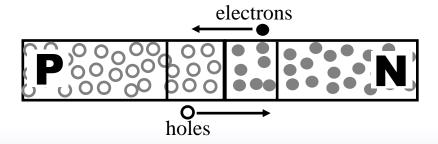
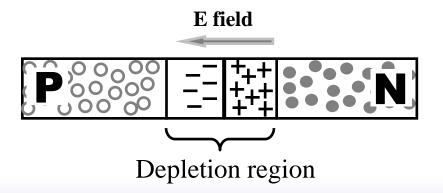

# ECE 122A VLSI Principles

#### Lecture 6

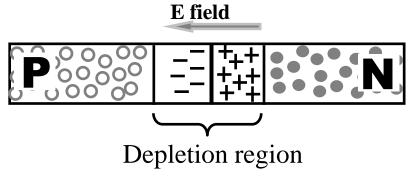

Prof. Kaustav Banerjee
Electrical and Computer Engineering
University of California, Santa Barbara
E-mail: kaustav@ece.ucsb.edu

#### P/N Junctions

What happens when you put two types of semiconductors together?

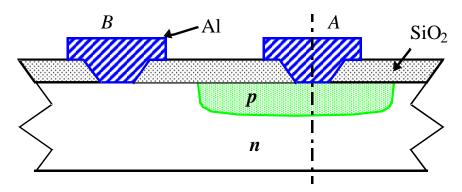



- Large concentration gradient at junction
  - Electrons diffuse from N to P side
  - Holes diffuse from P to N side

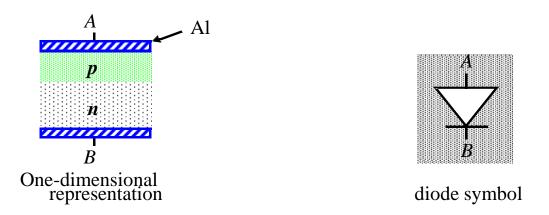



## P/N Junctions (2)

- > Immobile ions are left behind
  - ➤ Electrons leave +ve charged ions on N side
  - ➤ Holes leave -ve charged ions on P side
  - ➤ Electric field forms, from N to P
  - ➤ E-field causes drift in opposite direction as diffusion
  - ➤ Equilibrium! No current flows

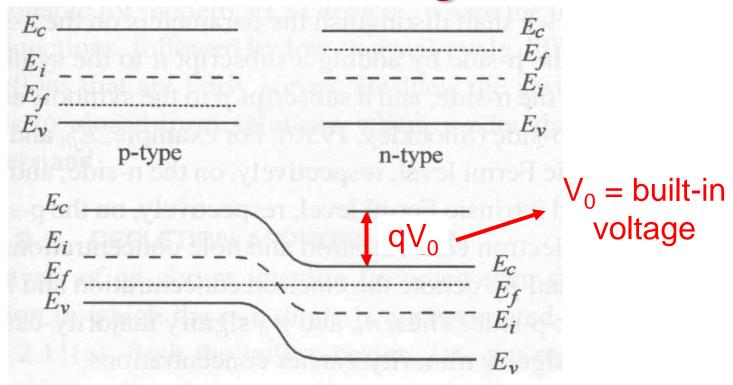



#### Depletion Region




- Depletion region forms around junction
  - "Depleted" of any mobile charges (holes or electrons)
  - Charge in depletion region due to fixed ions
  - ➤ Electric field causes a potential difference across junction: known as built-in voltage V<sub>0</sub>

#### The Diode




Cross-section of *pn*-junction in an IC process



Mostly occurring as parasitic element in Digital ICs

## P/N Junction Band Diagram



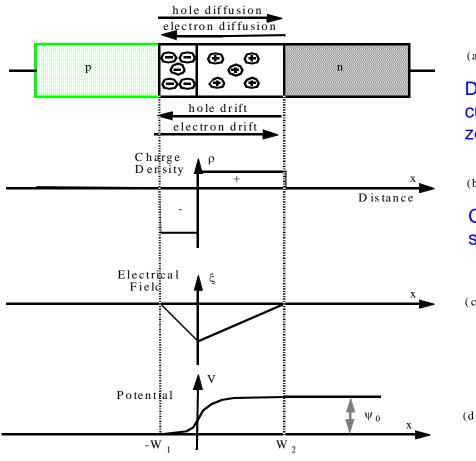
- > At thermal equilibrium, no net current flow
  - > When drift+diffusion currents=0,  $\frac{dE_f}{dx} = 0$
- Bands must bend so that Fermi level is constant

#### PN Junction Equations

$$E_{Fn} - E_{in} = kT \ln \left(\frac{N_D}{n_i}\right)$$
  $E_{Fp} - E_{ip} = kT \ln \left(\frac{n_i}{N_A}\right)$ 

