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History of Computing…..The first computer 

The Babbage
Difference Engine
(1832)

25,000 parts

cost: £17,470

A mechanical digital 

calculator… 

Mechanical computing devices 

Used decimal number system 

Could perform basic arithmetic 

operations 

Even store and execute 

Problem:  Too complex and expensive! 

Charles Babbage 

(1791-1871) 

London Science Museum 
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Further Reading…. 

 http://en.wikipedia.org/wiki/Difference_engine 

How Computers Do Math  
 (ISBN: 0471732788) Wiley, Clive Maxfield and Alvin Brown. 

http://en.wikipedia.org/wiki/Difference_engine
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ENIAC - The first electronic computer (1946) 

Vacuum tube 

based 

computer… 

For Military 

applications… 

80 ft long, 8.5 ft 

high, several ft 

wide… 

With ~18,000 

vacuum tubes! 

Problem:  Reliability issues and excessive power consumption! 
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Parts of the ORACLE Computer –Oak Ridge Automatic 

Computer and Logical Engine---Oak Ridge National Lab (1950-54)  

Used vacuum tubes, transistors, 

and diodes.  
 

Addition time: 70 microseconds 

Multiplication time: 370-590 microseconds 

Division time: 590 microseconds  

 

These times include the storage access time, 

which was about 62 microseconds. 

Credit: Deutsches Museum, Munich, Germany 
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The Transistor Revolution… 

First transistor 

Bell Labs, 1947 

(Ge point contact- 

Bipolar transistor ) 

Bardeen and 

Brattian 

-Nobel Laureates 

 

BJT (1948) 

Schockley 

— Nobel Laureate  

Transistor Size (1/8” OD X 3/8”)  

General Electric types G11 and G11A commercial point contact transistors  

http://www.nobelprize.org/educational/physics/integrated_circuit/history/ 
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The First Integrated Circuits  

Bipolar logic 

Early 1960’s (TTL, ECL) 

 
TTLs offered higher integration 

density—composed largest 

fraction of semiconductor market 

until the 1980s 

ECL 3-input Gate 

Motorola 1966 

Jack Kilby, Texas Instruments 

(1958), the monolithic integrated 

circuit, or microchip (patent 

#3,138,743), Nobel Prize in 2000 
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Integrated Circuits (Early) History 

 Invention of BJT (1948) 

 First silicon transistor (1954) 

 MOS transistor (1960) 

 MOS integrated circuit (1962) 

 DRAM cell (1968) 

 Intel formed (1968) (Intel: short form of 

integrated electronics) 

 AMD formed (1969) 

 Microprocessor invented (1971) 

 32-bit microprocessors (1980) 
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For more historical perspectives…. 
http://www.ece.ucsb.edu/news/?i=4245 

 

http://www.ece.ucsb.edu/news/?i=4245
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BJT vs FETs 

 A Bipolar Junction Transistor (BJT) is a 3 terminal device 

 Uses the injection of minority carriers (under a forward bias) 

 A BJT is a “bipolar” device (both electrons are holes are involved 
in its operation) 

 It is an asymmetric device….why? 

 A Field Effect Transistor (FET) is also a 3 terminal device (plus a 
substrate terminal) 

 A FET is a “unipolar” device (majority carrier only) 

 It is based on controlling the depletion width of a--- junction 
(JFET) or a Schottky Barrier (MESFET) through a control (gate) 
voltage 

Both are based on basic properties of pn junctions 

Power has been the main driver for various technologies…..vacuum 

tubes, BJT, PMOS, NMOS, CMOS…..??? 
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Basic structure of an 

NPN BJT  

Schematic cross-sectional 

view of a planar NPN bipolar 

junction transistor…emitter is 

more heavily doped than 

collector….depth of “p” region 

must be smaller than the 

diffusion length of electrons 

Recalling the BJT….. 

