

Solid-State Electronics 45 (2001) 507-510

SOLID-STATE ELECTRONICS

Threshold voltage definition and extraction for deep-submicron MOSFETs

X. Zhou *, K.Y. Lim, W. Qian

School of Electrical and Electronic Engineering, Nanyang Technological University, Block S1, Singapore 639798, Singapore Received 5 February 2000; received in revised form 3 November 2000

Abstract

The subtle difference in MOSFET threshold voltage between the two popular definitions, maximum- g_m and constant current, is investigated in the deep-submicron regime. The result pinpoints to the importance of the lateral-field effect in linear region at very short gate length, and further supports the combined definition known as the "critical current at linear threshold" method, which includes short-channel effects while retaining the simplicity and consistency of the constant-current method. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Although the threshold voltage (V_t) of a MOSFET is not a figure of merit for device/circuit performance, it is the most important parameter for MOS device modeling and circuit design. The V_t value of a MOSFET is dependent upon its definition [1–3], while the criteria for a "valid" V_t definition should be physical as well as easy to measure. For deep-submicron MOSFETs, threshold voltage and effective channel length ($L_{\rm eff}$), both being electrical parameters, are the most sensitive model parameters influencing the drain current of a MOSFET model. Many research publications in the literature, especially those on compact models compared to the measured current–voltage (I-V) characteristics, do not mention how V_t and $L_{\rm eff}$ in the model as well as measurement are defined and how they are extracted.

In this paper, the de facto industry standard V_t definition based on the "constant-current" (CC) method is revisited in comparison with the newly proposed "critical current at linear threshold" (" $I_{\rm crit}$ at V_{t0} ") method [4]. The subtle difference between the two methods is explored in the context of the 2-D short-channel effects in deep-submicron MOSFETs.

E-mail address: exzhou@ntu.edu.sg (X. Zhou).

2. Definition and discussion

The threshold voltages presented in this work are extracted from measured $I_{\rm ds}$ - $V_{\rm gs}$ curves with drawn gate lengths (L_{drawn}) from 10 µm down to 0.2 µm (W =20 μm) on the same die of a 0.25 μm CMOS wafer (with $\Delta V_{\rm gs} = 0.05 \text{ V}$ and $V_{\rm ds} = 0.1 \text{ V}$), as shown in Fig. 1. For the I_{crit} at V_{t0} definition, linear threshold voltage (V_{t0}) for each device (L_{drawn}) is determined from linear extrapolation of I_{ds} – V_{gs} at peak transconductance (g_m) to zero I_{ds} (commonly known as the "maximum- g_m " method), and the corresponding critical current (I_{crit}) at $V_{gs} = V_{t0}$ is interpolated from the $log(I_{ds}) - V_{gs}$ curve. To remove ambiguity of the CC method and to compare with the $I_{\rm crit}$ at $V_{\rm t0}$ definition, the value of $I_{\rm crit}(10~\mu{\rm m})=1.8~\mu{\rm A}$ from the I_{crit} at V_{t0} definition at long channel is used as the CC: $I_{d0} = (10/20) \times I_{crit}(10 \ \mu m) = 0.9 \ \mu A$. At any other L_{drawn}, I_{crit} for the CC definition is scaled according to $I_{\text{crit}} = I_{\text{d0}}(W/L_{\text{drawn}})$ at which V_{gs} is extracted as the value of V_{t0} . For both methods, once the respective I_{crit} is determined, the saturation threshold voltage (V_{tsat}) is obtained from interpolation of the measured saturation I_{ds} – V_{gs} curves ($V_{ds} = 2.5 \text{ V}$) for V_{gs} at which $I_{ds} =$ I_{crit} for each device, as shown in Fig. 2.

After calibrating the critical currents at long channel, the subtle difference between the two methods at short channel becomes obvious. $I_{\rm crit}$ at $V_{\rm gs} = V_{\rm t0}$ for the maximum- $g_{\rm m}$ definition are found to occur consistently at maximum $dg_{\rm m}/dV_{\rm gs}$ (similar to the second-derivative

^{*}Corresponding author. Tel.: +65-790-4532; fax: +65-791-2687.