- Built-in potential or contact potential
  - >difference between energy bands on p and n side of the junction)

$$qV_0 = E_{ip} - E_{in}$$


$$V_0 = \frac{kT}{q} \ln \left( \frac{N_A N_D}{n_i^2} \right)$$
 Strongly-doped junction

#### P/N Junction Example

#### A diode is created from two materials:

- Si doped with 10<sup>16</sup> cm<sup>-3</sup> Boron
- Si doped with 10<sup>17</sup> cm<sup>-3</sup> Arsenic
- Find electron and hole concentration on each side of the junction
- 2. Find position of each Fermi level
- 3. Find built-in voltage  $V_0$

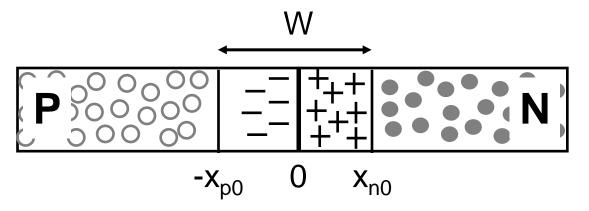
## **Depletion Region**



which material is more heavily doped?

(a) Current flow.

Drift current equals diffusion current under equilibrium: zero net current


(b) Charge density.

Charge density higher on p side than n side since  $N_A > N_D$ 

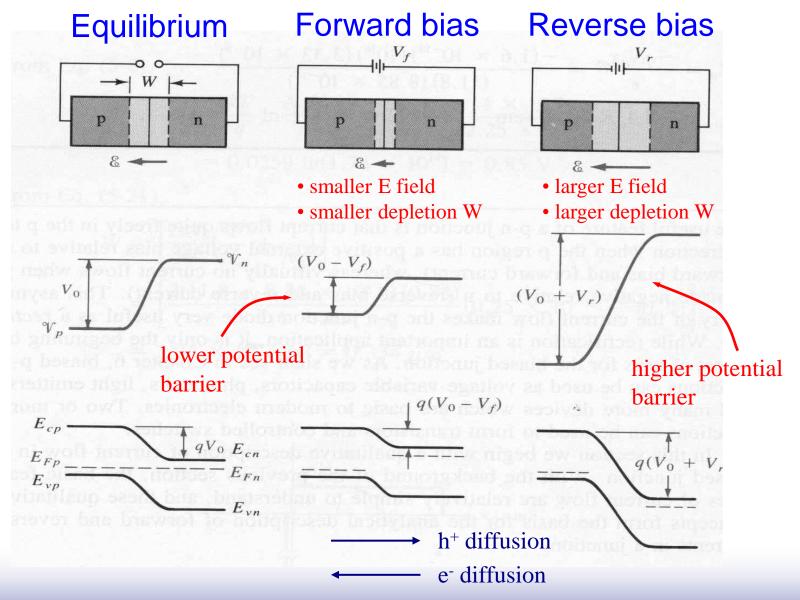
(c) Electric field.

(d) Electrostatic potential.

#### **Abrupt PN Junctions**



Width of depletion region:


$$W_{d} = \sqrt{\frac{2\varepsilon}{q} \frac{(N_{a} + N_{d})}{N_{a}N_{d}}} V_{0}$$
 potential

Try to derive this equation.....

Hint: Start with Gauss's Law...and get to the Poisson's equation (dE/dx =  $\rho/\epsilon$ ), then apply that to each of the two layers in the depletion region.

Built-in

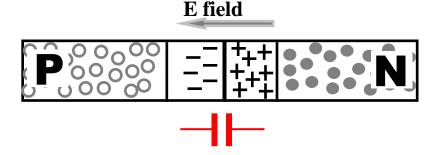
#### Bias Effects on PN Junction



#### Bias Effect on Depletion Width

- When biased, electric field in depletion region changes
  - Forward bias: reduces electric field
  - Reverse bias: increases electric field
- □ Electric field is a result of uncovered charges.
   Therefore depletion width must change
  - Forward bias: less charges needed. Depletion width reduces
  - Reverse bias: more charges needed. Depletion region increases.

