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MOS Capacitor (Review) 
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MOS Transistor 

 Important transistor physical characteristics 
 Channel length L 

 Channel width W 

 Thickness of oxide tox 

L 

W 
tox 
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Threshold Voltage, summary 
 If VSB = 0 (no substrate bias): 

 

 

 If VSB  0 (non-zero substrate bias) 

 

 

 Body effect (substrate-bias) coefficient: 

 

 

 Threshold voltage increases as VSB increases! 
(easy to explain with a band diagram….) 
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Remember: which factors are 

helping you (and which are 

obstructing) in reaching the 

inversion band diagram!!! 
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Threshold Voltage (NMOS vs. PMOS) 

NMOS PMOS 

Substrate Fermi potential F < 0 F > 0 

Depletion charge density QB < 0 QB > 0 

Substrate bias coefficient  > 0  < 0 

Substrate bias voltage VSB > 0 VSB < 0 

Threshold voltage 
(enhancement devices) 

VT0 > 0 VT0 < 0 

Remember: You need not memorize this table but rather should be able to 

fill it in based on the band diagrams… 
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Threshold Voltage Adjustment 

 Threshold voltage can be changed by doping the 

channel region with donor or acceptor ions 

 For NMOS: 

 VT increased by adding acceptor ions (p-type) 

 VT decreased by adding donor ions (n-type) 

 Opposite for PMOS 

 Approximate change in VT0: 

 Density of implanted ions = NI [cm-2] 

 Assume all implanted impurities are ionized 
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Example: VT0 Adjustment 

 Consider an NMOS device: 

 P-type substrate: NA = 2 x 1016 cm-3 

 Polysilicon gate: GC = -0.92V 

 tox = 600 Å   (1Å = 1 x 10-8 cm) 

 Nox = 2 x 1010 cm-2 

 Si = 11.7 0,  ox = 3.97 0 

 

 (a) Find VT0 

 

 (b) Find amount and type of channel implant to get 

VT0 = 0.4 V 

 



Kaustav Banerjee Lecture 7, ECE 122A, VLSI Principles 

The Body Effect 
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Draw a band 

diagram to 

convince 

yourself… 
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Pinch-off: conduction 

still takes place from 

Source to Drain due to 

drift of electrons under 

the influence of the +ve 

drain voltage 

MOSFET Operation (NMOS) 

VGS –V(x) < Vt  

Conduction 

dominated by DRIFT 

Remember, both 

drift and diffusion 

currents play a 

role… 
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NMOS Output Characteristics 

Quadratic 
Relationship 

Long Channel Transistor: 

Recall that the 

surface channel 

vanishes at the 

drain end of the 

channel….when 

current 

saturates…known 

as “pinch-off”  

 

Any voltage  

VDS > VD,sat  is 

dropped across the 

high-field pinch-off 

region…where 

inversion charge =0 

The saturation 

voltage VD,sat can 

be estimated  by 

equating 

dIds/dVds to zero 
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Vds = Vgs - Vgd 

Qchannel = Cg (Vgc – Vt) 

Channel Mobile Charge 
NMOS Transistor: 

Note: i) The inversion layer 

thickness is assumed to be 

zero: all charges are 

assumed to be located at 

the Si surface….like a 

sheet of charge…. 

ii) Hence, there is no 

potential drop or band 

bending across the 

inversion layer…. 
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Cg = Cox = ox WL/tox 

Gate Capacitance 
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Transistor Currents (NMOS) 
Cutoff Region: Ids = 0, Vgs<Vt 

Linear Region: Vgs> Vt, Vds< Vgs-Vt   

Ids= W Qchannel .carrier velocity(v) 

Ids = m Cox W/L (Vgs-Vt-Vds/2)Vds 

Since Vds is small, Vds/2 can be neglected…and Ids is linearly 

proportional to Vds….like a resistor 

Saturation Region: Vgs>Vt, Vds > Vgs – Vt 

Note: as Vds increases, average Qchannel decreases… 

dIds/dVds = 0 at Vds=Vdsat=Vgs-Vt 

Substituting Vds with Vdsat above: Ids = b/2 (Vgs-Vt)
2 

v = mE 

Elateral = Vds/L 

b = m Cox W/L 

Note: for PMOS Vtp = Vtn           mp < mn, hence (W/L)PMOS ~ 2 (W/L)NMOS 

Qchannel = Cg (Vgc – Vt) 

Vgc = Vgs – Vds/2) 
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PMOS Transistor  
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PMOS Output Characteristics 
Long Channel Transistor: 
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Channel Length Modulation 

 In saturation, pinch-off point moves 

 As VDS is increased, pinch-off point moves closer to source 

 Effective channel length becomes shorter 

 Current increases due to shorter channel 
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Summary: MOS Output I/V 
I/V curve for NMOS device: 

Drain voltage VDS 

D
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VGS1 

VGS2 

VGS3 

Linear 

Saturation 

without channel-

length modulation 

(=0) 

with channel-length 

modulation 

VDS = VGS-VT 
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Current-Voltage Relations 

Short-Channel Transistors 

Linear 
Relationship 
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Velocity Saturation 

x  (V/µm) x c   = 1.5 

u
 n 

  ( 
m

 / s
 ) 

u sat   = 10 5 

Constant mobility (slope = µ) 

Constant velocity 

v = mE 

Beyond the critical 

electric-field, higher 

energy optical phonons 

are generated that 

reduce and eventually 

saturate the carrier 

velocity…. 
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Perspective 

I D 

Long-channel device 

Short-channel device 

V DS 
V DSAT V GS  - V T 

V GS  = V DD 
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Output Characteristics: ID versus VDS 
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Resistive Saturation 

VDS = VGS - VT 

Long Channel Short Channel 

L = 10 um L = 0.25 um 

W/L = 1.5 for both cases…. 

VGS-VDS = VT 

Velocity Saturation 
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Input Characteristics: ID versus VGS 
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Note: These are Linear-Linear Plots!! 
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Simple Model (solid lines) versus SPICE  
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A PMOS Transistor (short-channel) 
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Alpha-Power MOSFET Model 

Ids  (Vgs – Vt)
a 

1<a<2, is the velocity saturation index, determined by curve fitting…..also accounts for 

mobility degradation due to high vertical field (Vgs/tox) 

At low lateral E-fields, Vds/L, current 

increases linearly with E-field 

At high fields, E= Esat 

Carrier velocity saturates due to 

carrier scattering = vsat (= m Esat) 

 

Ids = m Cox W/L (Vgs – Vt)
2  

 ---no velocity saturation 

Ids = Cox W (Vgs – Vt) vsat  
 ---complete velocity saturation 

Practical situation: carrier velocity 

doesn’t increase linearly with field but 

is not completely velocity saturated…. 

Sakurai Model: 
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How to Extract SS, Gm, and Rout 
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SS: Sub-threshold 

voltage swing 
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Methods to Extract Vth 

③ Second derivative of Id 
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Linear scale Vgs 

Constant current, 

typically 10-7 A/μm 

Vth 

Linear scale Vgs 
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① Constant current 

② Tangent method 

derivative of Gm 

= Gm 

Also called 

maximum Gm 

method… 


