A 45nm Logic Technology with High-k + Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging

<u>K. Mistry</u>, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau^{*}, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He[#], J. Hicks[#], R. Heussner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz[#], B. McIntyre, P. Moon, J. Neirynck, S. Pae[#], C. Parker, D. Parsons, C. Prasad[#], L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren[%], J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, K. Zawadzki

Portland Technology Development, *CR, #QRE, %PTM Intel Corporation

Outline

- Introduction
- Process Features
- Transistors
- Interconnects
- Manufacturing
- Conclusions

Introduction

- SiON scaling running out of atoms
- Poly depletion limits inversion T_{ox} scaling

High-k + Metal Gate Benefits

- High-k gate dielectric

 Reduced gate leakage
 T_{ox} scaling
- Metal gates
 - Eliminate polysilicon depletion

 Resolves V_T pinning and poor mobility for high-k dielectrics

High-k + Metal Gate Challenges

High-k gate dielectric

 Poor mobility, V_T pinning due to soft optical phonons
 Poor reliability

Metal gates

- Dual bandedge workfunctions
- Thermal stability
- Integration scheme

Outline

- Introduction
- Process Features
- Transistors
- Interconnects
- Manufacturing
- Conclusions

Process Features

- 45 nm Groundrules
- 193 nm Dry Lithography
- High-K + Metal Gate Transistors
- 3RD Generation Strained Silicon
- Trench Contacts with Local Routing
- 9 Cu Interconnect Layers
- 100% Lead-free Packaging

Process Features

- 45 nm Groundrules
- 193 nm Dry Lithography
- High-K + Metal Gate Transistors
- 3RD Generation Strained Silicon
- Trench Contacts with Local Routing
- 9 Cu Interconnect Layers
- 100% Lead-free Packaging

45nm Design Rules

Layer	Pitch (nm)	Thick (nm)	Aspect Ratio
Isolation	200	200	
Contacted Gate	160	60	
Metal 1	160	144	1.8
Metal 2	160	144	1.8
Metal 3	160	144	1.8
Metal 4	240	216	1.8
Metal 5	280	252	1.8
Metal 6	360	324	1.8
Metal 7	560	504	1.8
Metal 8	810	720	1.8
Metal 9	30.5µm	7μm	0.4

~0.7x linear scaling from 65nm

Contacted Gate Pitch

Transistor gate pitch of 160 nm continues
 0.7x per generation scaling

SRAM Cells

0.346 μm² and 0.382 μm² SRAM cells – Optimize density and power/performance

SRAM Array Density

SRAM array density achieves 1.9 Mb/mm²
 Includes row/column drivers and other circuitry

Outline

- Introduction
- Process Features
- Transistors
- Interconnects
- Manufacturing
- Conclusions

- Key considerations
 - Integrate hafnium-based high-k dielectric, dual metal gate electrodes, strained silicon
 Thermal stability of metal gate electrodes

- High-k First, Metal Gate Last
 - Metal gate deposition after high temperature anneals
 - Integrated with strained silicon process
 - Transistor mask count same as 65nm

Standard process except for ALD high-k

e-SiGe & S/D, Thermal anneal, ILD0 deposition

Poly Opening Polish

Dummy Poly removal

PMOS WF Metal deposition

PMOS WF Metal patterning

NMOS WF Metal deposition

Metal Gate trenches filled with low resistance Al

15h

Metal Gate Polish

High-k + Metal gate transistor formation complete

Transistor Features

- 35 nm min. gate length
- 160 nm contacted gate pitch
- 1.0 nm EOT Hi-K
- Dual workfunction
 metal gate electrodes
- 3RD generation of strained silicon

Gate Leakage

 Gate leakage is reduced >25X for NMOS and 1000X for PMOS

Optimal Workfunction Metals Excellent V_T rolloff and DIBL

3RD Generation Strained Silicon

- Increased Ge fraction
 - -90 nm: 17% Ge
 - -65 nm: 23% Ge
 - -45 nm: 30% Ge

 SiGe closer to channel

NMOS I_{DSAT} vs. I_{OFF}

PMOS I_{DSAT} vs. I_{OFF}

Transistor Performance vs. Gate Pitch

Ring Oscillator Performance

FO=2 delay of 5.1 ps at $I_{OFFN} = I_{OFFP} = 100 \text{ nA}/\mu\text{m}$ 23% better than 65 nm at the same leakage

Transistor Reliability Challenges

Defect types in SiO₂ have been studied for decades

 New defect types for high-k need to be suppressed

T_{INV} scaled ~0.7X relative to 65 nm
 – Need to support 30% higher E-field

Transistor Reliability - TDDB

45nm High-k + Metal Gate supports 30% higher E-field

Transistor Reliability: Bias Temperature

Outline

- Introduction
- Process Features
- Transistors
- Interconnects
- Manufacturing
- Conclusions

Interconnects

- Metal 1-3 pitches match transistor pitch
- Graduated upper level pitches optimize density & performance
- Lower layer SiCN etch stop layer thinned 50% relative to 65 nm
- Extensive use of low-k ILD

Metal 9: ReDistribution Layer (RDL) Metal 9 RDL: 7um thick with polymer ILD – Improved on-die power distribution

100% Lead Free Packaging Environmental benefit, lower SER

90 nm

65 nm

Cu Pad

30

Outline

- Introduction
- Process Features
- Transistors
- Interconnects
- Manufacturing
- Conclusions

153Mb SRAM Test Vehicle

- Process learning vehicle demonstrates
 - High yield
 - High performance
 - Stable low voltage operation

Multiple Microprocessors

Single Core

Dual Core

Defect Reduction Trend

Mature yield demonstrated 2 years after 65 nm

2000 2001 2002 2003 2004 2005 2006 2007 2008

Defect Reduction Trend

- Mature yield demonstrated 2 years after 65 nm
- Matched yield in 2ND Fab Copy Exactly!

2000 2001 2002 2003 2004 2005 2006 2007 2008

Conclusions

- A 45 nm technology is described with
 - Design rules supporting ~2X improvement in transistor density
 - 193nm dry lithography at critical layers for low cost
 - Trench contacts supporting local routing
 - 8 standard Cu interconnect layers with extensive use of low-k
 - Thick Metal 9 Cu RDL with polymer ILD
- High-k + Metal gate transistors implemented for the first time in a high volume manufacturing process
 - Integrated with 3RD generation strained silicon
 - Achieve record drive currents at low I_{OFF} and tight gate pitch
- The technology is already in high volume manufacturing
 - High yields demonstrated on SRAM and 3 microprocessors
 - High yields demonstrated in two 300mm fabs

Acknowledgements

- The authors gratefully acknowledge the many people in the following organizations at Intel who contributed to this work:
 - Portland Technology Development
 - Quality and Reliability Engineering
 - Process & Technology Modeling
 - Assembly & Test Technology Development

For further information on Intel's silicon technology, please visit our Technology & Research page at <u>www.intel.com/technology</u>