#### Bias Effect on Depletion Width


#### Width of depletion region:

$$W_d = \sqrt{\frac{2\varepsilon}{q} \frac{(N_a + N_d)}{N_a N_d}} V_0$$

#### Width of depletion region with bias V:

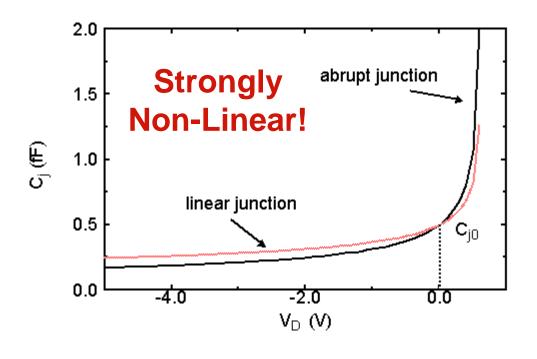
$$W_{d} = \sqrt{\frac{2\varepsilon}{q} \frac{(N_{a} + N_{d})}{N_{a}N_{d}}} (V_{0} - V)$$

#### Capacitance of P/N Junction



- Separated charges result in depletion region capacitance
- > Similar to parallel-plate capacitor

Charge in depletion region:


$$Q_{j} = A \sqrt{2q \varepsilon \frac{N_{d} N_{a}}{N_{d} + N_{a}} (V_{0} - V)}$$

Capacitance:

$$C_{j} = \frac{A}{2} \sqrt{\frac{2q\varepsilon}{V_{0} - V} \frac{N_{d}N_{a}}{N_{d} + N_{a}}}$$

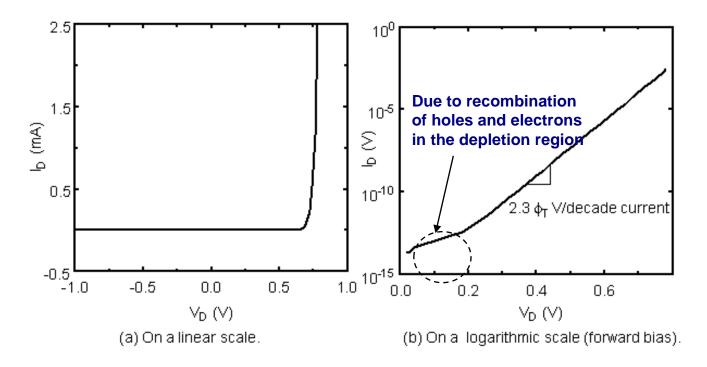
#### Junction Capacitance

A small change in voltage (dV<sub>D</sub>) applied to the junction causes a change in the space charge ( $dQ_i$ ):  $C_i = dQ_i/dV_D$ 



Capacitance reduces with reverse bias:

C<sub>i</sub> is voltage dependent


$$C_j = \frac{C_{j0}}{(1 - V_D I \phi_0)^m}$$
 m = 0.5: abrupt junction m = 0.33: linear junction

 $C_{i0}$  = cap. under zero bias, m is the grading co-efficient

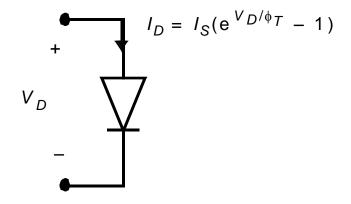
## **Diode Equation**

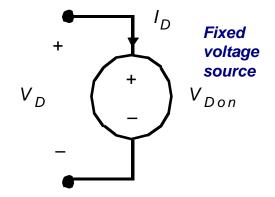
- Forward bias: barrier lowered, diffusion current dominates
- Reverse bias: barrier raised, only current is small drift current of minority carriers
- Diode only lets current flow in one direction
- > Diode equation:  $I = I_s (e^{qV/kT} 1)$

#### **Diode Current**



Current increases by a factor of 10 every 60 mV


Ideal diode equation:  $I_D = I_S(e^{V_D/\phi_T}-1)$ 


I<sub>D</sub>= diode current, V<sub>D</sub>=diode bias voltage

I<sub>s</sub>= saturation current of diode (constant) proportional to diode area, and function of the doping levels and width of neutral regions....determined empirically

 $\Phi_T$ =thermal voltage =kT/q=26mV at 300K

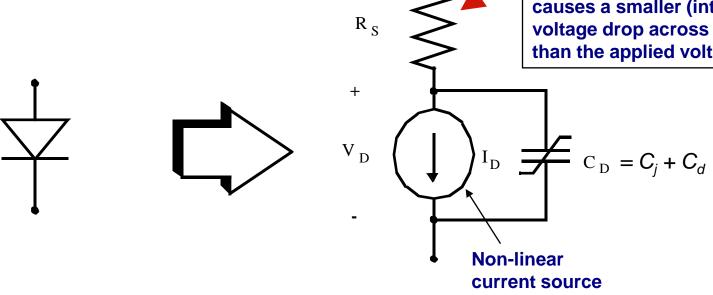
#### Models for Manual Analysis





(a) Ideal diode model

Strongly non-linear:

