ECE 145B with a minimum grade of C-. Lecture, 4 hours.

146A. Digital Communication Fundamentals
(5) MADHOW
Prerequisite: ECE 130A-B with a minimum grade of C-. Lecture: 3 hours; Laboratory: 6 hours.
Introduction to digital communication systems. Signal and channel models, with emphasis on wireless systems; digital modulation; demodulation basics; statistical modeling of noise, including review of probability theory and fundamental random variables.

146B. Communication Systems Design
(5) MADHOW
Prerequisite: ECE 130A-B and 146A with minimum grade of C-; open to EE majors only. Lecture: 3 hours; Laboratory: 6 hours.
Optimal demodulation, including signal space geometry; communication performance characterization; advanced wireless communication techniques, including OFDM and multicarrier systems; other emerging frontiers in communications.

147A. Feedback Control Systems - Theory and Design
(5) STAFF
Prerequisites: ECE 130A-B with a minimum grade of C- in each; open to EE and computer engineering majors only. Lecture: 3 hours; laboratory: 6 hours.
Analysis of sampled data feedback systems, state space description of linear systems; observability, controllability, pole assignment, state feedback, observers. Design of digital control systems. (W)

147C. Control System Design Project
(5) HESPANHA
Prerequisite: ECE 147A or ME 155B or ME 173 with a minimum grade of C-. Lecture, 3 hours; laboratory, 6 hours.
Students are required to design, implement, and document a significant control systems project. The project is implemented in hardware or in high-fidelity numerical simulators. Lectures and laboratories cover special topics related to the practical implementation of control systems.

148. Applications of Signal Analysis and Processing
(4) LEE
Prerequisite: ECE 130A and 130B with a minimum grade of C- in both. Lecture: 3 hours; Discussion: 2 hours.
Recommended Preparation: concurrent enrollment in ECE 130C. A sequence of engineering applications of signal analysis and processing techniques, in communications, image processing, analog and digital filter design, signal detection and parameter estimation, holography and tomography, Fourier optics, and microsensors and acoustics sensing.

150. Mobile Embedded Systems
(4) STAFF
Prerequisite: Proficiency in JAVA programming, and a C- in ECE 152A. Architecture of modern smartphones and their key hardware components including mobile application processors, communications chips, display, touchscreen, graphics, camera, battery, GPS and various sensors; the OS and software development platform of smartphones; smartphone applications; low power design techniques.

151. Distributed Systems
(4) MELLAR-SMITH
Prerequisite: Computer Science 170 with a minimum grade of C-.
Not open for credit to students who have completed Computer Science 171. Lecture, 3 hours; discussion, 1 hour.
Distributed systems architecture, distributed programming techniques, message passing, remote procedure call, communication and membership, naming, asynchrony, causality, consistency, fault-tolerance and recovery, resource management, scheduling, monitoring, testing and debugging.

152A. Digital Design Principles
(5) STAFF
Prerequisite: ECE 15A and 2A or ECE 10A & ECE 10AL with a minimum grade of C- in each course, or Computer Science 30 or 64 with a minimum grade of C- in each course; open to electrical engineering, computer engineering, and computer science majors only. Lecture: 3 hours; Laboratory: 6 hours.
Design of synchronous digital systems: timing diagrams, propagation delay, latches and flip-flops, shift registers and counters, Mealy/Moore finite state machines, Verilog, 2-phase clocking, timing analysis, CMOS implementation, S-RAM, RAM-based designs, ASM charts, state minimization.

153A. Hardware/Software Interface
(4) BREWER, KRINTZ
Prerequisite: Upper division standing in Computer Engineering, Computer Science or Electrical Engineering.
Same course as Computer Science 153A. Issues in interfacing computing systems and software to practical hardware environments. Rapid response, real-time events and management of tasks, threads, and scheduling required for efficient design of embedded software and systems is discussed. Techniques for highly constrained systems.

153B. Sensor and Peripheral Interface Design
(4) STAFF
Prerequisite: ECE 152A with a minimum grade of C-. Lecture: 3 hours; Laboratory: 3 hours.
Hardware description languages; field-
programmable logic and ASIC design techniques. Mixed-signal techniques: A/D and D/A converter interfaces; video and audio signal acquisition, processing and generation, communication and network interfaces.

154A. Introduction to Computer Architecture (4) PARNAMI
Prerequisite: ECE 152A with a minimum grade of C-; open to EE and CMPEN majors only. Lecture: 3 hours; Discussion: 1 hour
Not open for credit to students who have completed Computer Science 154. ECE 154A is the formerly numbered ECE 154. Students who have taken ECE 154 and have received a grade of C- or lower may take ECE 154A for a better grade.
Instruction-set architecture (ISA) and computer performance; Machine instructions, assembly, addressing modes; Memory map, arrays, pointers; Procedure calls; Number formats; Simple ALUs; Data path, control, microprogram; Buses, I/O programming, interrupts; Pipelined data paths and control schemes.

154B. Advanced Computer Architecture (4) STRUKOV
Prerequisite: ECE 154A with a C- grade or better. Open to EE and CMPEN majors only. Lecture: 3 hours; Laboratory: 4 hours
Not open for credit to those who have taken Computer Science 154.
ISA variations; Pipeline data and control hazards; Fast ALU design; Instruction-level parallelism, multithreading, VLIW; Vector and array processing, multi/magnit-local chips; Cache and virtual memory; Disk arrays; Shared- and distributed-memory systems, supercomputers; Reconfigurable and application-specific circuits.

155A. Introduction to Computer Networks (4) MOSER
Prerequisite: Upper-division standing in Electrical Engineering, Computer Engineering and Computer Science; and CMPSC 24 with a minimum grade of C- in both; open to EE, seniors in the BS/MS program and Materials graduate students only.
Topics in this course include network architectures, protocols, wired and wireless networks, transmission media, multiplexing, switching, framing, error detection and correction, flow control, routing, congestion control, TCP/IP, DNS, email, World Wide Web, network security, socket programming in C/C++.

155B. Network Computing (4) MOSER
Prerequisite: ECE 155A or CMPSC 176A with a minimum grade of C-; and CMPSC 32 with a minimum grade of C-; and experience in Java programming or consent of instructor. Lecture: 3 hours; Discussion 1 hour
Not open for credit to students who have completed Computer Science 176, 176A, or ECE 155.
Topics in this course include client/server computing, threads, Java applets, Java sockets, Java RMI, Java servlets, Java Server Pages, Java Database Connectivity, Enterprise Java Beans, Hypertext Markup Language, eXtensible Markup Language, Web Services, programming networking applications in Java.

156A. Digital Design with VHDL and Synthesis (4) WANG
Prerequisite: ECE 152A with a minimum grade of C-. Lecture: 3 hours; Laboratory: 3 hours.
Introduction to VHDL basic elements. VHDL simulation concepts. VHDL concurrent statements with examples and applications. VHDL subprograms, packages, libraries and design units. Writing VHDL for synthesis. Writing VHDL for finite state machines. Design case study.

156B. Computer-Aided Design of VLSI Circuits (4) WANG
Prerequisite: ECE 156A with a minimum grade of C-. Lecture: 3 hours; Laboratory: 3 hours.
Introduction to computer-aided simulation and synthesis tools for VLSI. VLSI system design flow, role of CAD tools, layout synthesis, circuit simulation, logic simulation, logic synthesis, behavior synthesis and test synthesis.

158. Digital Signal Processing (4) GIBSON
Prerequisite: ECE 130A-B with a minimum grade of C- in both; open to EE majors only.
Lecture: 3 hours; laboratory: 3 hours.
Discrete signals and systems, convolution, z-transforms, discrete Fourier transforms, digital filters.

160. Multimedia Systems (4) MELIAR-SMITH
Prerequisite: Upper-division standing; open to electrical engineering, computer engineering, computer science, and creative studies majors only.
Lecture: 3 hours; Laboratory: 3 hours
Not open for credit to students who have completed CMPSC 182.
Introduction to multimedia and applications, including WWW, image/video databases and video streaming. Covers media content analysis, media data organization and indexing (image/video databases), and media data distribution and interaction (video-on-demand and interactive TV).

162A. The Quantum Description of Electronic Materials (4) STAFF
Prerequisite: ECE 130A-B and 134 with a minimum grade of C- in all; open to EE, seniors in the BS/MS program and Materials graduate students only.
Same course as Materials 162A. Lecture: 4 hours.

162B, Fundamentals of the Solid State (4) COLDREN
Prerequisite: ECE 162A with a minimum grade of C-; open to EE, senior students in the BS/MS program and Materials graduate students only.
Same course as Materials 162B. Lecture: 3 hours; discussion: 1 hour.

162C. Optoelectronic Materials and Devices (4) COLDREN
Prerequisite: ECE 162A-B with a minimum grade of C-; open to electrical engineering and materials majors only. Lecture: 3 hours; discussion: 1 hour.

178. Introduction to Digital Image and Video Processing (4) MANJUNATH
Prerequisite: open to EE, computer engineering, and computer science majors with upper-division standing. Lecture: 3 hours; discussion: 1 hour.
Basic concepts in image and video processing. Topics include image formation and sampling, image transforms, image enhancement, and image and video compression including JPEG and MPEG coding standards.

179D. Introduction to Robotics: Dynamics and Control (4) BYL
Prerequisite: ECE 130A or ME 155A (may be taken concurrently).
Same course as ME 179D.
Dynamic modeling and control methods for robotic systems. LaGrangian method for deriving equations of motion, introduction to the Jacobian, and modeling and control of forces and contact dynamics at a robotic end effector. Laboratories encourage a problem-solving approach to control.
evaluated through written reports, oral presentations, and demonstrations of performance.

188. Senior Electrical Engineering Project (3) STAFF
Prerequisite: ECE 188B with a minimum grade of C-.
Lecture: 3 hours; Laboratory: 3 hour
Student groups design a significant project based on the knowledge and skills acquired in earlier coursework and integrate their technical knowledge through a practical design experience. The project is evaluated through written reports, oral presentations, and demonstrations of performance.

189A. Senior Computer Systems Project (4) STAFF
Prerequisite: ECE 153B; senior standing in Computer Engineering, Computer Science or EE.
Lecture: 3 hours; Laboratory: 3 hours
Not open for credit to students who have completed Computer Science 189A-B.
Student groups design a significant computer-based project. Groups work independently with interaction among groups via interface specifications and informal meetings.

189B. Senior Computer Systems Project (4) STAFF
Prerequisite: ECE 189A; senior standing in Computer Engineering, Computer Science or EE.
Lecture: 3 hours; Laboratory: 3 hours
Not open for credit to students who have completed Computer Science 189A-B.
Student groups design a significant computer-based project. Groups work independently with interaction among groups via interface specifications and informal meetings.

189C. Senior Computer Systems Project (4) ISUKAPALLI
Prerequisite: ECE 189B; senior standing in Computer Engineering, Computer Science or EE.
Lecture: 3 hours; Laboratory: 3 hours
Not open for credit to students who have completed Computer Science 189A-B.
Student groups design a significant computer-based project. The focus in this course will be on the integration of both hardware and software components. Students continue to work in groups. Apart from project reports and presentations, the evaluation will be based on successful demonstration of both hardware and software aspects of the project.

192. Projects in Electrical and Computer Engineering (4) STAFF
Prerequisite: consent of instructor. Discussion, 2 hours; laboratory, 6 hours.
Projects in electrical and computer engineering for advanced undergraduate students.