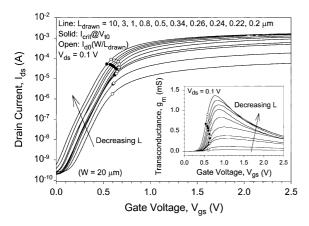


Fig. 1. Measured linear $I_{\rm ds}$ – $V_{\rm gs}$ curves (—) for each device of drawn length $L_{\rm drawn}$ as indicated. Critical currents based on the $I_{\rm crit}$ at $V_{\rm t0}$ definition (\bullet) and the CC definition (\circ) are shown for each device. The inset shows the corresponding linear transconductance.

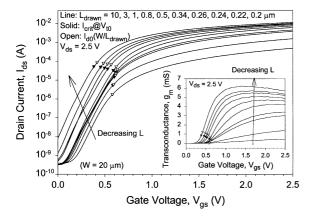


Fig. 2. Measured saturation $I_{\rm ds}$ – $V_{\rm gs}$ curves (—) for the same set of devices. $V_{\rm tsat}$ are interpolated at $V_{\rm gs}$ at which $I_{\rm ds} = I_{\rm crit}$ (from Fig. 1 for both methods) for each device. The inset shows the corresponding saturation transconductance.

method [5]), while those from the CC definition are off the peak, as shown in Fig. 3. The extracted V_t – $L_{\rm drawn}$ curves also show different V_t roll-up (due to reverse short-channel effect) and roll-off behaviors, as demonstrated in Fig. 4, which are reflected in the V_t – $I_{\rm crit}$ curves (inset of Fig. 4) from the measured $I_{\rm ds}$ – $V_{\rm gs}$ data due to different definitions. This difference prompts the importance of the definition-dependent nature of V_t , since the modeling of other quantities, such as mobility and series resistance, depends a lot on the V_t model.

The difference becomes apparent when $I_{\rm crit}$ for the two definitions are plotted against $L_{\rm drawn}$ in Fig. 5, especially on a log-log scale (inset of Fig. 5). Deviation

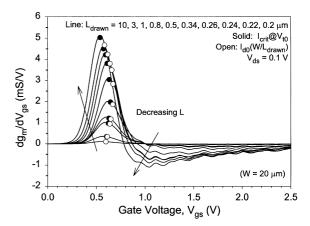


Fig. 3. Second derivative of the measured linear $I_{\rm ds}$ – $V_{\rm gs}$ data (—) for each device, with the corresponding values indicated at the extracted $V_{\rm t0}$ for the $I_{\rm crit}$ at $V_{\rm t0}$ definition (•) and the CC definition (o).

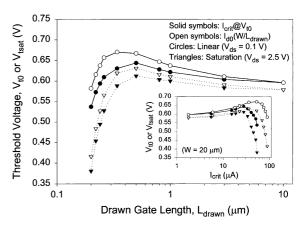


Fig. 4. Extracted V_{t0} (\bullet , \circ) and V_{tsat} (∇ , ∇) versus L_{drawn} for the I_{crit} at V_{t0} definition (\bullet , ∇) and the CC definition (\circ , ∇). The inset shows the same data against I_{crit} , as shown by the symbols in Figs. 1 and 2.

from "linearity" (on a log–log scale) of $I_{\rm crit}$ at $V_{\rm t0}$ is a result of increased contribution of S/D series resistance $(R_{\rm sd})$ at short channel (due to increased current), which has been commonly considered as a major drawback of the maximum- $g_{\rm m}$ method. However, the critical currents at such defined $V_{\rm gs}=V_{\rm t0}$ correspond consistently to the condition for peak transconductance and channel-mobility change for every device, and they represent the actual current that flows under the *physical* polygate $(L_{\rm g}, {\rm mot}\ L_{\rm drawn})$ as well as the S/D junctions. On the other hand, the CC definition "unphysically" scales the critical current with a $W/L_{\rm drawn}$ dependency. This has been the basis on which the " $I_{\rm crit}$ at $V_{\rm t0}$ " method [6] for simultaneously extracting $L_{\rm eff}$ and $R_{\rm sd}$ is based.