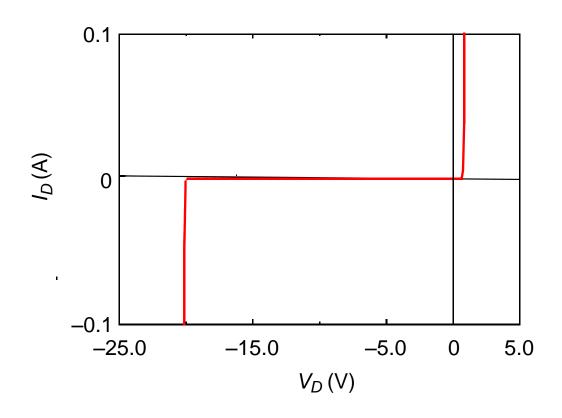

prohibits rapid firstorder analysis

(b) First-order diode model
 A fully conducting diode has a small range of voltage drop (between 0.6 – 0.8 V), hence
 V<sub>Don</sub> can be assumed to be fixed

#### SPICE Diode Model

series resistance due to the neutral regions on both sides of the junction

For high current levels, R<sub>s</sub> causes a smaller (internal) voltage drop across diode than the applied voltage




$$I_D = I_S \left\{ \exp[V_D/n\phi_T] - 1 \right\}$$

See, The Spice Book by Vladimirescu, Wiley 1993, for more details...

n is called the emission co-efficient = 1 for most common diodes but can be greater than 1 for others

#### Secondary Effects

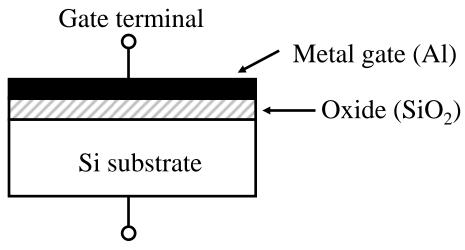


Reverse bias increases electric field across the junction and carriers crossing the junction get accelerated and attain high velocity.

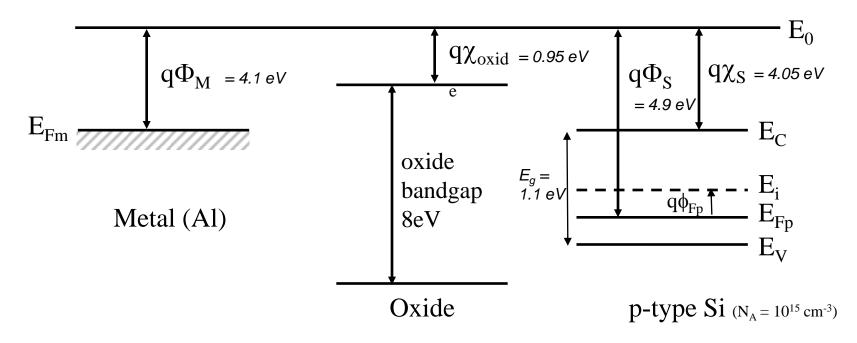
At  $E=E_{crit} = 2x10^5$  V/cm, carriers create e-h pairs on collision with immobile Si atoms.

These carriers in turn create more carriers....

**Avalanche Breakdown** 


#### **SPICE Parameters**

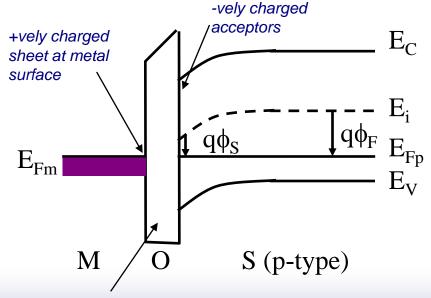
| Parameter Name                 | Symbol   | SPICE<br>Name | Units | Default<br>Value |
|--------------------------------|----------|---------------|-------|------------------|
| Saturation current             | $I_S$    | IS            | A     | 1.0 E-14         |
| Emission coefficient           | n        | N             | -     | 1                |
| Series resistance              | $R_S$    | RS            | Ω     | 0                |
| Transit time                   | $\tau_T$ | TT            | sec   | 0                |
| Zero-bias junction capacitance | $C_{j0}$ | CJ0           | F     | 0                |
| Grading coefficient            | m        | M             | -     | 0.5              |
| Junction potential             | $\phi_O$ | VJ            | V     | 1                |


First Order SPICE diode model parameters.

#### **MOS Structure**

- MOS: Metal-oxide-semiconductor
  - Gate: metal (or polysilicon)
  - > Oxide: silicon dioxide, grown on substrate
- MOS capacitor: two-terminal MOS structure




#### MOS Energy Band Diagram



- Work function ( $q\Phi_M$ ,  $q\Phi_S$ ): energy required to take electron from Fermi level to free space
- Electron affinity is the potential difference between the conduction band level and vacuum (free-space) level = qX<sub>s</sub>
- Work function difference between AI and Si = 0.8eV
- At equilibrium, Fermi levels must line up!!