193. Internship in Industry (1-8) STAFF
Prerequisite: consent of department.
Must have a 3.0 grade-point average. May not be used as departmental electives. May be repeated to a maximum of 12 units. Field, 1-8 hours.
Special projects for selected students. Offered in conjunction with engineering practice in selected industrial and research firms, under direct faculty supervision.

194AA-ZZ. Special Topics in Electrical and Computer Engineering (1-8) STAFF
Prerequisite: consent of instructor. Variable hours.

196. Undergraduate Research (2-4) STAFF
Prerequisites: upper-division standing; consent of instructor.
Must have a minimum 3.0 grade-point average for the preceding three quarters. May be repeated for up to 12 units. Not more than 4 units may be applied to departmental electives.
Research opportunities for undergraduate students. Students will be expected to conduct regular oral presentations, actively participate in a weekly seminar, and prepare at least one written report on their research.

199. Independent Studies in Electrical and Computer Engineering (1-5) STAFF
Prerequisites: upper division standing; completion of two upper-division courses in electrical and computer engineering; consent of instructor.
Must have a minimum 3.0 grade-point average for the preceding three quarters. Students are limited to five units per quarter and 30 units total in all 98/99/198/199DC/199RA courses combined. Directed individual study, normally experimental.

GRADUATE COURSES
Graduate courses for this major can be found in the UCSB General Catalog.

Engineering Sciences
Engineering Sciences, Office of Associate Dean for Undergraduate Studies, Harold Frank Hall, Room 1006; Telephone (805) 893-2809
Web site: www.engineering.ucsb.edu/undergraduate/majors-programs/engineering-sciences

Chair & Associate Dean: Glenn E. Beltz
Faculty
Glenn E. Beltz, Ph.D., Harvard, Professor
Jeffrey M. Moehlis, Ph.D., University of California, Berkeley, Professor
Linda R. Petzold, Ph.D., University of Illinois at Urbana-Champaign, Professor
Tyler G. Susko, Lecturer
Robert York, Ph.D., Cornell University, Professor

The Engineering Sciences program at UCSB serves as a focal point for the cross-disciplinary educational environment that prevails in each of our five degree-granting undergraduate programs (chemical engineering, computer engineering, computer science, electrical engineering, and mechanical engineering). The courses offered in this “department” are designed to cultivate well-educated, innovative engineers and scientists with excellent management and entrepreneurial skills and attitudes oriented to new technologies.

One of the missions of the Engineering Sciences program is to provide coursework commonly needed across other educational programs in the College of Engineering. For example, courses in computer programming, computation, ethics, engineering writing, engineering economics, science communication to the public, and even an aeronautics-inspired art course are offered.

Enginnering Sciences Courses
LOWER DIVISION
3. Introduction to Programming for Engineers (3) MOEHLIS, PETZOLD
Prerequisites: Open to chemical engineering, electrical engineering, and mechanical engineering majors only.
General philosophy of programming and problem solving. Students will be introduced to the programming language MATLAB. Specific areas of study will include algorithms, basic decision structures, arrays, matrices, and graphing. (F, S, M).
99. Introduction to Research (1-3) STAFF
Prerequisite: Consent of instructor.
May be repeated for credit to a maximum of 6 units. Students are limited to 5 units per quarter and 30 units total in all 99/99/199/199AA-ZZ courses combined. Directed study to be arranged with individual faculty members. Course offers exceptional students an opportunity to participate in a research group.

UPPER DIVISION
101. Ethics in Engineering (3) STAFF
Prerequisite: senior standing in engineering.
The nature of moral value, normative judgment, and moral reasoning. Theories of moral value. The engineer’s role in society. Ethics in professional practice. Safety, risk, responsibility, Morality and career choice. Code of ethics. Case studies will facilitate the comprehension of the concepts introduced. (F,W,S,M)
103. Advanced Engineering Writing (4) STAFF
Prerequisites: Writing 50 or 50E; upper-division standing.
Practice in the forms of communication—
contractual reports, proposals, conference papers, oral presentations, business plans—that engineers and entrepreneurial engineers will encounter in professional careers. Focus is on research methods, developing a clear and persuasive writing style, and electronic document preparation.

160. Science for the Public (1-4) STAFF
Prerequisite: consent of instructor.
Same course as Physics 160K. Open to graduate students in science and engineering disciplines and to undergraduate science and engineering majors. Provides experience in communicating science and technology to nonspecialists. The major components of the course are field work in mentoring, a biweekly seminar, presentations to precollege students and to adult nonscientists, and end-of-term research papers.

177. Art and Science of Aerospace Culture (4) STAFF
Prerequisites: upper-division standing; consent of instructor.
Same course as Art Studio 177. Interdisciplinary course/seminar/practice for artists, academics, engineers, and designers interested in exploring the technological aesthetic, cultural, and political aspects of the space side of the aerospace complex. Design history, space complex aesthetics, cinema intersections, imaging/telecommunications, human spaceflight history, reduced/alternating gravity experimentation, space systems design/utilization.

199. Independent Studies in Engineering (1-5) STAFF
Prerequisite: Upper-division standing; consent of instructor.
Students must have a minimum 3.0 GPA for the preceding three quarters. May be repeated for credit to a maximum of 10 units. Directed individual study.

GRADUATE COURSES
A graduate course listing can be found in the UCSB General Catalog.

Materials

Department of Materials Engineering II, Room 1355; Telephone (805) 893-4601
Web site: www.materials.ucsb.edu
Chair: Michael L. Chabinyc
Vice Chair: Stephen Wilson

Faculty
Christopher M. Bates, PhD, University of Austin Texas, Assistant Professor (polymer mesostructure and dynamics, energy storage, and crystallization)
Guillermo C. Bazan, Ph.D., Massachusetts Institute of Technology, Distinguished Professor (polymer synthesis, photophysics) 1
Matthew R. Begley, Ph.D., University of California, Santa Barbara, Professor (mechanics of materials with applications to multilayered devices such as microfluidics, MEMS and protective coatings)
Irene J. Beyerlein, Ph.D., Cornell University, Professor (computational materials science, microstructure-property relationships, deformation mechanisms, composites)
John Bowers, Ph.D., Stanford, Distinguished Professor (energy efficiency, optical devices and networks, silicon photonics) 1
Michael Chabinyc, Ph.D., Stanford University, Associate Professor (organic semiconductors, thin film electronics, energy conversion using photovoltaics, characterization of thin films of polymers, x-ray scattering from polymers)
Raphaele J. Clément, PhD, University of Cambridge, Assistant Professor (energy storage and conversion using batteries and photoelectrochemical cells, characterization of inorganic (photo)electrochemical materials using magnetic resonance techniques and first principles calculations)
Steven P. DenBaars, Ph.D., University of Southern California, Distinguished Professor (metalorganic chemical vapor deposition (MOCVD) of semi-conductors, IR to blue lasers and LEDs, high power electronic materials and devices) 1
Daniel S. Gianola, Ph.D., Johns Hopkins University, Associate Professor (nanomechanical behavior of materials, tunable energy conversion, micro- and nanoelectronics, thermal management, and waste heat collection)
John W. Harter, PhD, Cornell University, Assistant Professor (quantum materials, unconventional superconductors, strongly-correlated electrons, nonlinear optical spectroscopy, angle-resolved photoemission spectroscopy)
Craig Hawker, Ph.D., University of Cambridge, Distinguished Professor, Director of Materials Research Laboratory (synthetic polymer chemistry, nanotechnology, materials science) 1
Carlos G. Levi, Ph.D., University of Illinois at Urbana-Champaign, Professor (materials processing, and microstructure evolution, coatings, composites, functional inorganics) 2
Robert M. McMeeking, Ph.D., Brown University, Distinguished Professor (mechanics of materials, fracture mechanics, plasticity, computational mechanics, process modeling) 2
Kunal Mukherjee, PhD, Massachusetts Institute of Technology, Assistant Professor (growth and electronic properties of compound semiconductors for optoelectronic, imaging, and energy conversion devices)
Shuji Nakamura, Ph.D., University of Tokushima, Cree Professor of Solid State Lighting and Displays (gallium nitride, blue lasers, white LEDs, solid state illumination, bulk GaN substrates)
Chris Palmstrom, Ph.D., University of Leeds, Distinguished Professor (atomic level control of interfacial phenomena, in-situ STM, surface and thin film analysis, metallization of semiconductors, dissimilar materials epitaxial growth, molecular beam and chemical beam epitaxialgrowth of metallic compounds) 1
Philip A. Pincus, Ph.D., UC Berkeley, Distinguished Professor (theoretical aspects of self-assembled biomolecular structures, membranes, polymers, and colloids) 4
Angela A. Pitenis, Ph.D., University of Florida (Interfacial engineering, soft materials, surface physics, biotechnology, contact mechanics, adhesion, in situ techniques, imaging)
Tresa M. Pollock, Ph.D., Massachusetts Institute of Technology, Distinguished Professor (mechanical and environmental performance of materials in extreme environments, unique high temperature materials processing paths, ultrafast laser-material interactions, alloy design and 3-D materials characterization)
Cyrus R. Safinya, Ph.D., Massachusetts Institute of Technology, Distinguished Professor (biophysics, supramolecular assemblies of biological molecules, non-viral gene delivery systems)
Omar A. Saleh, Ph.D., Princeton University, Assistant Professor (single-molecule biophysics, motor proteins, DNA-protein interactions)
Rachel A. Segalman, Ph.D., University of California, Santa Barbara, Professor (synthesis of macromolecules, self-assembly, electronic properties of molecular and macromolecular materials, transport processes in polymers)
Ram Seshadri, Ph.D., Indian Institute of Science, Professor (inorganic materials, preparation and magnetism of bulk solids and nanoparticles, patterned materials)
James S. Speck, Sc.D., Massachusetts Institute of Technology, Distinguished Professor (nitride semiconductors, III-V semiconductors, ferroelectric and high-K films, microstructural evolution, extended defects, transmission electron microscopy, x-ray diffraction)
Susanne Steimer, Ph.D., University of Stuttgart, Professor (functional oxide thin films, structure-property relationships, scanning transmission electron microscopy and spectroscopy)
Galen Stucky, Ph.D., Iowa State University, Distinguished Professor (biomaterials, composites, materials synthesis, electro-optical materials catalysis) 5
Chris Van de Walle, Ph.D., Stanford University, Distinguished Professor (novel electronic materials, wide-band-gap semiconductors, oxides)
Anton Van der Ven, Ph.D., Massachusetts Institute of Technology, Associate Professor (First principles prediction of thermodynamic, kinetic and and mechanical properties of alloys, ceramics and compound semiconductors, statistical mechanical methods development, electrochemical energy storage materials, high temperature structural materials corrosion)
Claude Weisbuch, Ph.D., Universite Paris VII, Ecole Polytechnique-Palaiseau, Distinguished Professor (semiconductor physics: fundamental and applied optical studies of quantized electronic structures and photonic-controlled structures; electron spin resonance in semiconductors, optical
semiconductor microcavities, photonic bandgap materials)

Stephan Wilson, Ph.D., University of Tennessee, Assistant Professor (Magnetism in complex oxides, phase behaviors in correlated electron systems and quantum materials, spin-orbit coupled materials, quantum criticality, neuron and x-ray scattering, bulk single crystal growth)

Francis W. Zok, Ph.D., McMaster University, Professor (mechanical and thermal properties of materials and structures)

Emeriti Faculty

Anthony K. Cheetham, Ph.D., Oxford University, Professor Emeritus (catalysis, optical materials, X-ray, neutron diffraction)

David R. Clarke, Ph.D., University of Cambridge, Professor Emeritus (electrical ceramics, thermal barrier coatings, piezoelectroscopy, mechanics of microelectronic devices)