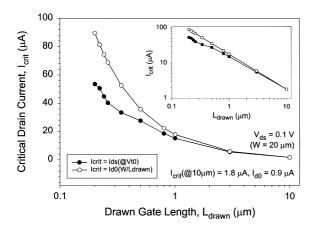


Fig. 5. I_{crit} versus L_{drawn} for the I_{crit} at V_{t0} definition (•) and the CC definition (o) extracted from the linear $I_{\text{ds}}-V_{\text{gs}}$ curves (Fig. 1). The inset shows $\log(I_{\text{crit}})$ versus $\log(L_{\text{drawn}})$.

From MOS device physics, the drain current in linear mode is inversely proportional to the effective channel length, which should be close to the metallurgical channel length (L_{met}) . Without a priori knowledge of L_{eff} (which is also definition dependent), L_{drawn} has been used over the years in the CC definition, which gives an exact -1 slope on the $log(I_{crit})-log(L_{drawn})$ curve. To examine the difference in the two I_{crit} definitions, a simple critical-dimension correction (Δ_{CD}) (due to uncertainties in mask/polysilicon lithography and polyetching) is assumed to model the physical polygate length $L_{\rm g} = L_{\rm drawn} - \Delta_{\rm CD}$, and a constant $\Delta L (= 2\sigma x_j)$ to model LDD lateral diffusion such that $L_{\rm eff} = L_{\rm met} = L_{\rm g} - \Delta L =$ $L_{\rm drawn} - \Delta_{\rm CD} - \Delta L$ [6,7]. When the CC-defined $I_{\rm crit} =$ $\log[I_{d0}(W/L_{drawn})]$ is plotted against $\log(L_g)$ and $\log(L_{\rm eff})$ with the estimated $\Delta_{\rm CD} = 0.02~\mu{\rm m}$ and $\Delta L =$ $0.1 \mu m$, it is found that I_{crit} increases sublinearly (on a log-log scale) at shorter channel length, as shown in Fig. 6 by the open triangles and open squares, respectively. However, I_{crit} such interpreted is still larger than that of the I_{crit} at V_{t0} definition (see inset of Fig. 6) because the long-channel I_{d0} has been kept constant.

In principle, for every channel-length device, $I_{\rm d0}$ should be proportional to $V'_{\rm ds}$, the voltage drop across its intrinsic $L_{\rm eff}$, and mobility $\mu_{\rm eff}$, both of which decrease at shorter channel due to increased voltage drop across $R_{\rm sd}$ and increased lateral channel field ($V_{\rm ds}/L_{\rm eff}$), respectively, since $V_{\rm ds}=0.1$ V is fixed. This implies that $I_{\rm d0}$ should be $L_{\rm eff}$ dependent, and this dependency is actually contained in the $I_{\rm crit}$ at $V_{\rm t0}$ data since the critical current that flows through the MOSFET under the maximum- $g_{\rm m}$ condition includes the effects of $R_{\rm sd}$ and lateral field. We propose that this effect be empirically modeled by a new $I'_{\rm d0}=I_0(V_{\rm ds}/L_{\rm eff})^z$ with two fitting parameters, I_0 and α . By fitting $I_{\rm crit}=I'_{\rm d0}(W/L_{\rm drawn})$ to the $I_{\rm crit}$ at $V_{\rm t0}$ versus $L_{\rm drawn}$ data, as shown in Fig. 6 (open diamonds), the