## MOS Energy Band Diagram

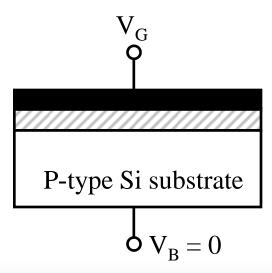
- Bands must bend for Fermi levels to line up
- $\succ$  Amount of bending is equal to work function difference:  $q\Phi_{M}$   $q\Phi_{S}$
- Fermi levels equalized by transfer of –ve charge from materials with higher E<sub>F</sub> (smaller work functions) across interfaces to materials with lower E<sub>F</sub>
- Part of voltage drop occurs across oxide, rest occurs next to O-S interface



 $\phi_F$  = Fermi potential (difference between  $E_F$ and  $E_i$  in bulk)

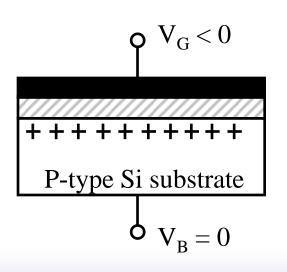
 $\phi_S$  = surface potential

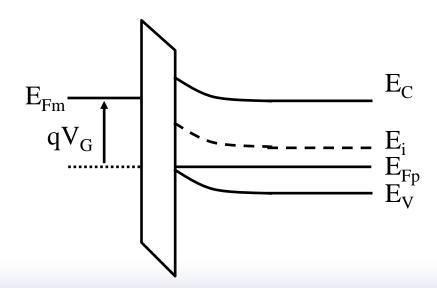
#### Flat-Band Voltage


- Flat-band voltage
  - ➤ Built-in potential of MOS system
  - Flat Band Voltage:  $V_{FB} = \Phi_m \Phi_S$
  - ➤ Apply this voltage to "flatten" energy bands
  - ➤ For the MOS system considered on the previous slide, a –ve voltage applied to the metal w.r.t the Si opposes the built-in voltage on the capacitor and tends to reduce the charge stored on the capacitor plates below its equilibrium value

#### > Example

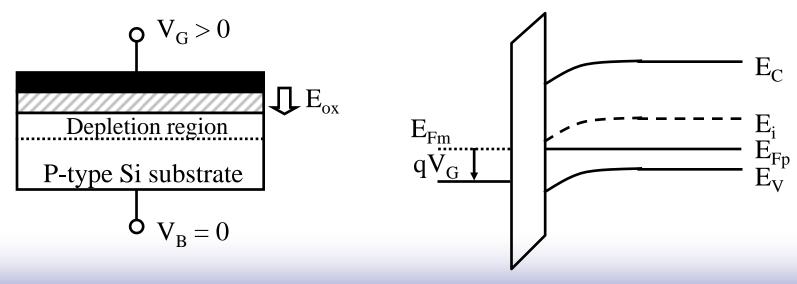
- $\triangleright$  P-type substrate:  $q\phi_{Fp} = 0.2 \text{ eV}$ ,  $q\chi_S = 4.05 \text{ eV}$
- $\triangleright$  Aluminum gate (q $\Phi_m$  = 4.1 eV)
- What is flatband voltage?


## **MOS Capacitor Operation**


- Assume p-type substrate
- Three regions of operation
  - $\triangleright$  Accumulation (V<sub>G</sub> < 0)
  - $\triangleright$  Depletion (V<sub>G</sub> > 0 but small)
  - $\triangleright$  Inversion (V<sub>G</sub> >> 0)



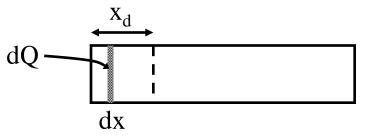
#### Accumulation


- Negative voltage on gate: attracts holes in substrate towards oxide
- Holes "accumulate" on Si surface (surface is more strongly p-type)
- Electrons pushed deeper into substrate





#### **Depletion**


- □ Positive voltage on gate: repels holes in substrate
  - Holes leave behind negatively charged acceptor ions
- Depletion region forms: devoid of carriers
  - Electric field directed from gate to substrate
- Bands bend downwards near surface
  - Surface becomes <u>less</u> strongly p-type (E<sub>F</sub> close to E<sub>i</sub>)



#### Depletion Region Depth

- Calculate thickness x<sub>d</sub> of depletion region
  - > Find charge dQ in small slice of depletion area

$$dQ = -qN_A dx$$



Find change in surface potential to displace dQ by distance x<sub>d</sub> from the surface (Poisson equation):

$$d\phi = -x \frac{dQ}{\varepsilon_{Si}} \qquad \qquad d\phi = xqN_A \frac{dx}{\varepsilon_{Si}}$$