Larry A. Coldren, Ph.D., Stanford University, Kavli Professor in Optoelectronics and Sensorics, Director of Optoelectronics Technology Center (semiconductor integrated optics, optoelectronics, molecular beam epitaxy, microfabrication)

Arthur C. Gossard, Ph.D., UC Berkeley, Professor Emeritus (epitaxial growth, artificial synthesis of semiconductor microstructures, semiconductor devices)

Alan J. Heeger, Ph.D., UC Berkeley, Distinguished Professor, Director of Institute for Polymers and Organic Solids, 2000 Chemistry Nobel Laureate (condensed-matter physics, conducting polymers)

Evelyn Hu, Ph.D., Columbia University, Professor Emeritus (high-resolution fabrication techniques for semiconductor device structures, process-related materials damage, contact/interfacial studies, superconductivity)

Jacob N. Israelachvili, Ph.D., University of Cambridge, Distinguished Professor (adhesion, friction, surface forces, colloids, biological interactions)

Herbert Kroemer, Dr. Rer. Nat., University of Göttingen, Donald W. Whittier Professor of Electrical Engineering, 2000 Physics Nobel Laureate (device physics, molecular beam epitaxy, heterojunctions, compound semiconductors)

Noel C. MacDonald, Ph.D., UC Berkeley, Kavli Professor in MEMS Technology (microelectromechanical systems, applied physics, nano-fabrication, electron optics, materials, mechanics, surface analysis)

Frederick F. Milstein, Ph.D., UC Los Angeles, Professor Emeritus (crystal mechanics, bonding, defects, mechanical properties)

G. Robert Odette, Ph.D., Massachusetts Institute of Technology, Professor (fundamental deformation and fracture, materials in extreme environments, structural reliability, and high-performance composites)

Pierre M. Petroff, Ph.D., UC Berkeley, Professor (semiconductor interfaces, defects physics, epitaxy of self assembled quantum structures, quantum dots and nanomagnets, spectroscopy of semiconductor nanostructures)

Fred Wudl, Ph.D., UC Los Angeles, Professor (optical and electro-optical properties of conjugated polymers, organic chemistry of fullerenes, and design and preparation of self-mending polymers)

Affiliated Faculty

David A. Auston, Ph.D. (Electrical and Computer Engineering)

Glenn H. Fredrickson, Ph.D. (Chemical Engineering)

Mahn Won Kim, Ph.D. (Physics)

Gary Leal, Ph.D. (Chemical Engineering)

Gene Lucas, Ph.D. (Chemical Engineering)

The Department of Materials was conceptualized and built under two basic guidelines: to educate graduate students in advanced materials and to introduce them to novel ways of doing research in a collaborative, multidisciplinary environment. Advancing materials technology today—whether by creating new materials or improving the properties of existing ones—requires a synthesis of expertise from the classic materials fields of metallurgy, ceramics, and polymer science, and such fundamental disciplines as applied mechanics, chemistry, biology, and solid-state physics. Since no individual has the necessary breadth and depth of knowledge in all these areas, solving advanced materials problems demands the integrated efforts of scientists and engineers with different backgrounds and skills in a research team. The department has effectively transferred the research team concept, which is the operating mode of the high technology industry, into an academic environment. The department’s major research groups working on a wide range of advanced inorganic and organic materials, including advanced structural alloys, ceramics and polymers; high performance composites; thermal barrier coatings and engineered surfaces; organic, inorganic and hybrid semiconductor and photonic material systems; catalysts and porous materials, magnetic, ferroelectric and multiferroic materials; biomaterials and biosurfaces, including biomedical relevant systems; colloids, gels and other complex fluids; lasers, LEDs and optoelectronic devices; packaging systems; microscale engineered systems, including MEMS. The groups are typically multidisciplinary involving faculty, postdoctoral researchers and graduate students working on the synthesis and processing of materials, characterization, fundamental principles governing structural evolution in materials, and their relationship with structure and properties.

Materials Courses

LOWER DIVISION

10. Materials in Society, the Stuff of Dreams

13. Biophysics and Biomolecular Materials

160. Introduction to Polymer Science

162. The Quantum Description of Electronic Materials

UPPER DIVISION

100A. Structure and Properties I

100B. Structure and Properties II

100C. Fundamentals of Structural Evolution

101. Introduction to the Structure and Properties of Materials

135. Biophysics and Biomolecular Materials

160. Introduction to Polymer Science

162. The Quantum Description of Electronic Materials
162B. Fundamentals of the Solid State

(4) STAFF
Prerequisites: ECE 162A with a minimum grade of C−; open to EE and materials majors only.
Same course as ECE 162B.

185. Materials in Engineering

(3) STAFF
Prerequisite: Materials 100B or 101.

Same course as ME 185. Lecture, 3 hours.
Introduces the student to the main families of materials and the principles behind their development, selection, and behavior. Discusses the generic properties of metals, ceramics, polymers, and composites more relevant to structural applications. The relationship of properties to structure and processing is emphasized in every case.

186A. Manufacturing and Materials

(3) LEVI
Prerequisites: ME 15 and 151C; and, Materials 100B or 101.

Same course as ME 186. Lecture, 3 hours.
Introduction to the fundamentals of common manufacturing processes and their interplay with the structure and properties of materials as they are transformed into products. Emphasis on process understanding and the key physical concepts and basic mathematical relationships involved in each of the processes discussed.

186B. Introduction to Additive Manufacturing

(3) BEGLEY
Same course as ME 186B. Lecture 3 hours.
Introduction to additive manufacturing processes: A review of manufacturing methods and process selection consideration, economies of production, common additive manufacturing strategies, and a brief description of the physics of polypropyleneization, extrusion, selective laser melting and e-beam melting fabrication.

188. Topics in Materials

(2) VANDEWALLE
Topics in Materials for renewable energy-efficient applications: Thermoelectrics, Solid State Lighting, Solar Cells, High Temperature coatings for turbines and engines. (W)

GRADUATE COURSES
Graduate courses for this major can be found in the UCSB General Catalog.

Mechanical Engineering
Department of Mechanical Engineering, Engineering II, Room 2355; Telephone (805) 893-2430; Web site: www.me.ucsb.edu

Chair: Frederic Gibou
Vice Chair: Jeffrey Moehlis

Faculty
Bassam Bamieh, Ph.D., Rice University, Professor (control systems design with applications to fluid flow problems)
Matthew R. Begley, Ph.D., University of California, Santa Barbara, Professor (mechanics of materials with applications to multilayered devices such as microfluidics, MEMS and protective coatings)
Gunn E. Beltz, Ph.D., Harvard, Professor (solid mechanics, materials, aeronautics, engineering education)
Ted D. Bennett, Ph.D., UC Berkeley, Associate Professor (thermal science, laser processing)
Irene J. Beyerlein, PhD, Cornell University, Professor (structural mechanics of multi-phase micro- and nanostructured materials, design of metallic alloys) Joint Appointment: MATRRL
Francesco Bullo, Ph.D., California Institute of Technology, Professor (motion planning and coordination, control systems, distributed and adaptive algorithms)
Otger Campos, Ph.D., Curie Institute (Paris) and University of Barcelona, Assistant Professor (physical biology, systems biology, quantitative biology, morphogenesis and self-organization of living matter)
Samantha H. Daly, PhD, California Institute of Technology, Associate Professor (mechanics of materials, development of small-scale experimental methods, effects of microstructure on the meso and macroscopic properties of materials, active materials, composites, fatigue, plasticity, fracture)
Emeline Dressaire, Ph.D., Harvard University, Assistant Professor (learning about and learning from biological and natural processes to control fluid flow and transport)
Frederic Gibou, Ph.D., University of California, Los Angeles, Professor (computational science and engineering) 2
Elliot W. Hawkes, Ph.D., Stanford University, Assistant Professor (Design, mechanics, and non-traditional materials to advance the vision of robust, adaptable, human-safe robots that can thrive in the uncertain, unstructured world)
Stephen Lagutte, M.S., University of California, Los Angeles, Lecturer (biomedical engineering design)
Carlos Levi, Ph.D., University of Illinois at Urbana-Champaign, Professor (conceptual design, synthesis and evolution in service of structural and inorganic materials, especially for high temperature applications) 3
Bolin Liao, PhD, Massachusetts Institute of Technology, Assistant Professor (nanoscale energy transport and its application to sustainable energy technologies)
Paolo Luzzato-Fegiz, PhD, Cornell University, Assistant Professor (fluid mechanics, wind energy and instrument development)
Eric F. Matthys, Ph.D., California Institute of Technology, Professor (heat transfer, fluid mechanics, rheology)
Robert M. McMeeking, Ph.D., Brown University, Distinguished Professor (mechanics of materials, fracture mechanics, plasticity, computational mechanics) 3
Eckart Meiburg, Ph.D., University of Karlsruhe, Distinguished Professor (computational fluid dynamics, fluid mechanics)
Carl D. Meinhardt, Ph.D., University of Illinois at Urbana-Champaign, Professor (wall turbulence, microfluidics, flows in complex geometries)
Igor Mezic, Ph.D., California Institute of Technology, Professor (applied mechanics, non-linear dynamics, fluid mechanics, applied mathematics)
Jeffrey M. Moehlis, Ph.D., University of California, Berkeley, Professor (nonlinear dynamics, fluid mechanics, biological dynamics, applied mathematics)
Sumita Pennathur, Ph.D., Stanford University, Associate Professor (application of microfabrication techniques and micro/nanofluid flow phenomena)
Linda R. Petzold, Ph.D., University of Illinois at Urbana-Champaign, Distinguished Professor, Director of Computational Science and Engineering Graduate Program (computational science and engineering; systems biology) 2
Beth Pruitt, Ph.D., Stanford University, Professor (mechanobiology, microfabrication, engineering and science, engineering microsystems, and bioInterfaces for quantitave mechanobiology) 4
Alban Sauret, Ph.D., IRPHE, Aix-Marseille University, Assistant Professor (investigating fluid dynamics, interfacial effects and particle transport mechanisms involved in environmental and industrial processes)
Tyler G. Susko, PhD, Massachusetts Institute of Technology, Lecturer Potential SOE (mechanical and product design, engineering education, rehabilitation robotics, human-machine interaction)
Megan Valentine, Ph.D., Harvard University, Assistant Professor (single-molecule biophysics, cell mechanics, motor proteins, biomaterials)
Henry T. Yang, Ph.D., Cornell University, Distinguished Professor (aerospace structures, structural dynamics and stability, transonic flutter and aeroelasticity, intelligent manufacturing systems)
Enoch H. Yeung, Ph.D., California Institute of Technology, Assistant Professor (control theory, machine learning, synthetic biology, and systems biology)

Emeriti Faculty
John C. Bruch, Jr., Ph.D., Stanford University, Professor Emeritus (applied mathematics, numerical solutions and analysis)
David R. Clarke, Ph.D., University of Cambridge, Professor (electrical ceramics, thermal barrier coatings, piezoelectroscopy, mechanics of microelectronics) 3
Roy S. Hickman, Ph.D., UC Berkeley, Professor Emeritus (fluid mechanics, physical gas dynamics, computer-aided design)
George Homys, Ph.D., University of Illinois, Professor Emeritus (hydrodynamic stability, thermal convection, thin film hydrodynamics, flow in microgeometries and in porous media, polymer fluid mechanics)
Wilbert J. Lick, Ph.D., Rensselaer Polytechnic Institute, Professor Emeritus (oceanography and limnology, applied
The undergraduate program in mechanical engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. We offer a balanced curriculum of theory and application, involving: preparation in basic science, math, computing and writing; a comprehensive set of engineering science and laboratory courses; and a series of engineering design courses starting in the freshman year and concluding with a three course sequence in the senior year. Our students gain hands-on expertise with state-of-the-art tools of computational design, analysis, and manufacturing that are increasingly used in industry, government, and academic institutions. In addition, the Department has a 15-unit elective program that allows students to gain depth in specific areas of interest, while maintaining appropriate breadth in the basic stem areas of the discipline. All students participate in a widely recognized design project program which includes projects sponsored by industry, UCSB researchers, as well as intercollegiate design competitions. The project program has been expanded to emphasize entrepreneurial product-oriented projects.

