Designing Sequential Logic Circuits

Sequential Logic

All useful systems require storage of state information....

A generic Finite State Machine (FSM) consisting of combinational logic and registers.
Output of the FSM = F (current inputs, current state)
Next State is determined based on current state and current inputs-fed to the input (D) of the registers

At the rising edge of the CLK, D copied to \mathbf{Q} (with some delay)
Note: There are 2 storage mechanisms: 1) positive feedback and 2) charge storage

Classification of Memory Elements

- Background Memory: large centralized memory core (high density array structures)---SRAMs and DRAMs
- Foreground Memory: embedded in a logic (individual registers or register banks)-focus of this section

Classification of Memory Elements

Static Memory:

\square preserves state as long as power is ON
\square built by using positive feedback or regeneration where the circuit consists of intentional connections between the output and input of a combinational circuit
\square most useful when register will not be updated for extended periods of time (eg., configuration data loaded at power-up time).
\square Condition also holds for most processors that use conditional clocking, (gated CLK) where the CLK is turned off for unused modules----no guarantee on how frequently the registers will be clocked and static memories are needed to store information.
\square bistable element is the most popular form

Classification of Memory Elements

Dynamic Memory:

- store data for short (ms) period of time
- based on the principle of temporary charge storage on parasitic capacitors in MOS devices
- similar to dynamic logic..... capacitors need to be refreshed periodically to compensate for charge leakage
- significantly simpler----hence, provide higher performance and lower power dissipation
- most useful in datapath circuits that require higher performance levels and are periodically clocked

Naming Conventions

\square Definitions:

- a latch is a level sensitive device
- a register is an edge-triggered storage element
- There are many different naming conventions
- For instance, many books call edge-triggered elements flip-flops
- This may lead to confusion however...
- Any bistable component formed by the cross coupling of gates is a flip-flop (FF)

Latches

Multiplexer based

(a)

)
(b)

$C L K=1: D$ to Q
CLK=0:Holds state of Q
(c)

(d)

As long as
CLK remains high, D will be written on Q
(e) Q

FIG 1.30 CMOS positive-level-sensitive D latch
Lectures 16/17, ECE 122A, VLSI Principles

Latch-Based Design

- N (negative) latch is transparent when $\phi=0$
- P (positive) latch is transparent when $\phi=1$

Difficult to eliminate Race conditions.....under CLK overlap

Timing of P/N Latches

Lectures 16/17, ECE 122A, VLSI Principles
Kaustav Banerjee

Latch versus Register

- Latch
stores data when clock is high (or low)
- Register stores data when clock rises (or falls)

What kind of latch is this?

Characterizing Timing

Note: In a FF, D is valid before CLK edge arrives......hence only c2q is relevant.
In a Latch, the relevant timing parameter (c2q or $d 2 q$) depends on the relative position of the arrival of D w.r.t the clk edge......if D arrives after clk edge, then d2q is important, while if D arrives before clk edge, c2q is important.

Registers or Flip-Flops

Combines two latches:
One +ve sensitive (slave) and one -ve sensitive latch (master)
Edge Triggered FF or Master-Slave FF

CLK=0: D to QM
$\overline{Q M}=\bar{D}$
Slave holds previous value of Q
(d)

(a)
(b)

(e)

Timing Definitions

$\mathbf{t}_{\mathbf{s u}}=$ setup time =time for which the data inputs (D) must be valid before the CLK edge $\boldsymbol{t}_{\text {hold }}=$ hold time $=$ time for which data input must remain valid after the CLK edge $\mathbf{t}_{\mathrm{c} 2 \mathrm{q}}=$ worst case propagation time through the Register (w.r.t the CLK edge)

Maximum Clock Frequency

1) $T_{\text {min }}=t_{\text {clk- } Q}+t_{p, \text { comb }}+t_{\text {setup }}$

Clk period must accommodate the longest delay of any stage in the network

Static Latches and Registers

Static Memories use Positive Feedback: Bi-Stability

A, B, and C are the only three possible operating points If gain>1 in the transient region: A and B are the only stable operating points, C is a metastable point
Point C is the V_{M} of the Inverters...

Lectures 16/17, ECE 122A, VLSI Principles
Kaustav Banerjee

Meta-Stability in Bi-Stable Circuits

Point C is the V_{M} of the
Inverters...

$$
A: V_{i 1}=0, V_{i 2}=1
$$

At A and B the loop gain is much smaller than 1...hence, stable points

- Gain is larger than 1 in the transition region
- Every small deviation causes the operation point to move away from its original bias point, C ---therefore metastable

Flip-Flop

A cross coupled pair of inverters results in a bistable circuit...