Schematic symbols for 

PNP and NPN type BJTs 

 Both electrons and holes are involved in the operation…..hence the name “bipolar” 

 

 For NPN BJT: electrons are injected from a high-concentration emitter (n++) into the 

p-type base…..where they are minority carriers that diffuse toward the collector 

(n+)…..hence BJTs are minority-carrier devices 

 

 Quiescent power (drawn even in idle circuits) due to small base current limits large-

scale integration 

http://en.wikipedia.org/wiki/File:NPN_BJT_-_Structure_%26_circuit.svg
http://en.wikipedia.org/wiki/File:NPN_BJT_%28Planar%29_Cross-section.svg
http://upload.wikimedia.org/wikipedia/commons/1/13/NPN_BJT_Basic_Operation_%28Active%29.svg
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Other FETs….. 
 If the metal gate electrode is separated from the 

semiconductor by an insulator– metal-insulator-
semiconductor FET (MISFET) 

 Also called an IGFET (insulated gateFET) 

 Most commonly called as MOSFET (metal-oxide-
semiconductor FET) 

 FETs have high input impedance—since the control 
voltage is applied to a reverse biased junction or Schottky 
Barrier or across an insulator-----they are better suited 
(than BJTs) for controlled switching between conducting 
(ON) and non-conducting (OFF) states---therefore better 
for digital circuit implementation….low-power 

 FETs are also more integrable…processing perspective 
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Strange History of FETs….. 

 Actually FET was invented (proposed) in 1925!! (by 
Julius Lilienfeld) 

 But…..it never worked….Why?..... 
 Role of surface defects….dangling bonds etc. causing large 

number of surface states….Fermi level pinning 

 Silicon dioxide….a key material for Silicon’s success….. 

 Bardeen and Brattain accidentally discovered the first 
(bipolar) transistor: the Ge point contact transistor---- 
while trying to experimentally demonstrate the FET 

 First MOSFET demonstrated in 1960 by Kahng and 
Atalla 

 First logic gates using MOSFETs (both n-type and p-
type…thus Complementary-MOS-FET)— Frank 
Wanlass at Fairchild in 1963 
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 Intel 4004 Micro-Processor 

---Intel 8080 (8-bit) Microprocessor (1974) 

6 thousand transistors, 2 MHz 

NMOS only (6 um process) 

Note: although NMOS was 

conceived in the early 1960s—

application in wrist watches and 

portable electronics (of 1960s)---

but device quality was poor, hence 

PMOS was used until 1974 

The 1971 4004 Microprocessor 

(10 um process) was PMOS only 

Nov 1971 

2300 transistors 

108 KHz operation 

 PMOS only (10 um process) 
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Intel Pentium (IV) Microprocessor 

2003:  

CMOS based 

> 50 million transistors 

> 3GHz operation 
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For more up to date info. go to the International Technology 

Roadmap for semiconductors (ITRS) http://public.itrs.net/ 

Economic Implications 
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Moore’s Law 

 In 1965, Gordon Moore (co-founder of 

Intel) noted that the number of transistors 

on a chip doubled every 18 to 24 months 

  

 He made a prediction that  semiconductor 

technology will double its effectiveness 

every 18 (24) months 
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Moore’s Law 
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Electronics, April 19, 1965. 
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Evolution in Complexity 
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IC Classification 

 Circuit size (transistor count) 

 Circuit technology (BJT, BiCMOS, NMOS, CMOS) 

 Design style 

 standard cell 

 gate array 

 custom 

 Size classification (historical) 

 <100  SSI  1963 

 100-3000  MSI  1970 

 3000-30,000 LSI  1975 

 30,000-1,000000 VLSI  1980 

 >1,000000 ULSI  1990 

 >1 billion  GSI  2010 
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Transistor Counts 
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Moore’s Law in Microprocessors 
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2X growth in 1.96 years! 

Transistors on Lead Microprocessors double every 2 years 

Courtesy, Intel 
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Die Size Growth 
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~7% growth per year 

~2X growth in 10 years 

Die size grows by 14% to satisfy Moore’s Law 

Courtesy, Intel 
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Frequency 
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Courtesy, Intel 
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Power Dissipation 
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Courtesy, Intel 



Kaustav Banerjee Lecture 2, ECE 122A, VLSI Principles 

26 

Power is a major problem…. 
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Power delivery and dissipation will be prohibitive 

Courtesy, Intel 
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Power density 
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Why Scaling? 
 Technology shrinks by 0.7/generation 

 With every generation can integrate 2x more 
functions per chip; chip cost does not increase 
significantly (Dennard’s (IBM) scaling law—
transistors become faster, consume less power 
and become cheaper) 

 Cost of a function decreases by 2x 

 But … 
 How to design chips with more and more functions? 

