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Abstract

The subtle difference in MOSFET threshold voltage between the two popular definitions, maximum-g,, and constant
current, is investigated in the deep-submicron regime. The result pinpoints to the importance of the lateral-field effect in
linear region at very short gate length, and further supports the combined definition known as the “critical current at
linear threshold” method, which includes short-channel effects while retaining the simplicity and consistency of the
constant-current method. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Although the threshold voltage (7;) of a MOSFET is
not a figure of merit for device/circuit performance, it is
the most important parameter for MOS device modeling
and circuit design. The V; value of a MOSFET is de-
pendent upon its definition [1-3], while the criteria for a
“valid” V definition should be physical as well as easy
to measure. For deep-submicron MOSFETs, threshold
voltage and effective channel length (L), both being
electrical parameters, are the most sensitive model pa-
rameters influencing the drain current of a MOSFET
model. Many research publications in the literature,
especially those on compact models compared to the
measured current—voltage (/-V) characteristics, do not
mention how ¥V, and L. in the model as well as mea-
surement are defined and how they are extracted.

In this paper, the de facto industry standard V; def-
inition based on the “constant-current” (CC) method is
revisited in comparison with the newly proposed “criti-
cal current at linear threshold” (“I; at Vy”’) method
[4]. The subtle difference between the two methods is
explored in the context of the 2-D short-channel effects
in deep-submicron MOSFETs.
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2. Definition and discussion

The threshold voltages presented in this work are
extracted from measured /4—V,s curves with drawn gate
lengths (Lgrawn) from 10 pm down to 0.2 um (W =
20 pm) on the same die of a 0.25 pm CMOS wafer (with
AVy = 0.05 V and V4, = 0.1 V), as shown in Fig. 1. For
the I at Vi definition, linear threshold voltage (¥;y) for
each device (Lgrawn) is determined from linear extrapo-
lation of I3~V at peak transconductance (gn) to zero Iy,
(commonly known as the “maximum-g,,” method), and
the corresponding critical current (Ii) at Ve =V is
interpolated from the log(l4s) — Vs curve. To remove
ambiguity of the CC method and to compare with the
It at Vo definition, the value of 7;(10 pm) = 1.8 pA
from the I at Vi definition at long channel is used as
the CC: Iy = (10/20) X I (10 pm) = 0.9 pA. At any
other Lgrawn, 1ot for the CC definition is scaled accord-
ing to Lot = Lao(W /Larawn) at wWhich Vi is extracted as
the value of V. For both methods, once the respective
i 1s determined, the saturation threshold voltage (V)
is obtained from interpolation of the measured satura-
tion Ig—Vgs curves (Vg =2.5V) for Vy at which Iy =
L. for each device, as shown in Fig. 2.

After calibrating the critical currents at long channel,
the subtle difference between the two methods at short
channel becomes obvious. I at Vg = Vo for the max-
imum-g,, definition are found to occur consistently at
maximum dg,/dV, (similar to the second-derivative
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Fig. 1. Measured linear I4—V, curves (—) for each device of
drawn length Ly, as indicated. Critical currents based on the
I at Vi definition (e) and the CC definition (o) are shown for
each device. The inset shows the corresponding linear trans-
conductance.
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Fig. 2. Measured saturation /y,—V;, curves (—) for the same set
of devices. Vg, are interpolated at V, at which Iys = ¢ (from
Fig. 1 for both methods) for each device. The inset shows the
corresponding saturation transconductance.

method [5]), while those from the CC definition are
off the peak, as shown in Fig. 3. The extracted V;—Lgrawn
curves also show different V; roll-up (due to reverse
short-channel effect) and roll-off behaviors, as dem-
onstrated in Fig. 4, which are reflected in the Vi—I.;
curves (inset of Fig. 4) from the measured /4—V, data
due to different definitions. This difference prompts
the importance of the definition-dependent nature of
V1, since the modeling of other quantities, such as mo-
bility and series resistance, depends a lot on the V;
model.