- A FF is a bistable circuit, which has 2 stable states
- In the absence of triggering the circuit remains in a single state
- The state can be changed by applying an external trigger
- Two ways to achieve a change of state:
- Cut the feedback loop: so that a new value can be written into out or \mathbf{Q}
- This is MUX based: Q=CLK. Q + CLK. In (most common)
- Overpower the feedback loop
- Apply a trigger signal at the input of the FF and force the new value into the cell by overpowering the stored value
- Needs careful sizing of transistors in the feedback loop and the trigger circuit
- Used mostly in static background memories

Mux-Based Latches

Negative latch
(transparent when CLK=0)
Positive latch
(transparent when CLK=1)

$Q=\overline{C l k} \cdot Q+C l k \cdot I n$

Writing into a Static Latch

Use the clock as a decoupling signal, that distinguishes between the transparent and opaque states

MUX based (not so efficient....\# of transistors driven by CLK is high=4)

Forcing the state (can implement as NMOS-only)

Mux-Based Latch

CLK is driving several transistors with activity=1 (not good from power perspective!)

Mux-Based Latch with Reduced Load

NMOS only Pass Transistor

Need Non-overlapping clocks

Lectures 16/17, ECE 122A, VLSI Principles
Kaustav Banerjee

Master-Slave (Edge-Triggered)

Register

Lectures 16/17, ECE 122A, VLSI Principles
Kaustav Banerjee

Master-Slave +ve Edge Triggered

 Register
Transistor Level Implementation

X-gate Multiplexer-based latch pair
Master

CLK=0: T1 is on, T2 is off, D input sampled onto QM

T3 off and T4 on: I5 and I6 hold the state of the Slave

Slave
$C L K=1$: T3 is on, T4 is off, QM sampled onto Q

T2 on and T1 off: I2 and I3 hold the state of QM
Lectures 16/17, ECE 122A, VLSI Principles
Kaustav Banerjee

Master-Slave +ve Edge Triggered

Register

Transistor Level Implementation

$\mathrm{T}_{\mathrm{c}-\mathrm{q}}=$ delay through T 3 and $\mathrm{I6}$ Since delay of $\mathbf{I 2}$ is included in set-up time output of 14 is valid before the rising edge of CLK

$$
T_{c-q}=t_{p d _i n v}+t_{p d _t x}
$$

$\mathrm{t}_{\mathrm{su}}=$ set-up time $=$ time before the rising edge of the CLK during which the D input should remain stable so that QM samples the value reliably

Since D must propagate through I1, T1, I3, and I2 before the rising edge
$t_{s u}=3 t_{p d_{-} i n v}+t_{p d _t x}$
To ensure equal node voltages on both sides of the Xgate
$\boldsymbol{t}_{\text {hold }}=\mathbf{0}$ (since T1 is cut off after CLK edge)

Timing Analysis: Setup Time

SPICE Simulations: progressively skew the input
w.r.t CLK edge until the circuit fails

Set-up time for this register $=210$ ps and hold time $=0$

CIk-Q Delay

$t_{c-q}=50 \%$ point of CLK to 50% point of Q

Lectures 16/17, ECE 122A, VLSI Principles

Reduced Clock Load Master-Slave Register

Note: X-gate register presents high capacitive load to the CLK signal
Minimum sized devices are desired for X-gates....why? (CLk power)
However, input to 11 must be brought below its switching threshold....to make a transition. Hence, for minimum sized X-gate, I2 should be made even weaker.....by increasing $L_{c h}$.

Cons: 1) T1 and its source driver must overpower I2 to switch the state of the cross-coupled inverter
2) Reverse conduction---second stage (T2 and I4) can affect the state of the first latch (I1-I2) when slave stage is ON.....not a major problem if I4 is weak.

Lectures 16/17, ECE 122A, VLSI Principles
Kaustav Banerjee

Avoiding Clock Overlap

RACE Condition: If CLK and $\overline{\text { CLK }}$ are both ON for a short time, both sampling pass transistors are ON providing a direct path from D to Q. Hence, data at the output can change at the rising CLK edge

Also node A can be driven by both D and B : undefined state
(a) Schematic diagram of an NMOS only -ve M-S register

(b) Overlapping clock pairs

One Solution: use non-overlapping CLKs
Lectures 16/17, ECE 122A, VLSI Principles
Kaustav Banerjee

Overpowering the Feedback Loop Cross-Coupled Pairs

NOR-based set-reset (SR)-FF

Forbidden State
Use external triggers, S and R to change the output states (Q and \bar{Q}):
$S=1$ forces $Q=1$,
$R=1$ forces $Q=0$

Note: A NOR gate with one of its inputs=0, looks like an inverter and the above structure looks like a cross-coupled inverter

SR-FF using Cross-Coupled NAND

Cross-coupled NANDs

This is not used in datapaths any more, but is a basic building memory cell

Note: These FFs are purely asynchronous....doesn't match with synchronous design method

Need a Clocked Latch!