 Design engineering population does not double every 
two years… 

 Hence, a need for more efficient design methods 
 Exploit different levels of abstraction 
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Design Abstraction Levels 

n+ n+ 

S 

G 
D 

+ 

DEVICE 

CIRCUIT 

GATE 

MODULE 

SYSTEM 
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Silicon and Dopant Atoms 

n-type Si p-type Si intrinsic Si 

Free carriers are electrons Free carriers are holes 

Atomic number of Si: 14  

Eighth most abundant element on earth!! 

Electronic configuration: [1s]2[2s]2[2p]6[3s]2[3p]2 

4 valence electrons 
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Pn-junction Diode 

Forward Bias: 

connect Vdd to p-type 

and GND to n-type 

(current flows) 

 

Reverse Bias: 

connect Vdd to n-type 

and GND to p-type 

(no current) 
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G 

S 

D 

MOS Transistor is like a tap…. 

Think about how you want your tap to function…. 
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MOS (Metal-Oxide-Semiconductor) 

Transistor 

NMOS 
(a tap that turns 

ON with clockwise 

movement of gate) 

PMOS 
(a tap that turns ON 

with anti-clockwise 

movement of gate) 

 

Gate controls the flow of charge from source to drain….. 

Vt is the minimum voltage (threshold voltage) required to turn ON transistors 

Vgs > Vt 

(Vt is +ve) 

Vgs < Vt 

(Vt is -ve) 

 

 

GND Vdd 
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MOS Transistor as a Switch 
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Inverter (NOT Gate) 
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Transistor Level Implementation 
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MOS voltage levels 
Case 1: NMOS discharges capacitor 

 Initially: Vout = Vcc (capacitor fully charged) 

 VGS of NMOS = Vcc 

 What is final Vout? 

Vcc 
G D 

S 
Cload 

Vout 

time 

Vout 

Vcc 

 NMOS remains on since VGS > VT 

 Final output voltage Vout = 0 V  
 Value at source (=0) is transferred to the drain (output)….completely 
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MOS voltage levels 

Case 2: NMOS charges capacitor 

 Initially: Vout = 0 

 Initial VGS of NMOS = Vcc  

 What is final Vout? 

Vcc 
G D 

S 

Cload 

Vout 

time 

Vout 

Vcc 

 NMOS remains on until VGS = VT  

 Final output voltage Vout = Vcc – VT 

 Value at drain (=1) not transferred completely to the source (output)…. 

Vcc 

Vcc-VT 
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MOS voltage levels 
Repeat for PMOS: 

 Case 1: PMOS discharging capacitor 

Gnd 
G S 

D 
Cload 

Vout • PMOS on until VGS = -VT 

• Vout = |VT| 
 

 Case 2: PMOS charging capacitor 

Gnd 
G S 

D 

Cload 

Vout 

• PMOS always on (VGS = -VCC) 

• Vout = VCC 

Vcc 

Value at drain (=0) is not transferred completely 

to the source (output)…. 

 

Value at source (=1) is transferred to the drain 

(output)….completely 
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MOS voltage levels 

 NMOS summary 

 Transfers logic ‘0’ completely (good for 

discharging a node) 

 Does not transfer logic ‘1’ completely (bad for 

charging a node) 

 PMOS summary 

 Transfers logic ‘1’ completely 

 Does not transfer logic ‘0’ completely 

 Result: 

 NMOS used for pull-down, PMOS for pull-up 
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Switch Behavior of NMOS and PMOS 

To establish a path 

between “a” and 

“b”, both g1 AND g2 

must be ON 

To establish a path 

between “a” and 

“b”, at least g1 OR 

g2 must be ON 
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2-input NAND Gate 

PUN 

PDN 

Y 

A 

B 

A 

B 

2 NMOS 

transistors must 

be in series…. 

2 PMOS 

transistors must 

be in parallel…. 
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De Morgan’s Law….. 

CMOS NAND Implementation 

Y = A B = A + B 
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CMOS 3-input NAND Implementation 

Y=0, when A=B=C=1 

Hence, A, B, C are in 

series for the NMOS 

(pull-down network) 

Y=1, when A or B or C=0 

Hence, A, B, C are in 

parallel for the PMOS (pull-

up network) 
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