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Two Inverters 

Connect in Metal 

Share power and ground 
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CMOS Inverter 

First-Order DC Analysis 

VOL = 0 

VOH = VDD 

VM = f(Rn, Rp) 

V DD V DD 

V in 
= V DD V in 

=  0 

V out 

V out 

R n 

R p 
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CMOS Inverter: Transient Response  

t pHL  = f(R on .C L ) 

= 0.69 R on C L 

V out 
V out 

R n 

R p 

V DD 
V DD 

V in =  VDD V in 

(a) Low-to-high (b) High-to-low 

C L 
C L 

Vout =  

= 0 

Note: CL is composed of 

drain diffusion 

capacitances of 

NMOS/PMOS, wire caps (if 

any), and the input cap. of 

the fanout gates….. 
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The Transistor as a Switch 
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The Transistor as a Switch 
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As VDD increases, drain current increases….for both 

NMOS and PMOS  
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The Transistor as a Switch 
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Resistive-load Inverter 
 Requires only NMOS transistor 

and resistor 

 When Vin = 0: 

 NMOS is OFF (VGS = 0) 

 No current through NMOS or 

resistor 

 Vout  Vcc 

 When Vin = Vcc: 

 NMOS is ON (VGS = Vcc) 

 NMOS ON resistance << R 

 Vout  0 

 

Vin 

Vout 

Vcc 

Gnd 

R 

G D 

S 

Remember: if body terminal 

not shown, it is connected to 

gnd for NMOS, Vcc for 

PMOS 

Drain current ID = 

Load current IR 

(Kirchoff’s Law) 

IR 

ID 

Not suitable for VLSI: large area of R, DC 

power dissipation. 
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Resistive-load Inverter 

Ids = Vcc/Rload 

As Rload increases, VTC 

becomes sharper! 

Larger Rload = smaller PU transistor...LO skewed… 
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Pseudo-NMOS Inverter 
 Replace resistor with “always-

on” PMOS transistor 

 Easier to implement in 

standard process than large 

resistance value 

 PMOS load transistor: 
 ON when VGS < VT →  

VGS = -VCC: transistor always on 

 

 Linear when VDS > VGS-VT →  

Vout-Vcc > -Vcc-VT → Vout > -VT 

 

 Saturated when VDS < VGS-VT →  

Vout-Vcc < -Vcc-VT → Vout < -VT 

Vin 

Vcc 

Gnd 

G 
S 

D 

VGS,P = -VCC 

Remember:  

VT(PMOS) < 0 

Vout 

Ratioed Logic: 

Vout depends 

on the relative 

size of the 

transistors 
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Pseudo-NMOS Inverter 

Note: Smaller 

Width of PMOS 

(P) means larger 

resistance 

Compare with 

resistive-load 

inverter! 
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Propagation Delay 
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Two CMOS Inverters… 
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CMOS inverter capacitances 

Vin 

Vcc 

Gnd 

Cgd,p 

Cgs,p 

Cdb,p 

Csb,p 

Cgd,n 

Cgs,n Csb,n 

Cdb,n Cint Cg 

f 

Cap on Node f: 

 
• Junction cap: Cdb,p and Cdb,n 

• Gate (overlap) capacitance 

   Cgd,p and Cgd,n (beware of 

 Miller effect) 

• Interconnect cap: Cint   

• Receiver gate cap: Cg 

Assumption: Vin is driven by an 

ideal voltage source….with zero 

rise and fall times….hence the 

transistors are either in cut-off or 

saturation mode…hence, no 

channel capacitance 
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CMOS inverter capacitances 
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For each gate 
Miller Effect 
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CMOS Inverter Propagation Delay 

Approach 1 

VDD

Vout

Vin = VDD

CLIav

tpHL = CL Vswing/2

Iav

CL

kn VDD

~ Note: q = C V 
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CMOS Inverter Propagation Delay 

Approach 2 

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36
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Transient Response 

tp = 0.69 CL (Reqn+Reqp)/2 

? 

tpHL tpLH 

Vin 

Vout 

? 

Symmetric inverter has 

tpHL=tpLH 

Due to Cgd of transistors: directly couples voltage at input 

to output before the transistors can even start to react to 

changes at the input----can affect gate performance 
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CMOS Inverter Delay as a function of VDD 
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Same as the ON resistance of a transistor…. 

Trade off energy dissipation vs performance….. 

Reliability concerns 

at high VDD…. 

Note: for VDD >> VTn + 

VDSATn/2, tp is almost 

independent of VDD 

Some improvement due to 

channel length modulation 

This region 

should be 

avoided 

Only valid for 

velocity saturated 

devices….hence 

deviates from the  

2Vtn 
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Effect of Device Sizing 

(for fixed load) 

Self-loading effect: 
Intrinsic (diffusion) 
capacitances 
dominate 

S= sizing factor 

for NMOS/PMOS 
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NMOS/PMOS ratio 

 tpLH improves with 

increasing Wp 

tp 
b = Wp/Wn 

If symmetry and noise margins are not of prime concern, inverter delay can 

be reduced by reducing the width of PMOS…. 

 tpHL degrades with increasing 

Wp (larger parasitic cap) 

bopt = 1.9 

b = 2.4 yields symmetrical transient response 

CMOS inverter loaded by identical gate 
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Impact of Rise Time on Delay 
t p

H
L
(n

s
e
c
)

0.35

0.3

0.25

0.2

0.15

trise (nsec)

10.80.60.40.20

~ linear 

As the input signal 

changes gradually, 

both PMOS and 

NMOS conduct 

simultaneously…. 
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Design for Performance 

Keep load capacitances (CL) small 

 Recall that three major components 
contribute to the load cap. 