The difference becomes apparent when I.; for the
two definitions are plotted against Ly, in Fig. 5, es-
pecially on a log-log scale (inset of Fig. 5). Deviation
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Fig. 3. Second derivative of the measured linear I4—V;, data
(—) for each device, with the corresponding values indicated at
the extracted Vy for the I at Vo definition (e) and the CC
definition (o).
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Fig. 4. Extracted Vi (e, 0) and Vi (¥, V) versus Lygw, for the
I, at Vi definition (e, ¥) and the CC definition (o, V). The
inset shows the same data against /i, as shown by the symbols
in Figs. 1 and 2.

from “linearity”” (on a log-log scale) of I at Vi is a
result of increased contribution of S/D series resistance
(Rs) at short channel (due to increased current), which
has been commonly considered as a major drawback
of the maximum-g,, method. However, the critical cur-
rents at such defined ¥, = ¥, correspond consistently to
the condition for peak transconductance and channel-
mobility change for every device, and they represent the
actual current that flows under the physical polygate (L,,
not Lg..wn) as well as the S/D junctions. On the other
hand, the CC definition “unphysically” scales the critical
current with a W /Lgwn dependency. This has been the
basis on which the “I at V" method [6] for simul-
taneously extracting L. and Ry is based.
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Fig. 5. I versus Ly, for the I at Vi definition (e) and the
CC definition (o) extracted from the linear /4—V,s curves (Fig.
1). The inset shows log(Zi;) versus 10g(Lgrawn)-

From MOS device physics, the drain current in linear
mode is inversely proportional to the effective channel
length, which should be close to the metallurgical
channel length (L,,). Without a priori knowledge of L
(which is also definition dependent), Lg.wy, has been
used over the years in the CC definition, which gives an
exact —1 slope on the 10g(/ui)—10g(Larawn) curve. To
examine the difference in the two I definitions, a
simple critical-dimension correction (Acp) (due to un-
certainties in mask/polysilicon lithography and polyet-
ching) is assumed to model the physical polygate length
Ly = Larawn — 4cp, and a constant AL(= 20x;) to model
LDD lateral diffusion such that Lo = Lyt = Ly — AL =
Lgvawn — Acp — AL [6,7]. When the CC-defined I =
log[lao(W /Larawn)] 1is plotted against log(L;) and
log(Ler) with the estimated Acp = 0.02 pm and AL =
0.1 pum, it is found that I.; increases sublinearly (on a
log—log scale) at shorter channel length, as shown in Fig.
6 by the open triangles and open squares, respectively.
However, I such interpreted is still larger than that of
the I.;; at Vi definition (see inset of Fig. 6) because the
long-channel Iy has been kept constant.

In principle, for every channel-length device, Iy
should be proportional to ¥, the voltage drop across its
intrinsic Ly, and mobility pgr, both of which decrease at
shorter channel due to increased voltage drop across Ry
and increased lateral channel field (Vy/Lesr), respectively,
since Vs = 0.1 V is fixed. This implies that /4 should be
L.y dependent, and this dependency is actually con-
tained in the I at Vi, data since the critical current that
flows through the MOSFET under the maximum-g,,
condition includes the effects of Ry and lateral field. We
propose that this effect be empirically modeled by a new
Ity = 1y(Vas/Ler)” with two fitting parameters, I, and .
By ﬁtting ]Cril = éo(W/Ldrawn) to the Icrit at I/tO versus
Lgrawn data, as shown in Fig. 6 (open diamonds), the
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Fig. 6. The same data from Fig. 5 against Ly, (®,0). The L.
data of the CC definition when plotted against L, (V) or Ly
(O) assuming Acp = 0.02 pum and AL = 0.1 pm. The empirical
model I}, = Iy(Vas/Lerr)” fitted to the Iy at Vi data (). The
inset plots I.;;; against L.y for both methods.

extracted values are found to be [, =0.538 and
o = 0.137. As the behavior of I—Lgrawn from the max-
imum-g,, definition is unknown, this simple model and
extraction approach provides away to empirically model
the Ioit—Ldrawn behavior.

This simple empirical model also confirms the idea of
lateral-field (73) dependence of the linear channel re-
sistance [6] as well as the nonscaling characteristics of
total resistance in the deep-submicron regime [8].
Complete modeling and extraction of L, Acp, and AL
based on the I.; at ¥y method has been developed and
reported elsewhere [9].

3. Conclusion

In conclusion, the arbitrary choice in the industry-
standard constant-current V; definition can be removed
by calibrating Iy, to that from the maximum-g,, defini-
tion at long channel, which avoids the ambiguity while
retaining the simplicity. However, the effect of unphys-
ical scaling in the constant-current definition becomes
pronounced for deep-submicron MOSFETs. If such
defined V; is used in /-¥ modeling, it may require ad-
ditional efforts in mobility and resistance modeling, or
even lead to incorrect information (e.g., V; roll up) in the
application of inverse modeling [10]. The I.; at Vi
definition is based on consistent operation at long and
short channel as well as different regions of operation,
and contains information on actual device and short-
channel effects (L,,Ry). The proposed empirical ap-
proach to modeling the /.;j—Lgrawn behavior is simple and
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can be applied to the modified constant-current method
for V; extraction.
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