

ECE 122A VLSI Principles Lecture 8

Prof. Kaustav Banerjee Electrical and Computer Engineering University of California, Santa Barbara *E-mail: kaustav@ece.ucsb.edu*

Lecture 8, ECE 122A, VLSI Principles

Dynamic Behavior of MOS Transistor

Oxide Capacitance

- Gate to Source overlap
- Gate to Drain overlap
- Gate to Channel/Bulk

□ Junction Capacitance

- Source to Bulk junction
- Drain to Bulk junction

G

Oxide capacitances Overlap

Overlap capacitances

- gate electrode overlaps source and drain regions
- X_D is overlap length on each side of channel
- $L_{eff} = L_d 2X_D$
- Total overlap capacitance:

$$C_{overlap} = C_{GSO} + C_{GDO} = 2C_{ox}WX_D$$

Lecture 8, ECE 122A, VLSI Principles

Oxide capacitances Channel

Channel capacitances

- Gate-to-source: C_{gs}
- Gate-to-drain: C_{gd}
- Gate-to-bulk: C_{gb}

□ Cutoff:

- No channel connecting source and drain
- $C_{gs} = C_{gd} = 0$
- $C_{gb} = C_{ox}WL_{eff}$
- Total channel capacitance C_{GC} = C_{ox}WL_{eff}

Oxide capacitances Channel

Linear mode

- Channel spans from source to drain
- Capacitance split equally between S and D

$$C_{GS} = \frac{1}{2}C_{ox}WL_{eff} \qquad C_{GD} = \frac{1}{2}C_{ox}WL_{eff} \qquad C_{GB} = 0$$

– Total channel capacitance $C_{GC} = C_{ox}WL_{eff}$

□ Saturation mode

- Channel is pinched off:

$$C_{GD} = 0 \qquad C_{GS} = \frac{2}{3}C_{ox}WL_{eff} \qquad C_{GB} = 0$$

- Total channel capacitance $C_{GC} = 2/3 C_{ox}WL_{eff}$

Lecture 8, ECE 122A, VLSI Principles

Oxide capacitances Channel

Lecture 8, ECE 122A, VLSI Principles

Gate-to-Channel Capacitance

Capacitance as a function of V_{GS} (with $V_{DS} = 0$)

Capacitance as a function of the degree of saturation

Bottom Line: Cap. components are non-linear

Lecture 8, ECE 122A, VLSI Principles

Gate-to-Channel Capacitance (summary)

$$C_{GC} = C_{gb} + C_{gs} + C_{gd}$$

Operation Region	C _{gb}	C_{gs}	C_{gd}
Cutoff	C _{ox} WL _{eff}	0	0
Resistive	0	$C_{ox}WL_{eff}/2$	$C_{ox}WL_{eff}/2$
Saturation	0	$(2/3)C_{ox}WL_{eff}$	0

Diffusion Capacitance

Junction Capacitance

Lecture 8, ECE 122A, VLSI Principles

Linearizing the Junction Capacitance

Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest

$$C_{eq} = \frac{\Delta Q_j}{\Delta V_D} = \frac{Q_j(V_{high}) - Q_j(V_{low})}{V_{high} - V_{low}} = K_{eq}C_{j0}$$

$$K_{eq} = \frac{-\phi_0^m}{(V_{high} - V_{low})(1 - m)} [(\phi_0 - V_{high})^{1 - m} - (\phi_0 - V_{low})^{1 - m}]$$

Lecture 8, ECE 122A, VLSI Principles

Capacitances in 0.25 µm CMOS Process

	C_{ox} (fF/ μ m ²)	C _O (fF/μm)	C_j (fF/ μ m ²)	m_{j}	$egin{array}{c} \phi_b \ (V) \end{array}$	C _{jsw} (fF/µm)	m _{jsw}	$egin{array}{c} \phi_{bsw} \ (V) \end{array}$
NMOS	6	0.31	2	0.5	0.9	0.28	0.44	0.9
PMOS	6	0.27	1.9	0.48	0.9	0.22	0.32	0.9

MOS Cap. Summary

In general, these capacitances are nonlinear and voltage dependent....

Note: The diffusion capacitances, C_{sb} and C_{db} are parasitic capacitances....but they do impact circuit performance

FIG 2.14 Capacitances of an MOS transistor

Data Dependency

Effective gate capacitance (C_g) varies with the switching activity of the source and drain....