Mission Statement
We offer an education that prepares our students to become leaders of the engineering profession and one which empowers them to engage in a lifetime of learning and achievement.

Educational Objectives for the Undergraduate Program

It is the objective of the Mechanical Engineering Program to produce graduates who:
1. Successfully practice in either the traditional or the emerging technologies comprising mechanical engineering;
2. Are successful in a range of engineering graduate programs;
3. Have a solid background in the fundamentals of engineering allowing them to pass the Fundamentals of Engineering examination;
4. Engage in life-long learning opportunities such as professional workshops and activity in professional societies.

In order to achieve these objectives, the Department of Mechanical Engineering is engaged in a very ambitious effort to lead the discipline in new directions that will be critical to the success of 21st century technologies. While maintaining strong ties to STEM areas of the discipline, we are developing completely new cross-cutting fields of science and engineering related to topics such as nanoscale engineering and microelectrical-micromechanical systems; dynamics and controls and related areas of sensors, actuators and instrumentation; advanced composite materials and smart structures; computation, simulation and information science; advanced energy and transportation systems; and environmental monitoring, modeling and remediation.

Student Outcomes

Upon graduation, students in the mechanical engineering B.S. degree program:
1. Should possess a solid foundation in, and be able to apply the principles of, mathematics, science, and engineering to solve problems and have the ability to learn new skills relevant to his/her chosen career.
2. Have the ability to conduct and analyze data from experiments in dynamics, fluid dynamics, thermal science and materials, and should have been exposed to experimental design in at least one of these areas.
3. Should have experienced the use of current software in problem solving and design.
4. Should demonstrate the ability to design useful products, systems, and processes.
5. Should be able to work effectively on teams.
6. Should have an understanding of professional and ethical responsibilities.
7. Should be able to write lab reports and design reports and give effective oral presentations.
8. Should have the broad background in the humanities and the social sciences, which provides an awareness of contemporary issues and facilitates an understanding of the global and societal impact of engineering problems and solutions.
9. Be a members of or participate in a professional society.

Undergraduate Program

Bachelor of Science—Mechanical Engineering

A minimum of 180 units is required for graduation. A complete list of requirements for the major can be found on page 54. Schedules should be planned to meet both general education and major requirements.

Students who are not Mechanical Engineering majors may not be permitted to take lower division mechanical engineering courses, subject to meeting prerequisites and grade-point average requirements, availability of space, and consent of the instructor.

The mechanical engineering elective courses allow students to acquire more in-depth knowledge in one of several areas of specialization, such as those related to: the environment; design and manufacturing; thermal and fluid sciences; structures, mechanics, and materials; and dynamics and controls. A student’s specific engineering elective course selection is subject to the approval of the department advisor.

Courses required for the pre-major or major, inside or outside of the Department of Mechanical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.

Research Opportunities

Upper-division undergraduates have opportunities to work in a research environment with faculty members who are conducting current research in the various fields of mechanical engineering. Students interested in

Affiliated Faculty

Paul J. Atzberger (Mathematics)
Katie A. Byl (Electrical and Computer Engineering)
Hector D. Ceniceros, PhD (Mathematics)
Tommy D. Dickey, PhD (Geography)
Kimberly L. Foster, PhD (Mechanical Engineering)
Joao P. Hespanha, PhD (Electrical and Computer Engineering)
Patricia Holden (Bren School of Environmental Science and Management)
Arturo Keller (Bren School of Environmental Science and Management)
L. Gary Leaf (Chemical Engineering)
Kevin W. Plaxco, PhD (Chemistry and Biochemistry, Biomolecular Science and Engineering Program)
Yon Visell, PhD (Electrical and Computer Engineering and Materials)
Libe Washburn, PhD (Geography)
 (4) CAMPAS
 Prerequisites: Physics 2; ME 14 with a minimum grade of C-; and, Mathematics 6B; (may be taken concurrently); open to ME majors only.

17. Mathematics of Engineering
 (3) GIBOU
 Prerequisite: Engineering 3; Mathematics 6A (may be taken concurrently); open to ME majors only.
 Introduction to basic numerical and analytical methods, with implementation using MATLAB. Topics include root finding, linear algebraic equations, introduction to matrix algebra, determinants, inverses and eigenvalues, curve fitting and interpolation, and numerical differentiation and integration. (S, M)

95. Introduction to Mechanical Engineering
 (1-4) STAFF
 Prerequisite: consent of instructor.
 May be repeated for credit to a maximum of 6 units.
 Participation in projects in the laboratory or machine shop. Projects may be student- or faculty-originated depending upon student interest and consent of faculty member.

97. Mechanical Engineering Design Projects
 (1-4) STAFF
 Prerequisite: consent of instructor.
 May be repeated for maximum of 12 units, variable hours.
 Course offers students opportunity to work on established departmental design projects. P/ NP grading, does not satisfy technical elective requirement.

105. Mechanical Engineering Laboratory
 (4) VALENTINE, BENNETT
 Prerequisites: ME 151B, 152B, 163; and, Materials 101 or 100B.
 Introduction to fundamental engineering laboratory measurement techniques and report writing skills. Experiments from thermosciences, fluid mechanics, mechanics, materials science and environmental engineering. Introduction to modern data acquisition and analysis techniques. (S)

110. Aerodynamics and Aeronautical Engineering
 (3) BELTZ, MEINHART
 Prerequisites: ME 14 and 152A.
 Concepts from aerodynamics, including lift and drag analysis of airfoils as well as aircraft sizing/scaling issues. Structural mechanics concepts are applied to practical aircraft design. Intended for students considering a career in aeronautical engineering.

112. Energy
 (3) MATHYS
 Prerequisite: Senior Undergraduate or Graduate Student status in the College of Engineering; or consent of Instructor.
 Introduction to the field of Energetics. Topics may include energy sources and production, energy usage, renewable technologies, hardware, operating principles, environmental impact, energy reserves, national and global energy budgets, historical perspectives, economics, societal considerations, and others.

124. Advanced Topics in Transport Phenomena/Safety
 (3) STAFF
 Prerequisites: Chemical Engineering 120A-B-C, or ME 151A-B and ME 152A.

125AA-ZZ. Special Topics in Mechanical Engineering
 (3) STAFF
 Prerequisite: Consent of instructor.
 May be repeated for credit to a maximum of 12 units provided letter designations are different. Students are advised to consult their faculty advisor before making their course selection.
 Individual courses each concentrating on one area in the following subjects: applied mechanics, cad/cam, controls, design, environmental engineering, fluid mechanics, materials science, mechanics of solids and structures, ocean and coastal engineering, robotics, theoretical mechanics, thermal sciences, and recent developments in mechanical engineering.

128. Design of Biomedical Devices
 (3) LACONTE
 Prerequisite: Mechanical Engineering 10, 14, 15, 16, and 153; open to ME majors only.
 Course materials fee may be required.
 Introductory course addresses the challenges of biomedical device design, prototyping and testing, material considerations, regulatory requirements, design control, human factors and ethics.

134. Advanced Thermal Science
 (3) MATHYS
 Prerequisite: ME 151C.
 This class will address advanced topics in fluid mechanics, heat transfer, and thermodynamics.
 Topics of interest may include combustion, phase change, experimental techniques, materials processing, manufacturing, engines, HVAC, non-Newtonian fluids, etc.