Ratioed CMOS Clocked SR Latch

Consists of two cross-coupled inverters + 4 extra transistors to drive the FF from one state to another and to provide synchronization

No static path between Vdd and Gnd

> Transistor sizing is essential to ensure FF transition:

If Q is high and $R=1$, then V_{Q} must be $<V_{M}$ of INV $M 1-M 2$, to make the latch switch.
Similar condition is needed to switch INV M3-M4 for $\mathrm{S}=1$.
This means we must increase the sizes of M5, M6, M7 and M8. M4-M7-M8 (and M5-M6-M2) form ratioed inverters.

CMOS Clocked SR Latch (Cont'd)

For a 0.25 um technology, select the following sizes:
$(W / L)_{M 1}=(W / L)_{M_{3}}=(0.5 \mathrm{um} / 0.25 \mathrm{um})$
$(W / L)_{M 2}=(W / L)_{M 4}=(1.5 u m / 0.25 u m)$.
Assuming $Q=0$, how do we determine the minimum sizes of M5, M6, M7 and M8 to make the device switchable?

To switch from $\mathrm{Q}=0$ to $\mathrm{Q}=1$, the low-level of the pseudo-NMOS inverter (M5-M6)-M2 should be below the V_{M} of the inverter M3-M4 ($=\mathrm{V}_{\mathrm{DD}} / 2$).
As long as $\mathrm{V}_{\overline{\mathrm{Q}}}>\mathrm{V}_{\mathrm{M}}, \mathrm{V}_{\mathrm{Q}}=0$ and gate of M 2 is grounded.
The boundary condition on the transistor sizes can be derived by equating the currents in the inverter for $\mathrm{V}_{\overline{\mathrm{Q}}}=\mathrm{Vdd} / \mathbf{2}$. The currents are derived by the saturation current since $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{M}}=1.25 \mathrm{~V}$.

Lectures 16/17, ECE 122A, VLSI Principles

Sizing Issues for Clocked SR FF

Output voltage dependence on transistor width

0.25 um process

Assume that M5 and M6 have identical sizes and that (W/L) $)_{5-6}$ is the effective ratio of the series connected devices. Under this condition, the PD network can be modeled by a single transistor M5-6, whose length is twice the length of the individual devices:

$$
k_{n}^{\prime}\left(\frac{W}{L}\right)_{M 5-6}\left[\left(V_{D D}-V_{T n}\right) V_{D S A T_{n}}-\frac{V_{D S A T_{n}}^{2}}{2}\right]=-k_{p}^{\prime}\left(\frac{W}{L}\right)_{M 2}\left[\left(-V_{D D}-V_{T_{p}}\right) V_{D S A T_{p}}-\frac{V_{D S A T_{p}}^{2}}{2}\right] \begin{aligned}
& \text { This results in } \\
& (W / L)_{M 5-6}=2.26 .
\end{aligned}
$$

Note: This would imply that the individual device sizes of M5 and M6 be 4.5.....somewhat higher than that predicted by simulation (=3)due to second order effects like Channel-length modulation and DIBL.

Lectures 16/17, ECE 122A, VLSI Principles
Kaustav Banerjee

Pipelining: Optimizing Sequential Circuits

Widely used to accelerate the operation of datapaths in digital microprocessors...

Reference Circuit: computes $\log (|a+b|)$

$T_{\min }=t_{c-q}+t_{p d, \log i c}+t_{s u}$

Pipelined Circuit

$$
T_{\min , p i p e}=t_{c-q}+\max \left(t_{p d, a d d e r}+t_{p d, a b s}+t_{p d, \mathrm{log}}\right)+t_{s u}
$$

Clock Period	Adder	Absolute Value	Logarithm
1	$a_{1}+b_{1}$		
2	$a_{2}+b_{2}$	$\left\|a_{1}+B_{1}\right\|$	
3	$a_{3}+b_{3}$	$\left\|a_{2}+b_{2}\right\|$	log($\left(a_{1}+b_{1}\right)$
4	$a_{4}+b_{4}$	$\left\|a_{3}+b_{3}\right\|$	$\log \left(\left\|a_{2}+b_{2}\right\|\right)$
5	$a_{5}+b_{5}$	$\left\|a_{4}+b_{4}\right\|$	$\log \left(\left\|a_{3}+b_{3}\right\|\right)$

Computation of one set of input data spreads over several clock cycles.

Pipelining improves resource utilization and increases functional throughput.

Register vs Latch Based Clocking...

- In an edge-triggered system, the worst case logic path between two registers determines the minimum CLK period for the entire system....
- If the logic block finishes before the end of the CLK period, it has to sit idle until the next CLK edge...
- Latch based design offers more flexibility.... one stage can pass slack or borrow time from other stages...

Slack-borrowing

In a latch based system, it is possible for a logic block to utilize time that is left from a previous logic block...
 computing right away and uses the slack to finish well before its allocated time (edge 3)....and so on

If $T_{c l k}<t_{p d, A}+t_{p d, B}----$-slack-passing has taken place
$T_{\text {clk }} / 2=$ maximum time that can be borrowed from previous stage Lectures 16/17, ECE 122A, VLSI Principles