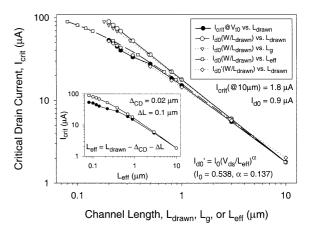


Fig. 6. The same data from Fig. 5 against $L_{\rm drawn}$ (\bullet , \circ). The $I_{\rm crit}$ data of the CC definition when plotted against $L_{\rm g}$ (∇) or $L_{\rm eff}$ (\square) assuming $\Delta_{\rm CD}=0.02~\mu {\rm m}$ and $\Delta L=0.1~\mu {\rm m}$. The empirical model $I'_{\rm d0}=I_0(V_{\rm ds}/L_{\rm eff})^{\alpha}$ fitted to the $I_{\rm crit}$ at $V_{\rm t0}$ data (\diamond). The inset plots $I_{\rm crit}$ against $L_{\rm eff}$ for both methods.

extracted values are found to be $I_0 = 0.538$ and $\alpha = 0.137$. As the behavior of $I_{\rm crit}$ – $L_{\rm drawn}$ from the maximum- $g_{\rm m}$ definition is unknown, this simple model and extraction approach provides away to empirically model the $I_{\rm crit}$ – $L_{\rm drawn}$ behavior.

This simple empirical model also confirms the idea of lateral-field ($V_{\rm ds}$) dependence of the linear channel resistance [6] as well as the nonscaling characteristics of total resistance in the deep-submicron regime [8]. Complete modeling and extraction of $L_{\rm eff}$, $\Delta_{\rm CD}$, and ΔL based on the $I_{\rm crit}$ at $V_{\rm t0}$ method has been developed and reported elsewhere [9].

3. Conclusion

In conclusion, the arbitrary choice in the industrystandard constant-current V_t definition can be removed by calibrating I_{d0} to that from the maximum- g_{m} definition at long channel, which avoids the ambiguity while retaining the simplicity. However, the effect of unphysical scaling in the constant-current definition becomes pronounced for deep-submicron MOSFETs. If such defined V_t is used in I-V modeling, it may require additional efforts in mobility and resistance modeling, or even lead to incorrect information (e.g., V_t roll up) in the application of inverse modeling [10]. The I_{crit} at V_{t0} definition is based on consistent operation at long and short channel as well as different regions of operation, and contains information on actual device and shortchannel effects (L_g, R_{sd}) . The proposed empirical approach to modeling the I_{crit} – L_{drawn} behavior is simple and

can be applied to the modified constant-current method for $V_{\rm t}$ extraction.

Acknowledgements

Chartered Semiconductor Manufacturing Ltd. for providing the experimental data for this work is gratefully acknowledged.

References

- [1] Yan ZX, Deen MJ. Proc Inst Elect Engng G 1991;138:351–7
- [2] Liou JJ, Ortiz-Conde A, Sanchez FG. Proc IEEE HKEDM'97, Hong Kong, 1997. p. 31–8.

- [3] Tsuno M, Suga M, Tanaka M, Shibahara K, Miura-Mattausch M, Hirose M. IEEE Trans Electron Dev 1999;46:1429–34.
- [4] Zhou X, Lim KY, Lim D. IEEE Trans Electron Dev 1999;46:807–9.
- [5] Wong HS, White MH, Krutsick TJ, Booth RV. Solid-State Electron 1987;30:953–68.
- [6] Zhou X, Lim KY, Lim D. IEEE Trans Electron Dev 1999;46:1492–4.
- [7] Zhou X, Lim KY. IEEE Trans Electron Dev 2001;48.
- [8] Esseni D, Iwai H, Saito M, Ricco B. IEEE Electron Dev Lett 1998;19:131–3.
- [9] Zhou X, Lim KY. MSM2001, to appear in Proc MSM2001, Hilton Head Island, SC, 2001.
- [10] Lee ZK, McIlrath MB, Antoniadis DA. IEEE Trans Electron Dev 1999;46:1640–8.