140A. Numerical Analysis in Engineering
 (3) MEIBURG
 Prerequisites: ME 17 with a minimum grade of C- or Chemical Engineering 132A; open to ME and Chemical Engineering majors only.
 Numerical analysis and analytical solutions of problems described by linear and nonlinear differential equations with an emphasis on MATLAB. First and second order differential equations;
systems of differential equations; linear algebraic equations, matrices and eigenvalues; boundary value problems; finite differences. (F)
140B. Theoretical Analysis in Mechanical Engineering (3) MOHLIS, GIBOU, MEIBURG
Prerequisites: ME 140A. Analysis of engineering problems formulated in terms of partial differential equations. Solutions of these mathematical models by means of analytical and numerical methods. Physical interpretation of the results.
141A. Introduction to Nanoelectromechanical and Microelectromechanical systems (NEMS/ MEMS) (3) PENNATHUR
Prerequisites: ME 16 and 17; ME 152A & ME 151A (may be concurrent); or ECE 130A & 137A with a minimum grade of C- in both.
Introduction to nanotechnology and microtechnology. Scaling laws and nanoscale physics are stressed. Individual subjects at the nanoscale including materials, mechanics, photonics, electronics, and fluids will be described, with an emphasis on differences of behavior at the nanoscale and real-world examples.
141B. MEMS: Processing and Device Characterization (4) PENNATHUR
Prerequisites: ME 141A, ME 163 (may be concurrent); or ECE 141A.
Same course as ECE 141B. Lectures and laboratory on semiconductor-based processing for MEMS. Description of key equipment and characterization tools used for MEMS and design, fabrication, characterization and testing of MEMS. Emphasis on current MEMS devices including accelerometers, comb drives, micro-reactors and capacitor-actuators. (W)
146. Molecular and Cellular Biomechanics (3) VALENTINE
Course introduces fundamental concepts in molecular and cellular biomechanics. Will consider the role of physical, thermal and chemical forces, examine their influence on cell strength and elasticity, and explore the properties of enzymatically-active materials. (F)
147. Mechatronics Using Labview (3) HARE
Prerequisite: Engineering 3, and ME 6. Not open for additional credit to students who have completed ME 125CH. Course materials fee required.
Introduction to mechatronics, electromechanical systems, data acquisition, software programming and Labview. Students learn programming fundamentals, hardware interfacing and controls with simulated hardware and actual motor controllers. Students compete to control a motor system through various mechatronics problems. Final projects automate working hardware in research labs.
151A. Thermosciences 1 (4) BENNETT, MEINHART
Prerequisite: Physics 2; ME 14 with a minimum grade of C-; and, Mathematics 6B.
Basic concepts in thermodynamics, system analysis, energy, thermodynamic laws, and cycles. (F)
151B. Thermosciences 2 (4) BENNETT, LIAO
Prerequisite: ME 151A and 152A.
Introduction to heat transfer processes, steady and unsteady state conduction, multidimensional analysis. Introduction to convective heat transfer. (W)
151C. Thermosciences 3 (3) BENNETT, SAURET
Prerequisites: ME 151B and 152B; open to ME majors only.
Convective heat transfer, external and internal flow, forced and free convection, phase change, heat exchangers. Introduction to radiative heat transfer.
152A. Fluid Mechanics (4) CAMANN, MEINHART
Prerequisite: Mathematics 6B; and ME 16 with a minimum grade of C-.
Introduction to the fundamental concepts in fluid mechanics and basic fluid properties. Basic equations of fluid flow. Dimensional analysis and similitude. Hydrodynamics. (F)
152B. Fluid Mechanics (3) LUZZATTO
Prerequisites: ME 152A; open to ME majors only.
Incompressible viscous flow. Boundary-layer theory. Introductory considerations for one-dimensional compressible flow.
153. Introduction to Mechanical Engineering Design (3) HAWKES
Prerequisites: ME 10 and 16; open to ME majors only.
Course materials fee required.
Design of systems using mechanics, stress analysis and finite elements. Statistical problems in manufacturing and reliability. Ethics. One paper design project plus the ASME student design project.
154. Design and Analysis of Structures (3) McKEE, BELTZ
Prerequisites: ME 15 and 16 with minimum grades of C-; open to ME majors only.
Introductory course in structural analysis and design. The theoretical analysis of structural analysis and finite element analysis for the solution of analytical and design problems in structures are emphasized. Lecture material includes structural theory compatibility method, slope deflection method, displacement method and virtual work. Topics include applications to bars, beams, trusses, frames, and solids.
155A. Control System Design (1) YEUNG, BAEHE
Prerequisite: ME 17 with a minimum grade of C-; and ME 163.
155B. Control System Design (3) BAEHE
Prerequisite: ME 155A.
Dynamic system modeling using state-space methods, controllability and observability: state-space methods for control design including pole placement, and linear quadratic regulator methods. Observers and observer-based feedback controllers. Sampled-data and digital control. Laboratory exercises using MATLAB for simulation and control design.
155C. Control System Design (3) BAEHE
Prerequisite: ME 155A.
Not open for additional credit to students who have completed ME 106A.
An advanced lab course with experiments in dynamical systems and feedback control design. Students design, troubleshoot, and perform detailed, multi-session experiments.
156A. Mechanical Engineering Design I - I (3) SUSKO
Prerequisite: ME 14, with a minimum grade of C-; and ME 15, with a minimum grade of C-; and ME 151 (or MATRXL 101) or consent of instructor. Open to ME majors only.
The rational selection of engineering materials, and the utilization of Ashby charts, stress, strain, strength, and fatigue failure consideration as applied to the design of machine elements. Lectures also support the development of system design concepts using assigned projects and involves the preparation of engineering reports and drawings.
156B. Mechanical Engineering Design II (3) SUSKO
Prerequisites: ME 156A; open to ME majors only.
Machine elements including gears, bearings, and shafts. Joint design and analysis; bolts, rivets, adhesive bonding and welding. Machine dynamics and fatigue. Design for reliability and safety. Codes and standards. Topics covered are applied in practical design projects.
157. Introduction to Multiphysics Simulation (3) MEINHART
Prerequisite: Mechanical Engineering 151A-B; and Mechanical Engineering 152A-B; and Mechanical Engineering 140A
May not be taken for additional credit by students who have completed ME 125CM. May not be taken by students who have completed ME 225CM or ME 257. Course materials fee required.
Introduces students to the concepts of multiphysics simulation. Students are introduced to PDE’s, associated analytical solutions, and the finite elements method. Multiphysics problems are solved in multiple domains, and with fluid/structure interactions. Each student conducts a project where multiphysics tools are needed to explore details of multiphysical processes.
158. Computer Aided Design and Manufacturing (3) STAFF
Prerequisites: ME 10 and 156A; open to ME majors only.
Course materials fee required.
Emphasis on programming, operation and design of automated manufacturing tools. Students learn to program CNC tools to make parts with G&M Code and Mastercam CAM software. Students make parts in hands-on labs using CNC tools, 3D printers and laser cutters. Select topics in automated tool design and construction.
162. Introduction to Elasticity (3) MCKEEING, BELTZ
Prerequisites: ME 16 with a minimum grade of C-; open to ME majors only.
Topics relating to vibration in mechanical systems; exact and approximate methods of analysis, matrix methods, generalized coordinates and Lagrange’s equations, applications to systems. Basic feedback systems and controlled dynamic behavior.
166. Advanced Strength of Materials (3) DAILY
Prerequisite: ME 15.
Analysis of statically determinate and indeterminate systems using integration, area moment, and energy methods. Beams on elastic foundations, curved beams, stress concentrations, fatigue, and theories of failure for ductile and brittle materials. Photoelasticity and other experimental techniques are covered, as well as methods of interpreting in-service failures.
167. Structural Analysis (3) TANG
Prerequisites: ME 15. May not be taken for additional credit by students who have completed ME W 167.
Presents introductory matrix methods for analysis of structures. Topics include review of matrix algebra and linear equations, basic structural theorems including the principle of superposition and energy theorems, truss bar, beam and plane frame elements, and programming techniques to realize these concepts.
169. Nonlinear Phenomena (4) MOHLIS
Prerequisites: Physics 105A or ME 163; or upper-division standing in ECE.
The same course as ECE 183 and Physics 106.
An introduction to nonlinear phenomena. Flows and bifurcation in one and two dimensions, chaos, fractals, strange attractors. Applications to physics, engineering, chemistry, and biology.
170D. Introduction to Robotics: Dynamics and Control
186B. Introduction to Additive Manufacturing Processes

Same course as Materials 186B.

Introduction to additive manufacturing processes; review of manufacturing methods and process selection considerations, economies of production, common additive manufacturing strategies, and brief description of the physics of photopolymerization, extrusion, selective laser melting and e-beam melting fabrication.

189A. Capstone Mechanical Engineering Design Project

(3) SUSKO

Prerequisite: ME 105, ME 151C, ME 152B, ME 153, and ME 163; or consent of instructor. Open to ME majors only.

Course materials fee required.

Designed for majors. Concurrently offered with ME 156A. Quarters usually offered: Fall. A 3-quarter sequence with grades issued for each quarter. Students may not concurrently enroll in ME 197 and ME 189A-B-C with the same design project.

Course can only be repeated as a full sequence (189A-B-C).

Students work in teams under the direction of a faculty advisor (and possibly an industrial sponsor) to tackle an engineering design project. Engineering communication, such as reports and oral presentations are covered. Emphasis on practical, hands-on experience, and the integration of analytical and design skills acquired in the companion ME 156 courses.

189B. Capstone Mechanical Engineering Design Project

(3) SUSKO

Prerequisite: ME 189A

Course materials fee required.

Designed for majors. Concurrently offered with ME 156B. Quarters usually offered: Winter. A 3-quarter sequence with grades issued for each quarter. Students may not concurrently enroll in ME 197 and ME 189A-B-C with the same design project.

Course can only be repeated as a full sequence (189A-B-C).

Students work in teams under the direction of a faculty advisor (and possibly an industrial sponsor) to tackle an engineering design project. Engineering communication, such as reports and oral presentations, are covered. Course emphasizes practical, hands-on experience, and integrates analytical and design skills acquired in the companion ME 156 courses.

199C. Capstone Mechanical Engineering Design Project

(3) SUSKO

Prerequisite: ME 189A-B

Course materials fee required.

Designed for majors. Quarters usually offered: Spring. A 3-quarter sequence with grades issued for each quarter. Students may not concurrently enroll in ME 197 and ME 189A-B-C with the same design project. Course can only be repeated as a full sequence (189A-B-C).

Students work in teams under the direction of a faculty advisor (and possibly an industrial sponsor) to tackle an engineering design project. Engineering communication, such as reports and oral presentations, are covered. Course emphasizes practical, hands-on experience, and integrates analytical and design skills acquired in the companion ME 156 courses.

193. Internship in Industry

(1-4) STAFF

Prerequisite: consent of instructor and prior departmental approval needed.

Cannot be used as a departmental elective. May be repeated to a maximum of 2 units.

Students obtain credit for a mechanical engineering related internship and/or industrial experience under faculty supervision. A 6-10 page written report is required for credit.

197. Independent Projects in Mechanical Engineering Design

(1-4) STAFF

Prerequisites: ME 16; consent of instructor.

May be repeated for a maximum of 12 units, variable hours. No more than 4 units may be used as departmental electives. Special projects in design engineering. Course offers motivated students opportunity to synthesize academic skills by designing and building new machines.

199. Independent Studies in Mechanical Engineering

(1-6) STAFF

Prerequisites: consent of instructor; upper-division standing; completion of two upper-division courses in Mechanical Engineering.

Students must have a minimum of 3.0 grade-point average for the preceding three quarters and are limited to 5 units per quarter and 30 units total in all 98/99/198/199/199DC/199RA courses combined. No more than 4 units may be used as departmental electives. May be repeated to 12 units.

GRADUATE COURSES

Graduate courses for this major can be found in the UCSB General Catalog.

Technology Management Program

Technology Management Program

Phelps Hall, Room 2219
Telephone (805) 893-2729
Web site: www.tmp.ucsb.edu

Chair: Kyle Lewis

Faculty

Stephen Barley, Ph.D., Massachusetts Institute of Technology, Distinguished Professor

Matthew Beane, Ph.D., Massachusetts Institute of Technology, Assistant Professor

John E. Bowers, Ph.D., Stanford University, Distinguished Professor

Gary S. Hansen, Ph.D., University of Michigan, Associate Professor

Paul Leonardi, Ph.D., Stanford University, Professor

Kyle Lewis, Ph.D., University of Maryland, Professor

Renee Rottner, Ph.D., UC Irvine, Assistant Professor

Jessica Santana, Ph.D., Stanford University, Assistant Professor

Robert A. York, Ph.D., Cornell University, Professor

Transitioning new technical advances and discoveries into products or services that benefit society requires business and interpersonal skills as well as technical expertise. These include an ability to work effectively in teams, build sound business models that account for the competitive environment, lead and manage other and diverse groups and apply basic marketing principals.

The Technology Management Program (TMP) provides a solid foundation in these areas to help cultivate managerial and entrepreneurial leadership for technology businesses.

Mission Statement

TMP is a unique educational program that exposes innovative, energetic, and entre-
preneurial students to key aspects of technology, business practices, new venture creation, and professional development. Dedicated to the study of management, organizational and entrepreneurial business processes involved in transforming new discoveries in science and engineering into economically productive enterprises, TMP is redefining entrepreneurial education with a comprehensive curriculum for the creation and management of tomorrow’s technology ventures.

The Technology Management Certificate
The Technology Management Certificate program provides students a solid foundation in business fundamentals and entrepreneurship as it applies to new technologies and technology-oriented companies. This certificate serves as an official recognition that the student has a solid grounding in fundamental business strategies and models, opportunity recognition and new-venture creation and marketing. The program also provides access to many professionals familiar with the demands of starting new businesses as well as running existing companies through its extra-curricular offerings.

Technology Management Program Courses

21. Past, Present and Future of Entrepreneurship
 (3) GREATHOUSE
 Quarters usually offered: Spring.
 The historical and present state of entrepreneurship will be explored, along with the potential future direction of startups. Students will be encouraged to start small ventures as a means of determining their proclivity for an entrepreneurial lifestyle.

34. Selling High Tech Products
 (4) STAFF
 Prerequisite: upper division standing.
 Learn the art of persuasion and selling. Theory and applications of the basic tenets of persuasion and how such scientifically supported techniques can be deployed to positively impact the sales process.

111. Issues in Technology, Business, and Society
 (1) STAFF
 Prerequisite: upper division standing.
 Enrollment Comments: Quarters usually offered: Fall, Winter, Spring.

20. Fundamentals of Business Strategy
 (4) HANSEN
 Prerequisite: upper division standing.
 Lecture series where entrepreneurial, technological, business, and governmental leaders share their lessons of experience and discuss current business issues. For anyone interested in entrepreneurship, management, technology development, and commercialization and the impact that innovation has on society.

120. Fundamentals of Business Strategy
 (4) STAFF
 Prerequisite: upper division standing.
 Introduction to critical business principles and practices required by leaders for business success and societal benefit. Students will be exposed to key management theories, models and tools in strategy, finance, accounting, commercialization, marketing, and sales.