## Depletion Region Depth (cont.)

>Integrate perpendicular to surface

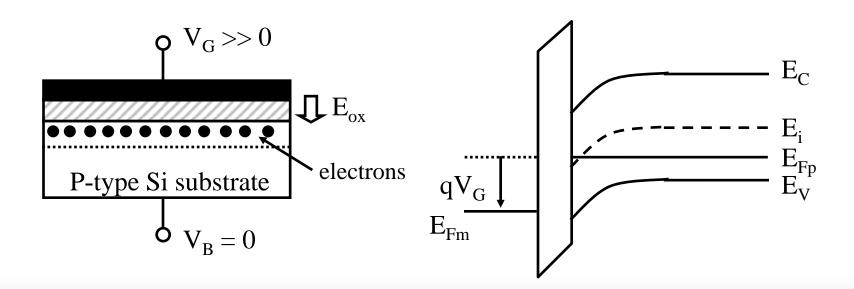
$$\int_{\varphi_F}^{\varphi_S} d\varphi_S = \int_{0}^{x_d} \frac{qN_A x}{\varepsilon_{Si}} dx$$

$$\varphi_{S} - \varphi_{F} = \frac{qN_{A}x_{d}^{2}}{2\varepsilon_{Si}}$$

>Result:

$$x_{d} = \sqrt{\frac{2 \varepsilon_{Si} \left| \phi_{S} - \phi_{F} \right|}{q N_{A}}}$$

#### Depletion Region Charge

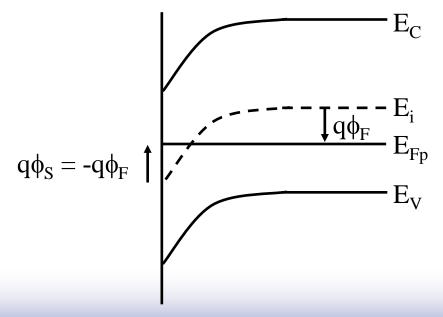

- > Depletion region charge density
  - ➤ Due only to fixed acceptor ions
  - ➤ Charge per unit area

$$Q = -qN_A x_d$$

$$Q = -\sqrt{2qN_A \varepsilon_{Si} |\phi_S - \phi_F|}$$

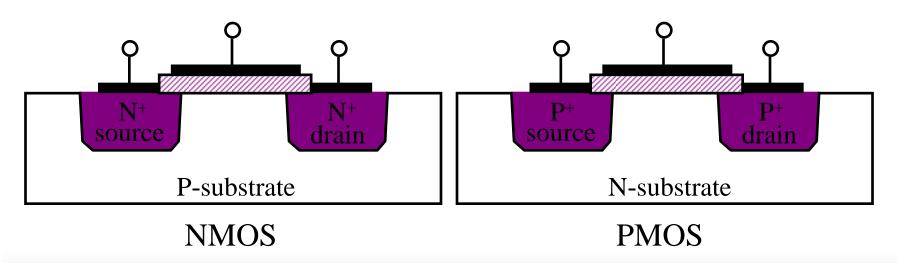
#### Inversion

- Increase voltage on gate, bands bend more
- Additional minority carriers (electrons) attracted from substrate to surface
  - > Forms "inversion layer" of electrons
- Surface becomes n-type




#### Inversion

- Definition of inversion
  - Point at which density of electrons on surface = density of holes in bulk
  - > Surface potential is same as  $\phi_F$ , but different sign

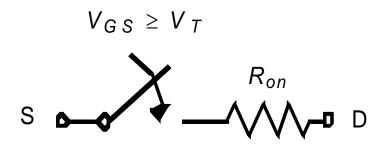

#### Remember:

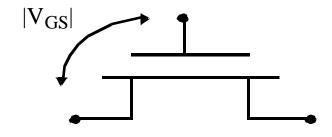
$$q\phi_F = E_F - E_i$$



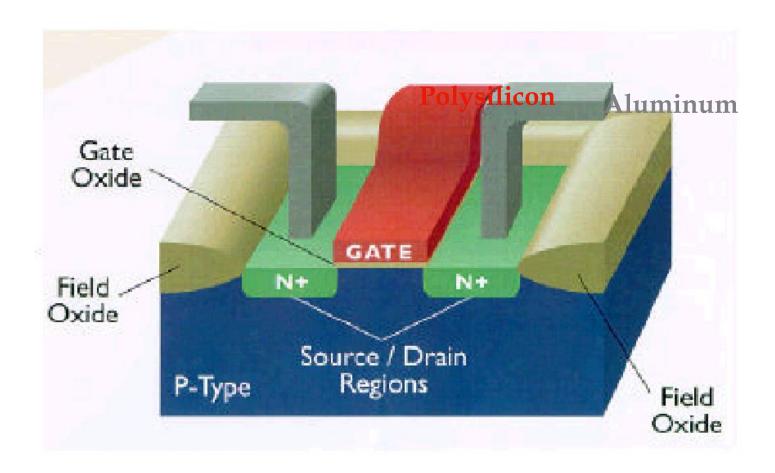
#### **MOS Transistor**

- Add "source" and "drain" terminals to MOS capacitor
- Transistor types
  - > NMOS: p-type substrate, n+ source/drain
  - > PMOS: n-type substrate, p+ source/drain





#### What is a Transistor?

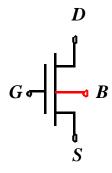
A Switch!