– internal diffusion + overlap caps 

– interconnect cap. 

– fan-out (gate cap) 

 Increase transistor sizes  

 watch out for self-loading! 

 Increase VDD (??) 

 watch out for reliability issues! 
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Power Dissipation 
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Where Does Power Go in CMOS? 

• Dynamic Power  

Due to charging/discharging of capacitors…. 

• Leakage Power 

• Subthreshold 

• Gate 

• Junction 

• Short-Circuit Power 

 When NMOS and PMOS are both turned ON….  
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Dynamic Power Dissipation 

Energy/transition = C L  * V dd 
2 

Power = Energy/transition *  f =  C L  * V dd 
2   * f 

Need to reduce C L , V dd , and  f  to reduce power. 

Vin Vout 

C L 

Vdd 

Energy/transition is not a function of transistor sizes! 

  2

000

DDL

V

outDDL
out

LDDDDVV VCdvVCdt
dt

dv
CVdtVtiE

DD

DDDD
 



Energy taken from supply during transition: 

Note: Here CL 

is an external 

capacitor…. 
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Dynamic Power Dissipation 

Vin Vout 

C L 

Vdd 
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Energy taken from supply during transition: 
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Energy stored in the capacitor: 

Where is the other half of the energy?  ….Dissipated by the PMOS 

Note: during the 

discharge phase, charge 

is removed from CL and 

its energy is dissipated in 

the NMOS  
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Modification for Circuits with  

Reduced Swing 

CL

Vdd

Vdd

Vdd -Vt

E
0 1

C
L

V
dd

V
dd

V
t

– =

Can exploit reduced swing to lower power

(e.g., reduced bit-line swing in memory)
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Primary Leakage Mechanisms 

Vout

Vdd

Sub-Threshold
Current

Drain Junction
Leakage

Sub-Threshold Current Dominant Factor
Sub-threshold current one of most compelling issues 

in low-energy circuit design! 

Gate Leakage 
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Subthreshold Leakage Component 

 10ln
q

kT
nS 

Subthreshold Slope = S = 60 mv/decade (for ideal transistor with n=1) 

Subthreshold 

slope = S-1 
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Reverse-Biased Diode Leakage 

N
p+ p+

Reverse Leakage Current

+

-
Vdd

GATE

IDL = JS  A

J
S = 1-5pA/mm2 for a 1.2mm CMOS technology

J
s
 double with every 9oC increase in temperature 

JS = 10-100 pA/mm2  at 25 deg C for  0.25mm CMOS 

JS doubles for every 9 deg C! 
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Short Circuit Currents 

K. Banerjee  and A. Mehrotra, IEEE Transactions on 

Electron Devices, Vol. 49, No. 11, 2002. 
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Static Power Consumption 

Vin=5V

Vout

CL

Vdd

Istat

Pstat = P(In=1).Vdd . Istat

• Dominates over dynamic consumption

• Not a function of switching frequency

Wasted energy … 

Should be avoided in almost all  cases, 

but could help reducing energy in others (e.g. sense amps) 

In the absence of 

switching….steady-state 

operation Due to all previously 

mentioned leakage 

currents…… 

Sources: 
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Leakage 

 Effect of leakage current 

 “Wasted” power: power consumed even when 

circuit is inactive 

 Leakage power raises temperature of chip 

 Can cause functionality problem in some circuits: 

memory, dynamic logic, etc. 

 Reducing transistor leakage 

 Long-channel devices 

 Small drain voltage 

 Large threshold voltage VT 
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Principles for Power Reduction 

Prime choice: Reduce voltage! 

 Recent years have seen an acceleration in 

supply voltage reduction 

 Design at very low voltages still open 

question (0.6 … 0.9 V by 2010!) 

Reduce switching activity 

Reduce physical capacitance 

 Device Sizing 
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 Process scaling 

 VT reduces with each new process (historically) 

 Leakage increases ~10X! 

 Leakage vs. performance tradeoff: 

 For high-speed, need small VT and L 

 For low leakage, need high VT and large L 

 One solution: dual-VT process 

 Low-VT transistors: use in critical paths for high 

speed 

 High-VT transistors: use to reduce power 

Leakage Power Reduction 
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Scaling Theory:  

 

Parameters 
Constant Vdd 

scaling 

Constant E 

scaling 

Width = w 7.0  

Length = L 7.0  

Oxide thickness tox 7.0  
Dimentions 

Junction depth Xj 7.0  

Die Area 2)7.0(  

Gate capacitance per unit area ( 
ox

ox
gox t

C


  ) 
7.0

1
 

Gate capacitance ( goxg wLCC   ) 7.0  

Total Capacitance ( C  ) 7.0  

Supply Voltage ( DDV  ) 1 7.0  

Current per device ( DDthgs

ox

ox
DS VVV

tL

w
I )( 


 ) 1 7.0  

Intrinsic Gate Delay ( 
AV

g

I

VC 
  ) 7.0  7.0  

Frequency ( 


1
f  ) 

7.0

1
 

Active Power Dissipation ( fCVP DDactive

2  ) 1 
2)7.0(  

Energy-Delay Product ( 2

DDCV  ) 49.0)7.0( 2   2401.0)7.0( 4   

Power Dissipation density ( 
Area

Pactive  ) 2
)7.0(

1
2

  1
)7.0(

)7.0(
2

2

  

 