Think about a parallel plate capacitor...with the each electrode tied to the same voltage or different voltages...

FIG 2.12 Data-dependent gate capacitance

Subthreshold Leakage

l_{ds} Saturation $V_{ds} = 1.8$ 1 mA Region 100 μA Subthreshold 10 µA Region 1 μA 100 nA 10 nA Subthreshold 1 nA Slope 100 pA V_t 10 pA 0.9 1.2 1.5 0 0.3 0.6 1.8 V_{gs} (b)

FIG 2.15 Simulated I-V characteristics

- Dominant leakage mechanism
- Function of both V_{GS} and V_{DS}

• Increases exponentially as temperature increases or Vt decreases.....

Subthreshold swing (S) = (subthreshold slope)⁻¹

S = n (kT/q) ln (10)

For ideal transistor with sharpest possible roll-off, n=1 and S=60 mV/decade

...a fundamental limit for MOSFETs!!!

Lecture 8, ECE 122A, VLSI Principles

Kaustav Banerjee

How much do we need to reduce V_{GS} for lds to drop by a factor of 10.....

Gate Leakage (Direct Tunneling)

FIG 2.20 Gate leakage current from [Song01]

- Increases with gate oxide (SiO2) scaling
- High-k gate oxides can be used to lower gate leakage
- •Independent of temperature

Junction Leakage

FIG 2.19 Reverse-biased diodes in CMOS circuits

•Less significant than gate and subthreshold leakage

•Increases with temperature

Lecture 8, ECE 122A, VLSI Principles

Temperature Effects

saturation at various temperatures

Lecture 8, ECE 122A, VLSI Principles

Temperature Effects

FIG 2.22 I_{dsat} vs. temperature

Lecture 8, ECE 122A, VLSI Principles

Temperature Effects

Chip Cooling can:

- 1. Improve Circuit performance
 - speed up transistors since mobility improves
 - decrease the delay of interconnects since metal resistance decreases with temperature
 - Lowers junction capacitance (increases depletion width)
- 2. Decrease leakage (mainly subthreshold)
- 3. Improve reliability of the chip

For more detailed info. read the paper posted on the class web site: "Cool Chips: Opportunities and Implications for Power and Thermal Management", by S-C. Lin and K. Banerjee, IEEE Transactions on Electron Devices, vol. 55, No. 1, 2008, 245-255

Inverter Operation

□ Inverter is the simplest digital logic gate

Many different circuit styles possible

- CMOS
- Resistive-load
- Pseudo-NMOS
- Dynamic
- Important characteristics
 - Performance (operating speed or delay through the gate)
 - Power/Energy consumption
 - Robustness (tolerance to noise)
 - Cost (complexity and area)

CMOS Inverter

The most widely used gate

A CMOS inverter

Lecture 8, ECE 122A, VLSI Principles

Inverter model: VTC

Voltage transfer curve (VTC): plot of output voltage Vout vs. input voltage Vin

Actual inverter: V_{OH} and V_{OL}

V_{OH} and V_{OL} represent the "high" and "low" output voltages of the inverter

- V_{OH} = output voltage when Vin = '0'
- V_{OL} = output voltage when Vin = '1'

Ideally,

- V_{OH} = Vcc
- V_{OL} = 0

In transfer function terms:

- $V_{OL} = f(V_{OH})$
- $V_{OH} = f(V_{OL})$
- f = inverter transfer function
- Difference (V_{OH}-V_{OL}) is the voltage swing of the gate
 - Full-swing logic swings from ground to Vcc

Inverter Threshold

Inverter switching threshold:

- Point where voltage transfer curve intersects line Vout=Vin
- Represents the point at which the inverter switches state
- Normally, $V_M \approx Vcc/2$ - Why?

Noise Margins....