An MOS Transistor






#### The MOS Transistor



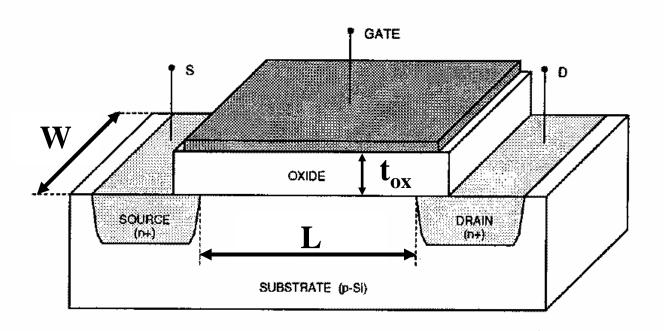
## MOS Transistors - Types and Symbols

NMOS G

 $\mathsf{PMOS} \qquad G \leftarrow \bigcup_{S}^{D}$ 

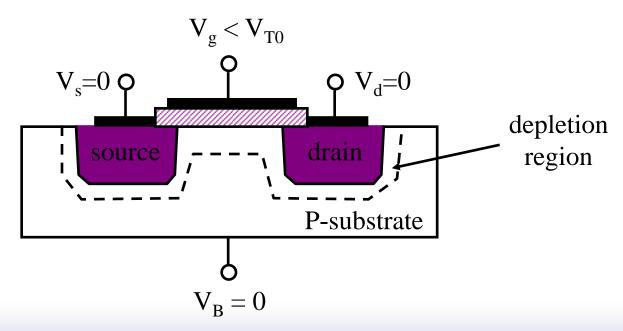


NMOS with Body Contact


For NMOS: Body tied to Gnd

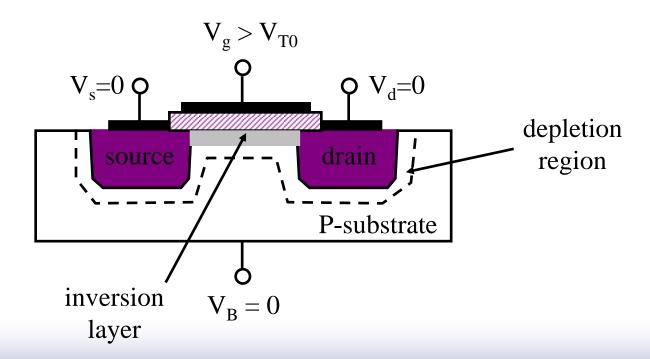
For PMOS: Body tied to Vdd

Why?

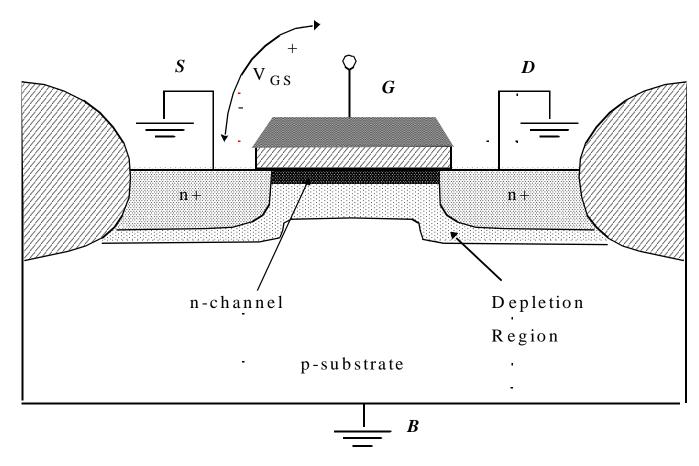

#### **MOS Transistor**

- □ Important transistor physical characteristics
  - Channel length L
  - Channel width W




#### **MOS Transistor Operation**

- □ Simple case:  $V_D = V_S = V_B = 0$ 
  - Operates as MOS capacitor
- $\square$  When  $V_{GS} < V_{TO}$  (but positive), depletion region forms
  - No carriers in channel to connect S and D
- $\Box$   $V_{T0}$  is known as the *threshold voltage*