122. Entrepreneurship
 (4) STAFF
 Prerequisite: TMP 120 with grade of B- or better, and upper division standing.
 Learn how to start any kind of venture; for profit, non-profit, service, sole-proprietorship, with a focus on high-tech ventures. Analysis of new business opportunities, development of customer-centric value propositions, financing, marketing, selling and protection of intellectual property.

124. Principles of Marketing
 (4) STAFF
 Prerequisite: TMP 120 with a grade of B- or better and upper division standing.
 Introduces fundamental principles, processes, and tools of marketing which are used to create, communicate and deliver the value of products and services to customers, clients, partners, and society. This is done with an array of essential topics, such as the identification of customer needs and wants, the assessment of the competitive environment, selection of the most appropriate target opportunities, development of an integrated marketing strategy, and disciplined execution.

127. Understanding and Managing Technology Organizations
 (4) STAFF
 Prerequisite: TMP 120 with a grade of B- or better and upper division standing.
 Participating in, managing, and leading successful careers, teams, and organizations. Current theories and practices concerning motivation, organizational culture, communications, effective decision making, team effectiveness and others presented and discussed.

131. Introductions to Patents and Intellectual Property
 (3) STAFF
 Prerequisite: TMP 122, TMP 149, or equivalent.
 A twice-weekly series of seminars about the creation of sustainable new business ventures from inception to launch. Intended for students participating in the TMP New Venture Competition. (W)

149. Creating a Market-Tested Business Model
 (4) STAFF
 Recommended Preparation: TMP 122.
 Quarters usually offered: Winter.
 Course provides an experiential learning opportunity, showing how a successful business model can be created through the use of customer and market validation process. (W)

191AA-ZZ. Special Topics in Business and Management
 (2-4) STAFF
 Prerequisite: Upper-division standing.
 Recommended Preparation: TMP 122.
 Quarters usually offered: Winter.
 Courses provide for the study of topics of current interest in the areas of business, technology, management, entrepreneurship, and other issues related to management and creation of sustainable businesses.

GRADUATE COURSES

Graduate courses for this program can be found in the UCSB General Catalog.
CHEMICAL ENGINEERING 2019-20

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREPARATION FOR THE MAJOR 74</td>
</tr>
<tr>
<td>CH E 5 .. .3</td>
</tr>
<tr>
<td>CH E 103</td>
</tr>
<tr>
<td>CHEM 1A, 1B, 1C or 2A, 2B, 2C9</td>
</tr>
<tr>
<td>CHEM 1AL, 1BL, 1CL or 2AC, 2BC, 2CC6</td>
</tr>
<tr>
<td>CHEM 6AL-BL6</td>
</tr>
<tr>
<td>CHEM 109A or AH, 109B or BH8</td>
</tr>
<tr>
<td>ENGR 3 ... 3</td>
</tr>
<tr>
<td>MATH 3A-B, 4A or 4AI, 4B or 4BI, 6A or 6AI, 6B ...24</td>
</tr>
<tr>
<td>PHYS 1, 2, 3, 3L .. 12</td>
</tr>
</tbody>
</table>

UPPER DIVISION MAJOR 81

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 1073</td>
</tr>
<tr>
<td>CH E 110A-B6</td>
</tr>
<tr>
<td>CH E 118 .. 1</td>
</tr>
<tr>
<td>CH E 120A-B-C10</td>
</tr>
<tr>
<td>CH E 128 .. 3</td>
</tr>
<tr>
<td>CH E 132A-B-C10</td>
</tr>
<tr>
<td>CH E 140A-B6</td>
</tr>
<tr>
<td>CH E 152A .. 4</td>
</tr>
<tr>
<td>CH E 180A-B6</td>
</tr>
<tr>
<td>CH E 184A-B6</td>
</tr>
<tr>
<td>CHEM 113B-C .. 8</td>
</tr>
<tr>
<td>MATRL 101 or MATRL 100B **^3</td>
</tr>
</tbody>
</table>

UNIVERSITY REQUIREMENTS

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>American History and Institutions – (one 4-unit course, may be counted as G.E. if selected from approved list)</td>
</tr>
<tr>
<td>UC Entry Level Requirement: English Composition Must be fulfilled within three quarters of matriculation Satisfied by:</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION

General Subject Areas

<table>
<thead>
<tr>
<th>Area A: English Reading & Comprehension – (2 courses required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1: ____________________________</td>
</tr>
<tr>
<td>A-2: ____________________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area D: Social Science (2 courses minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>____________________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area E: Culture and Thought (2 courses minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>____________________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area F: The Arts (1 course minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>____________________________</td>
</tr>
</tbody>
</table>

Special Subject Areas

<table>
<thead>
<tr>
<th>Ethnicity (1 course):</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Traditions or World Cultures (1 course):</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Writing (4 courses required):</th>
</tr>
</thead>
<tbody>
<tr>
<td>____________________________</td>
</tr>
</tbody>
</table>

NON-MAJOR ELECTIVES 32

| Courses that can apply toward the major, inside or outside of the Department of Chemical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades. |

TOTAL UNITS REQUIRED FOR GRADUATION 187

*^ see note on next page
CHEMICAL ENGINEERING 2019-20

FRESHMAN YEAR

<table>
<thead>
<tr>
<th></th>
<th>FALL Units</th>
<th>WINTER</th>
<th>SPRING Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 5</td>
<td>3</td>
<td>CH E 1B or 2B</td>
<td>3 CH E 1C or 2C</td>
</tr>
<tr>
<td>CHEM 1A or 2A</td>
<td>3</td>
<td>CHEM 1BL or 2BC</td>
<td>2 CHEM 1CL or 2CC</td>
</tr>
<tr>
<td>CHEM 1AL or 2AC</td>
<td>2</td>
<td>MATH 3B</td>
<td>4 ENGR 3</td>
</tr>
<tr>
<td>MATH 3A</td>
<td>4</td>
<td>PHYS 1</td>
<td>4 MATH 4A or 4 AI</td>
</tr>
<tr>
<td>WRIT 1E or 2E</td>
<td>4</td>
<td>WRIT 2E or 50E</td>
<td>4 PHYS 2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th></th>
<th>FALL Units</th>
<th>WINTER</th>
<th>SPRING Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 10</td>
<td>3</td>
<td>CH E 107</td>
<td>3 CH E 110B</td>
</tr>
<tr>
<td>CHEM 109A or 109AH</td>
<td>4</td>
<td>CH E 110A</td>
<td>3 CH E 132A</td>
</tr>
<tr>
<td>MATH 4B or 4BI</td>
<td>4</td>
<td>CHEM 6AL</td>
<td>3 CHEM 6BL</td>
</tr>
<tr>
<td>PHYS 3</td>
<td>3</td>
<td>CHEM 109B or 109BH</td>
<td>4 MATH 6B</td>
</tr>
<tr>
<td>PHYS 3L</td>
<td>1</td>
<td>MATH 6A or 6AI</td>
<td>4 G.E. Elective</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th></th>
<th>FALL Units</th>
<th>WINTER</th>
<th>SPRING Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 120A</td>
<td>4</td>
<td>CH E 120B</td>
<td>3 CH E 118</td>
</tr>
<tr>
<td>CH E 128</td>
<td>3</td>
<td>CH E 132C</td>
<td>3 CH E 120C</td>
</tr>
<tr>
<td>CH E 132B</td>
<td>3</td>
<td>CHEM 113B</td>
<td>4 CH E 140A</td>
</tr>
<tr>
<td>G.E. Elective</td>
<td>4</td>
<td>MATRL 101 or MATRL 100B</td>
<td>3 CH E 180A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Elective</td>
<td>3 CHEM 113C</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th></th>
<th>FALL Units</th>
<th>WINTER</th>
<th>SPRING Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 140B</td>
<td>3</td>
<td>CH E 180B</td>
<td>3 CH E 184B</td>
</tr>
<tr>
<td>CH E 152A</td>
<td>4</td>
<td>CH E 184A</td>
<td>3 G.E. Elective</td>
</tr>
<tr>
<td>G.E. Elective</td>
<td>4</td>
<td>G.E. Elective</td>
<td>4 Technical Elective</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

* If applying to the BS/MS Materials program student must take:
 - Sophomore year: Phys 4 in Winter or Spring
 - Junior year: MATRL 100A in Fall, MATRL 100B in Winter, MATRL 100C in Spring

Students may only count one course toward the major. (MATRL 101 OR MATRL 100B)
COMPUTER ENGINEERING 2019-20

Preparation for the Major

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A, 1AL or 2A, 2AC</td>
<td>5</td>
</tr>
<tr>
<td>CMPSC 16</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 24</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 32</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 40</td>
<td>5</td>
</tr>
<tr>
<td>ECE 1A-1B</td>
<td>2</td>
</tr>
<tr>
<td>ECE 10A, 10AL, 10B, 10BL, 10C, 10CL</td>
<td>15</td>
</tr>
<tr>
<td>ECE 15A</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3A-B, 4A-B</td>
<td>16</td>
</tr>
<tr>
<td>PHYS 1, 2, 3, 3L, 4, 4L</td>
<td>16</td>
</tr>
</tbody>
</table>

Units: 75

Upper Division Major

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 130A</td>
<td>4</td>
</tr>
<tr>
<td>ECE 139 or PSTAT 120A</td>
<td>4</td>
</tr>
<tr>
<td>ECE 152A</td>
<td>5</td>
</tr>
<tr>
<td>ECE 154A</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>3</td>
</tr>
</tbody>
</table>

Computer Engineering electives selected from the following list: 48

Prior approval of the student's departmental electives must be obtained from the student's faculty adviser.

Units: 68

Requirements:
- Must include at least 2 sequences and 8 units of senior computer systems project CMPSC 189 A-B/ECE 189A-B-C.
 - CMPSC 130B
 - CMPSC 138
 - CMPSC 153A/ECE 153A
 - CMPSC 160
 - CMPSC 162
 - CMPSC 165A-B
 - CMPSC 170
 - CMPSC 171/ECE 151
 - CMPSC 174A
 - CMPSC 176A-B/ECE 155A-B
 - CMPSC 176C
 - CMPSC 177
 - CMPSC 178
 - CMPSC 181/ECE 181

Elective taken:

University Requirements

- American History and Institutions – (one 4-unit course) (may be counted as G.E. if selected from approved list)

- UC Entry Level Requirement: English Composition
 - Must be fulfilled within three quarters of matriculation
 - Satisfied by:

General Education

General Subject Areas

- **Area A:** English Reading & Comprehension – (2 courses required)
 - A-1: ___________________________
 - A-2: ___________________________

- **Area D:** Social Science
 - (2 courses minimum)

- **Area E:** Culture and Thought
 - (2 courses minimum)

- **Area F:** The Arts
 - (1 course minimum)

- **Area G:** Literature
 - (1 course minimum)

Special Subject Areas

- Ethnicity
 - (1 course):

- European Traditions
 - or World Cultures

- Writing
 - (4 courses required):

Non-Major Electives

- General Education and Free Electives taken:

Total Units Required for Graduation: 191
COMPUTER ENGINEERING 2019-20

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A or 2A</td>
<td>3</td>
<td>ECE 1A</td>
<td>1</td>
<td>CMPSC 16</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1AL or 2AC</td>
<td>2</td>
<td>Math, Science,</td>
<td>1</td>
<td>ECE 1B</td>
<td>1</td>
</tr>
<tr>
<td>MATH 3A</td>
<td>4</td>
<td>Engr. Elective</td>
<td>4</td>
<td>MATH 4A</td>
<td>4</td>
</tr>
<tr>
<td>G.E. Elective or CMPSC 8<sup>1</sup></td>
<td>4</td>
<td>MATH 3B</td>
<td>4</td>
<td>PHYS 2</td>
<td>4</td>
</tr>
<tr>
<td>WRIT 1E or 2E</td>
<td>4</td>
<td>PHYS 1</td>
<td>4</td>
<td>WRIT 50E or G.E. Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WRIT 2E or 50E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
<td>17</td>
<td></td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 24</td>
<td>4</td>
<td>CMPSC 40</td>
<td>5</td>
<td>CMPSC 32</td>
<td>4</td>
</tr>
<tr>
<td>ECE 10A</td>
<td>3</td>
<td>ECE 10B</td>
<td>3</td>
<td>ECE 10C</td>
<td>3</td>
</tr>
<tr>
<td>ECE 10AL</td>
<td>2</td>
<td>ECE10BL</td>
<td>2</td>
<td>ECE 10CL</td>
<td>2</td>
</tr>
<tr>
<td>MATH 4B</td>
<td>4</td>
<td>ECE 15A</td>
<td>4</td>
<td>ECE 152A</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 3</td>
<td>3</td>
<td>PHYS 4</td>
<td>3</td>
<td>ECE 139 or PSTAT 120A<sup>2</sup></td>
<td>4</td>
</tr>
<tr>
<td>PHYS 3L</td>
<td>1</td>
<td>PHYS 4L</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
<td>18</td>
<td></td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 154A</td>
<td>4</td>
<td>CMPSC 130A</td>
<td>4</td>
<td>CMPEN Electives</td>
<td>8</td>
</tr>
<tr>
<td>CMPEN Elective</td>
<td>8</td>
<td>CMPEN Elective</td>
<td>4</td>
<td>G.E. or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>G.E. or Free Electives</td>
<td>4</td>
<td>G.E. or Free Electives</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>16</td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPEN Electives</td>
<td>12</td>
<td>CMPEN Electives</td>
<td>8</td>
<td>CMPEN Electives</td>
<td>8</td>
</tr>
<tr>
<td>Free Elective</td>
<td>4</td>
<td>ENGR 101<sup>3</sup></td>
<td>3</td>
<td>G.E. or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free Elective</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>15</td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

1 CS 8 may be used to satisfy the Math, Science, Engineering Elective requirement.

2 PSTAT 120A is offered each quarter. ECE 139 is offered only in spring quarter, and is better suited for future upper division electives for the Computer Engineering major.

3 ENGR 101 may be taken any quarter of senior year.
COMPUTER SCIENCE 2019-20

PREPARATION FOR THE MAJOR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 16</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 24</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 32</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 40</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 48</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 56</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 64</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3A-B, 4A-B, 6A</td>
<td>20</td>
</tr>
<tr>
<td>PSTAT 120A</td>
<td>4</td>
</tr>
</tbody>
</table>

UPPER DIVISION MAJOR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 111 or 140</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 130A-B</td>
<td>8</td>
</tr>
<tr>
<td>CMPSC 138</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 154</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 160 or 162</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 170</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>3</td>
</tr>
<tr>
<td>PSTAT 120B</td>
<td>4</td>
</tr>
</tbody>
</table>

Major Field Electives: 28 units (selected from the following list (at least 8 units must be CMPSC courses))

Prior approval of the student's major field electives must be obtained from the faculty advisor.

1. CMPSC 111 or CMPSC 140 can be used as an elective if not taken as a major course.
2. CMPSC 160 or CMPSC 162 can be used as an elective if not taken as a major course.
3. Four units maximum from CMPSC 192 and CMPSC 196 combined; only for students with GPA of 3.0 or higher.
4. Only for students who have met the requirements. Please see department advisor for more information.

UNIVERSITY REQUIREMENTS

American History and Institutions – (one 4-unit course, may be counted as G.E. if selected from approved list)

UC Entry Level Requirement: English Composition

Must be fulfilled within three quarters of matriculation

Satisfied by:

GENERAL EDUCATION

General Subject Areas

Area A: English Reading & Comprehension – (2 courses required)

- **A-1:**
- **A-2:**

Area D: Social Science

(2 courses minimum)

Area E: Culture and Thought

(2 courses minimum)

Area F: The Arts

(1 course minimum)

Area G: Literature

(1 course minimum)

Special Subject Areas

Ethnicity (1 course):

European Traditions or **World Cultures** (1 course):

Writing (4 courses required):

NON-MAJOR ELECTIVES

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1, 2, 3, 3L</td>
<td>12</td>
</tr>
<tr>
<td>Science Electives</td>
<td>8</td>
</tr>
</tbody>
</table>

Courses that can apply toward the major, inside or outside of the Department of Computer Science, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.

TOTAL UNITS REQUIRED FOR GRADUATION

184
FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Term</th>
<th>FALL units</th>
<th>WINTER units</th>
<th>SPRING units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td>G.E. Elective or CMPSC 8<sup>1</sup> 4</td>
<td>CMPSC 16<sup>1</sup> 4</td>
<td>CMPSC 24 4</td>
</tr>
<tr>
<td></td>
<td>MATH 3A 4</td>
<td>MATH 3B 4</td>
<td>MATH 4A 4</td>
</tr>
<tr>
<td></td>
<td>WRIT 1, 2, or G.E. Elective 4/5</td>
<td>PHYS 1 4</td>
<td>PHYS 2 4</td>
</tr>
<tr>
<td></td>
<td>G.E. Elective 4</td>
<td>WRIT 1, 2, or G.E. Elective 4/5</td>
<td>Science or Free Elective 4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16/17</td>
<td>16/17</td>
<td>16</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Term</th>
<th>FALL units</th>
<th>WINTER units</th>
<th>SPRING units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td>CMPSC 32 4</td>
<td>CMPSC 56 4</td>
<td>CMPSC 48 4</td>
</tr>
<tr>
<td></td>
<td>CMPSC 40 5</td>
<td>CMPSC 64 4</td>
<td>Math 6A 4</td>
</tr>
<tr>
<td></td>
<td>MATH 4B 4</td>
<td>PSTAT 120A 4</td>
<td>G.E. Elective 4</td>
</tr>
<tr>
<td></td>
<td>PHYS 3 3</td>
<td>WRIT 50 4</td>
<td>Science or Free Elective 4</td>
</tr>
<tr>
<td></td>
<td>PHYS 3L 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Term</th>
<th>FALL units</th>
<th>WINTER units</th>
<th>SPRING units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td>CMPSC 130A 4</td>
<td>CMPSC 130B 4</td>
<td>CMPSC 154 4</td>
</tr>
<tr>
<td></td>
<td>CMPSC 138 4</td>
<td>Field Elective 4</td>
<td>PSTAT 120B 4</td>
</tr>
<tr>
<td></td>
<td>G.E. Elective 4</td>
<td>Free Elective 4</td>
<td>Field or Free Elective 4</td>
</tr>
<tr>
<td></td>
<td>Science or Free Elective 4</td>
<td>G.E. Elective 4</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Term</th>
<th>FALL units</th>
<th>WINTER units</th>
<th>SPRING units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td>Field or Free Elective 4</td>
<td>CMPSC 170 4</td>
<td>Field or Free Elective 4</td>
</tr>
<tr>
<td></td>
<td>CMPSC 160<sup>2</sup> 4</td>
<td>CMPSC 111<sup>3</sup> 4</td>
<td>Field or Free Elective 4</td>
</tr>
<tr>
<td></td>
<td>Field or Free Elective 4</td>
<td>ENGR 101<sup>4</sup> 3</td>
<td>G.E. or Free Elective 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Field or Free Elective 4</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
<td>15</td>
<td>12</td>
</tr>
</tbody>
</table>

1. Consult Computer Science academic advisor for placement information.
2. Or you may take CMPSC 162 to satisfy this requirement.
3. Or you may take CMPSC 140 in Winter Quarter to satisfy this requirement.
4. ENGR 101 may be taken any quarter of senior year.
Electrical Engineering 2019-20

Preparation for the Major

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A, 1AL or 2A, 2AC</td>
<td>5</td>
</tr>
<tr>
<td>CMPSC 16</td>
<td>4</td>
</tr>
<tr>
<td>ECE 5</td>
<td>4</td>
</tr>
<tr>
<td>ECE 10A, 10AL, 10B, 10BL, 10C, 10CL</td>
<td>15</td>
</tr>
<tr>
<td>ECE 15A</td>
<td>4</td>
</tr>
<tr>
<td>ECE 3</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2A-B or 3A-B, 4A-B, 6A-B</td>
<td>24</td>
</tr>
<tr>
<td>PHYS 1, 2, 3, 3L, 4, 4L, 5, 5L</td>
<td>20</td>
</tr>
</tbody>
</table>

Upper Division Major

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 130A-B</td>
<td>8</td>
</tr>
<tr>
<td>ECE 132</td>
<td>4</td>
</tr>
<tr>
<td>ECE 134</td>
<td>4</td>
</tr>
<tr>
<td>ECE 137A-B</td>
<td>8</td>
</tr>
<tr>
<td>ECE 139</td>
<td>4</td>
</tr>
<tr>
<td>ECE 152A</td>
<td>5</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>3</td>
</tr>
</tbody>
</table>

Departmental electives selected from the following list: 32 units

Prior approval of the student's departmental electives must be obtained from the student's faculty adviser. Must include at least 2 sequences, one of which must be an approved EE Senior Capstone Design/Project course sequence.

University Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>American History and Institutions – (one 4-unit course, may be counted as G.E. if selected from approved list)</td>
<td></td>
</tr>
<tr>
<td>UC Entry Level Requirement: English Composition</td>
<td></td>
</tr>
<tr>
<td>Must be fulfilled within three quarters of matriculation</td>
<td></td>
</tr>
</tbody>
</table>

Satisfied by: ____________________________

General Education

General Subject Areas

- **Area A:** English Reading & Comprehension – (2 courses required)
 - A-1: ____________________________
 - A-2: ____________________________

- **Area D:** Social Science (2 courses minimum)
 - Area E: Culture and Thought (2 courses minimum)
 - Area F: The Arts (1 course minimum)
 - Area G: Literature (1 course minimum)

Special Subject Areas

- Ethnicity (1 course): ____________________________
- European Traditions or World Cultures (1 course): ____________________________
- Writing (4 courses required):
 - ____________________________
 - ____________________________
 - ____________________________
 - ____________________________

Non-Major Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education and Free Electives taken:</td>
<td></td>
</tr>
</tbody>
</table>

Total Units Required for Graduation

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL UNITS REQUIRED FOR GRADUATION</td>
<td>189</td>
</tr>
</tbody>
</table>
ELECTRICAL ENGINEERING 2019-20

