HSPICE Simulation Example

Jiahao Kang

<pre>* Tutorial: An Simulation Example using HSPICE # By Jiahao Kang * F=(A+B)'+(CD)'</pre>	First line in a SPICE deck is always a comment (with or without *).
.TITLE Example	

.INCLUDE '65nm_bulk.pm'	Define parameters with .param
**************************************	Can define parameter based on other parameters or expressions.
• PARAM VDD=1 + LMOS =65n	Use '+' to continue long lines on
+ WN =65n + WP ='2*WN'	the proceeding line.
**************************************	Here's how you can do arithmetic on your parameters.
VA A 0 pulse 0 VDD 0.2n 0.2n 0.2n 1n 2n VB B 0 pulse 0 VDD 0.2n 0.2n 0.2n 1n 2n VC C 0 pulse 0 VDD 0.2n 0.2n 0.2n 1n 2n VD D 0 pulse 0 VDD 0.2n 0.2n 0.2n 1n 2n	
	First vdd is the voltage source. Second vdd is the node.
***** Define global nodes for use in subcircuits *****	Third vdd is the parameter
.GLOBAL VDD	
************* Define subcircuits (modules) *************	Subcircuits are SPICE's way of
.SUBCKT INV X Y M1 Y X O O NMOS L=LMOS W=WN M2 Y X VDD VDD PMOS L=LMOS W=WP .ENDS	defining modules repeated in your design.
.SUBCKT NAND2 A B Y M1 1 B 0 0 NMOS L=LMOS W=WN M2 Y A 1 0 NMOS L=LMOS W=WN M3 Y A VDD VDD PMOS L=LMOS W=WP M4 Y B VDD VDD PMOS L=LMOS W=WP .ENDS	
.SUBCKT NOR2 A B Y M1 Y B O O NMOS L=LMOS W=WN M2 Y A O O NMOS L=LMOS W=WN M3 Y A 1 VDD PMOS L=LMOS W=WP M4 1 B VDD VDD PMOS L=LMOS W=WP .ENDS	
******************** Define main circuit ************************************	
* F=(A+B)'+(CD)' X1 A B 1 NOR2	
X2 C D 2 NAND2 X3 1 2 xF NOR2 X4 xF F INV * Load capacitance CL F 0 0.1p	Instantiate modules like so.

****************************** Anlysis Options ********************	Power measurements
.TRAN 0.1p 2n .MEAS TRAN avgpower AVG power FROM=Ons TO=2ns .MEAS TRAN tdlay TRIG V(A) VAL='VDD/2' RISE=1 + TARG V(F) VAL='VDD/2' FALL=1 ****** Alter the parameters and run again **********	Measure propagation delays accurately using the '.meas' statement. Outputs are written to .lis file.
ALTER CASE 2: WP=WN PARAM WP = '1*WN' ALTER CASE 3: Increase Vdd by 10% PARAM VDD = 1.1	Here we trigger when the voltage at node 'A' crosses vdd/2, and measure the time until the output crosses vdd/2
ALTER CASE 4: Change load capacitance CL F 0 0.01p .ALTER CASE 5: Change temperature .TEMP 70 .ALTER CASE 6: Change stimulii VA A 0 DC 0	.ALTER statements allows us to modify the circuit and run again. They must be before the final .end statement. Note: ALTER blocks are incremental!!!
VD D O DC VDD .END	