#### MOS Transistor Operation

- $\square$  When  $V_{GS} > V_{T0}$ , inversion layer forms
- Source and drain connected by conducting ntype layer (for NMOS)



# Threshold Voltage ( $V_{T0}$ ): Concept



Note: gate is insulated from the substrate...hence no dc current flows through the oxide...channel is capacitively coupled to the gate through the electric-field in the oxide....that's how it gets the name MOS-FET (field effect transistor)

# Physical Parameters that Affect V<sub>T0</sub>

- □ Threshold voltage (V<sub>T0</sub>): voltage between gate and source required for inversion
  - NMOS Transistor is "off" when V<sub>GS</sub> < V<sub>T0</sub>
- □ Components:
  - Work function difference between gate and channel (Flat-band voltage)
  - Gate voltage to change surface potential
  - Gate voltage to offset depletion region charge
  - Gate voltage to offset fixed charges in gate oxide and in silicon-oxide interface

## Threshold voltage (1)

- ➤ Work function difference qФ<sub>GC</sub> between gate and channel
  - Represents built-in potential of MOS system
  - For metal gate:  $\Phi_{GC} = \Phi_{M}(\text{metal-gate}) \Phi_{F}(\text{substrate}) = \Phi_{ms}$
  - For poly gate:  $\Phi_{GC} = \phi_F(\text{poly-Si-gate}) \phi_F(\text{substrate})$

$$V_{T0} = \Phi_{GC} + \cdots$$

#### Threshold voltage (2)

- First component accounts for built-in voltage drop
- Now apply additional gate voltage to achieve inversion: change surface potential by  $-2\phi_F$  (note that  $\phi_F$  is negative for p-type substrate)

$$V_{T,0} = \Phi_{GC} - 2\phi_F + \cdots$$

## Threshold voltage (3)

- Offset depletion region charge, due to fixed acceptor ions
- Calculate charge at inversion ( $\phi_S = -\phi_F$ )

From before: 
$$Q = -\sqrt{2 q N_A \varepsilon_{Si} |\phi_S - \phi_F|}$$

$$\triangleright$$
 So:  $Q_{B0} = -\sqrt{2qN_A \varepsilon_{Si} - 2\phi_F}$ 

Depletion charge is So:  $Q_{B0} = -\sqrt{2qN_A \varepsilon_{Si} - 2\phi_F}$  Depletion on any analysis negative....why? (acceptor ions after accepting electrons are -ve)

For non-zero substrate bias (V<sub>SB</sub> ≠ 0):

$$Q_B = -\sqrt{2qN_A \varepsilon_{Si} \left| -2\phi_F + V_{SB} \right|}$$

➤ Due to larger depletion region

## Threshold voltage (3, cont.)

- ➤ To offset this charge, need voltage -Q<sub>B</sub>/C<sub>ox</sub>
- Cox = gate capacitance per unit area
  - $ightharpoonup C_{ox} = \varepsilon_{ox}/t_{ox}$
  - $> t_{ox} =$  thickness of gate oxide (normally in Å)

$$V_{T0} = \Phi_{GC} - 2\phi_F - \frac{Q_B}{C_{ox}} + \cdots$$

## Threshold voltage (4)

- Finally, correct for non-ideal fixed charges
  - Fixed positive charged ions at boundary between oxide and substrate. Density =  $N_{OX}$
  - > Due to impurities, lattice imperfections at interface
  - $\triangleright$  Positive charge density  $Q_{ox} = qN_{ox}$
  - $\triangleright$  Correct with gate voltage =  $-Q_{ox}/C_{ox}$
- > Final threshold voltage formula (for NMOS):

$$V_{T0} = \Phi_{GC} - 2\phi_F - \frac{Q_{B0}}{C} - \frac{Q_{ox}}{C}$$

#### Threshold voltage, summary

 $\gt$  If  $V_{SB} = 0$  (no substrate bias):

$$V_{T0} = \Phi_{GC} - 2\phi_F - \frac{Q_{B0}}{C_{ox}} - \frac{Q_{ox}}{C_{ox}}$$

 $\gt$  If  $V_{SB} \neq 0$  (non-zero substrate bias)

$$V_{T} = V_{T0} + \gamma \left( \sqrt{\left| -2\phi_{F} + V_{SB} \right|} - \sqrt{\left| 2\phi_{F} \right|} \right)$$

Body effect (substrate-bias) coefficient:

$$\gamma = \frac{\sqrt{2 \, qN_A \, \varepsilon_{Si}}}{C_{ox}} + \text{for NMOS} - \text{for PMOS}$$

> Threshold voltage increases as V<sub>SB</sub> increases!

(easy to explain with a band diagram....)