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A or 2A</td>
<td>ECE 5</td>
<td>CMPSC 16</td>
</tr>
<tr>
<td>CHEM 1AL or 2AC</td>
<td>MATH 3B</td>
<td>MATH 4A</td>
</tr>
<tr>
<td>ECE 3</td>
<td>PHYS 1</td>
<td>PHYS 2</td>
</tr>
<tr>
<td>MATH 3A</td>
<td>WRIT 2E or 50E</td>
<td>WRIT 50E or G.E.</td>
</tr>
<tr>
<td>WRIT 1E or 2E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 10A</td>
<td>ECE 10B</td>
<td>ECE 10C</td>
</tr>
<tr>
<td>ECE 10AL</td>
<td>ECE 10BL</td>
<td>ECE 10CL</td>
</tr>
<tr>
<td>MATH 4B</td>
<td>ECE 15A</td>
<td>MATH 6B</td>
</tr>
<tr>
<td>PHYS 3</td>
<td>MATH 6A</td>
<td>PHYS 5</td>
</tr>
<tr>
<td>PHYS 3L</td>
<td>PHYS 4</td>
<td>PHYS 5L</td>
</tr>
<tr>
<td></td>
<td>PHYS 4L</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>13</td>
<td>17</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 130A</td>
<td>ECE 130B</td>
<td>ECE 137B</td>
</tr>
<tr>
<td>ECE 132</td>
<td>ECE 137A</td>
<td>ECE 139(^1)</td>
</tr>
<tr>
<td>ECE 134</td>
<td>ECE Elective</td>
<td>ECE 152A(^2)</td>
</tr>
<tr>
<td>G.E. or Free Elective</td>
<td>G.E. or Free Elective</td>
<td>G.E. or Free Elective</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE Electives(^4)</td>
<td>ECE Electives</td>
<td>ECE Electives</td>
</tr>
<tr>
<td>G.E. or Free Elective</td>
<td>G.E. or Free Electives</td>
<td>ENGR 101(^3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G.E. or Free Electives</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

\(^1\) ECE 139 may also be taken in the spring quarter of the sophomore year.
\(^2\) ECE 152A may also be taken in the spring quarter of the sophomore year.
\(^3\) ENGR 101 may be taken any quarter of senior year.
\(^4\) ECE Electives must include at least two sequences, one of which must be an approved EE senior capstone design project sequence.
PREPARATION FOR THE MAJOR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A, 1AL, 1B, 1BL or 2A, 2AC, 2B, 2BC</td>
<td>10</td>
</tr>
<tr>
<td>ENGR 3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3A-B, 4A-B, 6A-B</td>
<td>24</td>
</tr>
<tr>
<td>ME 6</td>
<td>4</td>
</tr>
<tr>
<td>ME 10</td>
<td>4</td>
</tr>
<tr>
<td>ME 12S</td>
<td>1</td>
</tr>
<tr>
<td>ME 14</td>
<td>4</td>
</tr>
<tr>
<td>ME 15</td>
<td>4</td>
</tr>
<tr>
<td>ME 16</td>
<td>4</td>
</tr>
<tr>
<td>ME 17</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1, 2, 3, 3L, 4, 4L</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Units: 77

UNIVERSITY REQUIREMENTS

- **American History and Institutions** – (one 4-unit course, may be counted as G.E. if selected from approved list)
- **UC Entry Level Requirement: English Composition**
 - Must be fulfilled within three quarters of matriculation
 - Satisfied by:

GENERAL EDUCATION

General Subject Areas

- **Area A: English Reading & Comprehension** – (2 courses required)
 - A-1: __________________ A-2: __________________

- **Area D: Social Science**
 - (2 courses minimum)

- **Area E: Culture and Thought**
 - (2 courses minimum)

- **Area F: The Arts**
 - (1 course minimum)

- **Area G: Literature**
 - (1 course minimum)

Special Subject Areas

- **Ethnicity** (1 course):
- **European Traditions** or **World Cultures** (1 course):

- **Writing** (4 courses required):

NON-MAJOR ELECTIVES

- **General Education and Free Electives taken:**

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 109A</td>
<td></td>
</tr>
<tr>
<td>CHEM 123</td>
<td></td>
</tr>
<tr>
<td>ECE 147A,C</td>
<td></td>
</tr>
<tr>
<td>ECE 181B</td>
<td></td>
</tr>
<tr>
<td>ENGR 101</td>
<td></td>
</tr>
<tr>
<td>ENGR 195A-B-C</td>
<td></td>
</tr>
<tr>
<td>ENV S 105</td>
<td></td>
</tr>
<tr>
<td>MATRL 100A</td>
<td></td>
</tr>
<tr>
<td>MATRL 100C</td>
<td></td>
</tr>
<tr>
<td>MATRL 186A-B</td>
<td></td>
</tr>
<tr>
<td>MATRL 188</td>
<td></td>
</tr>
<tr>
<td>ME 102</td>
<td></td>
</tr>
<tr>
<td>ME 110</td>
<td></td>
</tr>
</tbody>
</table>

Total Units Required for Graduation: 180

Courses that can apply toward the major, inside or outside of the Department of Mechanical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.

ME W167 online version of ME 167.

Four units maximum from ME 197 and ME 199 combined.
MECHANICAL ENGINEERING 2019-20

FRESHMAN YEAR

<table>
<thead>
<tr>
<th></th>
<th>FALL units</th>
<th>WINTER units</th>
<th>SPRING units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A or 2A</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1AL or 2AC</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3A</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>ME 12S(^1)</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>WRIT 1E or 2E</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14</td>
<td>17</td>
<td>19</td>
</tr>
</tbody>
</table>

\(^1\)ME 12S is offered every Fall, Winter, and Spring quarter. The ME 12S requirement must be finished before the start of the Third Year.

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th></th>
<th>FALL units</th>
<th>WINTER units</th>
<th>SPRING units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4B</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ME 14</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 3</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3L</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>G.E. Elective</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>16</td>
<td>15</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th></th>
<th>FALL units</th>
<th>WINTER units</th>
<th>SPRING units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 104</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ME 151A</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>ME 152A</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>G.E. or Free Elective</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th></th>
<th>FALL units</th>
<th>WINTER units</th>
<th>SPRING units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 154, ME 157, or ME 167(^3)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ME 189A</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Departmental Electives</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>G.E. or Free Electives</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>16</td>
<td>13</td>
</tr>
</tbody>
</table>

\(^2\)If applying to the BS/MS Materials program, juniors must take MATRL 100A in Fall, MATRL 100B in Winter, and MATRL 100C in Spring.

\(^3\)Course availability may vary. If using ME 154, ME 157, or ME 167 to satisfy requirement, students may not count the course as an Engineering Elective.

\(^4\)Students may only count one course toward the major. (MATRL 101 OR MATRL 100B)
Additional Resources and Information

Gaucho On-Line Data (GOLD) – student record, class registration, degree audits—https://my.sa.ucsb.edu/gold
UMAIL – campus email for official notifications—http://www.umail.ucsb.edu
Schedule of Classes information – quarterly calendar and information—http://www.registrar.ucsb.edu
General Catalog for UCSB – academic requirements for all campus majors—http://my.sa.ucsb.edu/Catalog/
Summer Sessions – Summer programs and course offerings—http://www.summer.ucsb.edu
Tutoring – course-specific tutoring and academic skills development—http://www.clas.ucsb.edu
Education Abroad Program – EAP options for engineering students—email: eap@engineering.ucsb.edu
College Honors Program – program information and opportunities—email: honors@engineering.ucsb.edu

Advising Staff

College Advisors: general education requirements, academic standing, final degree clearance

Departmental Advisors: course selection, class enrollment, change of major, academic requirements

<table>
<thead>
<tr>
<th>College Advising staff</th>
<th>Phone</th>
<th>Email</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(805) 893-2809</td>
<td>coe-info@engr.ucsb.edu</td>
<td>Harold Frank Hall, Rm. 1006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Departmental Advisors:</th>
<th>Phone</th>
<th>Email</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering</td>
<td>893-8671</td>
<td>cheugrads@engr.ucsb.edu</td>
<td>Engr.II, Rm. 3357</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>893-8292</td>
<td>ugrad-advisor@ece.ucsb.edu</td>
<td>Trailer 380, Rm. 101</td>
</tr>
<tr>
<td>Computer Science</td>
<td>893-4321</td>
<td>ugradhelp@cs.ucsb.edu</td>
<td>Harold Frank Hall, Rm. 2104</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>893-8292</td>
<td>ugrad-advisor@ece.ucsb.edu</td>
<td>Trailer 380, Rm. 101</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>893-8198</td>
<td>meugrad@engr.ucsb.edu</td>
<td>Engr.II, Rm. 2355</td>
</tr>
<tr>
<td>Technology Management</td>
<td>893-2729</td>
<td>tmp@tmp.ucsb.edu</td>
<td>Phelps 1333</td>
</tr>
</tbody>
</table>
Policy on Academic Conduct

It is expected that all students in the College of Engineering, as well as those who take courses within the College, understand and subscribe to the ideal of academic integrity. To provide guidance on this, the College of Engineering has adopted a policy on expected academic conduct, a full copy of which appears below. As an example, it is not acceptable by default to work collaboratively on a homework assignment. In computer programming courses, a mere preliminary discussion of an assignment can lead to similarities in the final program that are detectable by sophisticated plagiarism detection software (see http://theory.stanford.edu/~aiken/moss/).

Instructors who have established that academic misconduct has occurred in their class have a variety of options at their disposal, which range from allowing the student to redo the work and/or assigning a failing grade to referring the case to the UCSB Judicial Affairs Office for either a letter of warning or a formal hearing before the Student-Faculty Committee on Student Conduct. Instructors are encouraged to discuss these remedies in further detail with the Associate Dean for Undergraduate Studies in the College of Engineering. Moreover, students who have been suspended because of academic misconduct charges are encouraged to work with the College of Engineering Undergraduate Office to develop an amended schedule that will permit the timeliest possible completion of a degree program.

College of Engineering Policy
The College of Engineering’s Academic Conduct Policy is compatible with that of the University of California, in that it is expected that students understand and subscribe to the ideal of academic integrity, and are willing to bear individual responsibility for their work. Any work (written or otherwise) submitted to fulfill an academic requirement must represent a student’s original work. Any act of academic dishonesty, such as cheating or plagiarism, will subject a person to University disciplinary action.

Cheating is defined by UCSB as the use, or attempted use, of materials, information, study aids, or services not authorized by the instructor of the course. The College of Engineering interprets this to include the unauthorized use of notes, study aids, electronic or other equipment during an examination or quiz; copying or looking at another individual’s examination or quiz; taking or passing information to another individual during an examination or quiz; taking an examination or quiz for another individual; allowing another individual to take one’s examination; stealing examinations or quizzes. Students working on take-home exams or quizzes should not consult students or sources other than those permitted by the instructor.

Plagiarism is defined by UCSB as the representation of words, ideas, or concepts of another person without appropriate attribution. The College of Engineering expands this definition to include the use of or presentation of computer code, formulae, ideas, or research results without appropriate attribution.

Collaboration on homework assignments (i.e., problem sets), especially in light of the recognized pedagogical benefit of group study, is dictated by standards that can and do vary widely from course to course and instructor to instructor. The use of old solution sets and published solution guides presents a similar situation. Because homework assignments serve two functions—helping students learn the material and helping instructors evaluate academic performance—it is usually not obvious how much collaboration or assistance from commonly-available solutions, if any, the instructor expects. It is therefore imperative that students and instructors play an active role in communicating expectations about the nature and extent of collaboration or assistance from materials that is permissible or encouraged.

Expectations of Members of the College Academic Community
In their classes, faculty are expected to (i) announce and discuss specific problems of academic dishonesty that pertain particularly to their classes (e.g., acceptable and unacceptable cooperation on projects or homework); (ii) act reasonably to prevent academic dishonesty in preparing and administering academic exercises, including examinations, laboratory activities, homework and other assignments, etc.; (iii) act to prevent cheating from continuing when it has been observed or reported to them by students, chairs, or deans; and, (iv) clearly define for students the maximum level of collaboration permitted for their work to still be considered individual work.

In their academic work, students are expected to (i) maintain personal academic integrity; (ii) treat all exams and quizzes as work to be conducted privately, unless otherwise instructed; (iii) take responsibility for knowing the limits of permissible or expected cooperation on any assignment.
Notes
Follow, Like and Find UC Santa Barbara College of Engineering on Social Media

UC SANTA BARBARA
College of Engineering