- V_{IL} and V_{IH} measure effect of input voltage on inverter output
- V_{IL} = largest input voltage recognized as logic '0'
- V_{IH} = smallest input voltage recognized as logic '1'
- Defined as point on VTC where slope = -1

Inverter Noise Margin

Ideally, noise margin should be as large as possible

 Noise margin is a measure of the *robustness* of an inverter

- N_{ML} = V_{IL} V_{OL}
- $N_{MH} = V_{OH} V_{IH}$
- Models a chain of inverters.
 Example:
 - First inverter output is V_{OH}
 - Second inverter recognizes input > V_{IH} as logic '1'
 - Difference V_{OH}-V_{IH} is "safety zone" for noise

Noise Margin (cont)

- Why are V_{IL}, V_{IH} defined as unity-gain point on VTC curve?
 - Assume there is noise on input voltage V_{in}

$$V_{out} = f\left(V_{in} + V_{noise}\right)$$

- First-order approximation (Taylor Series):

$$V_{out} = f(V_{in}) + \frac{dV_{out}}{dV_{in}}V_{noise}$$

Note: $dV_{out}/dV_{in} = 0$ occurs only at the beginning and at the end of the VTC curve, elsewhere it is negative

- If gain $(dV_{out}/dV_{in}) > 1$, noise will be amplified.
- If gain < 1, noise is filtered. Therefore V_{IL} , V_{IH} ensure that gain < 1

CMOS Inverter Noise Margins

FIG 2.28 CMOS inverter noise margins

Lecture 8, ECE 122A, VLSI Principles

Determining V_{IH} and V_{IL}

A simplified approach: piecewise linear approximation of the VTC

of Vin to 50% point of Vout

$$\Box t_{phl} = t_1 - t_0, \qquad t_{plh} = t_3 - t_2, \qquad t_p = \frac{1}{2}(t_{phl} + t_{plh})$$

Rise and Fall Time

□ Fall time: measured from 90% point to 10% point

• $t_F = t_1 - t_0$

□ Rise time: measured from 10% point to 90% point

- $t_R = t_3 t_2$
- □ Alternately, can define 20%-80% rise/fall time

Ring Oscillator

- Ring oscillator circuit: standard method of comparing delay from one process to another
- Odd-number n of inverters connected in chain: oscillates with period T (usually n >> 5)

Lecture 8, ECE 122A, VLSI Principles

CMOS Inverter

- Complementary NMOS and PMOS devices
- In steady-state, only one device is on (no static power consumption)
- □ Vin=1: NMOS on, PMOS off
 - Vout = V_{OL} = 0
- □ Vin=0: PMOS on, NMOS off
 - Vout = V_{OH} = Vcc
- □ Ideal V_{OL} and V_{OH} !
- High input resistance (insulated gate) and low output impedance (finite resistance path between output and Vcc or Gnd)
- □ Ratioless logic

Generating the Inverter VTC

A. Translate PMOS I-V Relations into NMOS Variable Space using the following:

CMOS Inverter Load Characteristics

B. For a DC operating point to be valid, currents through NMOS and PMOS must be equal (for a given V_{in}), hence find the points of intersection.

CMOS Inverter VTC

CMOS Inverter Operation (summary)

Table 2.2	Relationships between voltages for the three regions of operation of a CMOS inverter				
	Cutoff	Linear	Saturated		
nMOS	$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$		
	$V_{\rm in} < V_{tn}$	$V_{\rm in} > V_{tn}$	$V_{\rm in}$ > V_{tn}		
		$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$		
		$V_{\rm out}$ < $V_{\rm in}$ - V_{tn}	$V_{\rm out}$ > $V_{\rm in} - V_{tn}$		
pMOS	$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$		
	$V_{\rm in}$ > V_{tp} + V_{DD}	$V_{\rm in} < V_{tp} + V_{DD}$	$V_{\rm in} < V_{tp} + V_{DD}$		
		$V_{dsp} > V_{gsp} - V_{tp}$	$V_{dsp} < V_{gsp} - V_{tp}$		
		$V_{\rm out}$ > $V_{\rm in} - V_{tp}$	$V_{\rm out} < V_{\rm in} - V_{tp}$		

Switching Threshold as a function of Transistor Ratio

Simulated VTC

Note: piecewise linear approximation of the VTC would lead to higher gain

Lecture 8, ECE 122A, VLSI Principles

Inverter Gain

Gain is mostly determined by technology parameters, especially channel length modulation, but also by V_{DD}

Note: approximately $V_M \propto V_{DD}$

Inverter Skew V_{DD}, HI-skewed $\frac{\beta_p}{\beta_n} = 10$ V_{out} 2 1 unskewed 0.5 = 0.1 $\frac{\beta}{\beta_n}$ LO-skewed 0 V_{DD} ${\sf V}_{\sf in}$

FIG 2.26 Transfer characteristics of skewed inverters

Lecture 8, ECE 122A, VLSI Principles