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Inverter Sizing
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Load capacitances

Internal Caps of Driver (Cint):

= Junction caps: Cdb,12 + 

Gate caps: Cgd,12 (including Miller Caps.)

External Caps (Cext):

= Interconnect cap: Cw

+ Receiver gate caps: Cg,43

CL = Cint + Cext

Vin

Vcc

Gnd

Cgd,12

Cdb,2

Cdb,1 Cw

M2

M1

Cg,4

Cg,3

Vout Vout2

M4

M3

Driver Receiver Vcc
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Inverter Delay

• Minimum length devices, L=0.25mm

• Assume that for WP = 2WN =2W 

• same pull-up and pull-down currents

• approx. equal resistances RN = RP

• approx. equal rise tpLH and fall tpHL delays

• Analyze as an RC network

tpHL = (ln 2) RNCL
tpLH = (ln 2) RPCLDelay (D):

2W

W

unit

unit

gin C
W

W
C 3=Load for previous stage:

Wunit and Cunit correspond to an unit size (minimum size) device…
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Inverter with Load

Load (CL)

Delay

Assumptions: no load       zero delay?

CL

tp = (tpHL + tpLH)/2 = k RWCL

RW

RW

Wunit = 1

k is a constant, equal to 0.69
Note: Rp = Rn = RW

Hence, (Rp + Rn )/2 = RW
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Inverter with Load

Load

Delay

Cint
Cext

Delay (tp) = kRW(Cint + Cext) = kRWCint + kRWCext = kRW Cint(1+ Cext /Cint)

CN = Cunit

CP = 2Cunit

2W

W

tp

tp0

CL

tp0 (intrinsic delay)

This is the net internal cap.
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Intrinsic delay of CMOS inverter
Let Req be the equivalent resistance of the gate (inverter), 

then delay (tp) is defined as:
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Impact of sizing on gate delay

Let S be the sizing factor

Rref be the resistance of a reference gate (usually a minimum size gate)

Ciref be the internal capacitance of the reference gate
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Hence:

1. Intrinsic delay is 

independent of gate 

sizing, and is determined 

only by technology and 

inverter layout

2. If S is made very large, 

gate delay approaches 

the intrinsic value but 

increases the area 

significantly
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Inverter Chain

CL

If CL is given:

- How many stages are needed to minimize the delay?

- How to size the inverters?

May need some additional constraints….

In Out
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Delay Formula: inverter chain

( )

( ) ( ) /ftC/CCR.t

CCR~Delay

pginextinteqp

extinteq

+=+=

+

11690 0

Let Cint = Cgin with   1

f = Cext/Cgin - effective fanout

tp0 relates the input gate cap. (Cgin) and the 

intrinsic output cap. (Cint) of the inverter…

Inverter delay is only a function of 

the RATIO between Cext and Cinput

Cinput = Cgin Cint Cext
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Apply to Inverter Chain

CL

In Out

1 2 N

tp = tp1 + tp2 + …+ tpN
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This is Cext for the jth gate

This is Cint for the jth gate
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Optimal Tapering for Given N

Delay equation has N - 1 unknowns, Cg,2 …. Cg,N

Minimize the delay, find N - 1 partial derivatives and equate 

them to zero, or 

Result: Cg,j+1/Cg,j = Cg,j/Cg,j-1  With j = 2,…..,N

Size of each stage is the geometric mean of two neighbors

- each stage has the same effective fanout (fj = f = Cext/Cg,j)

- hence, each stage has the same delay: tp = tp0 (1 + f/)
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Optimum Delay and Number of Stages

FCCfHence
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When each stage is sized by f and has same eff. fanout f:

N Ff =

( )/10
N

pp FNtt +=

Minimum path delay:

Effective fanout of each stage:

F is the overall effective fanout of the 

circuit

How to choose N?

If N is too large, intrinsic delay of 

stages dominate, while if N is small, 

effective fanout of each stage (f) is 

large and the second term dominates

If CL and Cg,1 are known….

(multiplying all 

the terms)
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Example

CL= 8 C1

In Out

C1
1 f f2

283 ==f

CL/C1 has to be evenly distributed across N = 3 stages:

If N is given….

F = (8C1)/C1 = 8
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Optimum Number of Stages

For a given load, CL and given input capacitance Cin

Find optimal sizing f
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For  = 0, f = e = 2.718, N = lnF
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( )ff += 1exp
If self-loading is ignored…. Otherwise….
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Optimum Effective Fanout f

Optimum f for given process defined by 

( )fexpf += 1

fopt = 3.6

for =1 (typical case)



fopt

Optimum 

tapering factor:If self-loading included
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Impact of Self-Loading on tp

No Self-Loading, =0 With Self-Loading =1

f ~ 4
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x= effective fanout of circuit

Optimal number of stages, N= ln(F) If f<fopt (too many stages) will result in 

delay to increase
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Normalized delay function of F

( )/10
N

pp FNtt +=

tpopt/tp0 for =1

As F increases, the differences between the unbuffered case (or 

two-stage buffer case) and the case of inverter chain increases…..
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Buffer Design

1
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f = F1/N tpopt/tp0 for 

=1( )/10
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Sizing Logic Paths for Speed

❑ Frequently, input capacitance of a logic path 
is constrained

❑ Logic also has to drive some capacitance

❑ Example: ALU load in an Intel’s 
microprocessor is 0.5pF

❑ How do we size the ALU datapath to achieve 
maximum speed?

❑ We have already solved this for the inverter 
chain – can we generalize it for any type of 
logic?
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Buffer Example
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For given N: Cg, j+1/Cg,j = Cg,j/Cg, j-1

Optimal fanout (f): Cg, j+1/Cg, j ~ 4 

How to generalize this to any logic path?

CL

In
Out

1 2 N

(in units of tinv)
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Minimizing Delay in Complex 

Logic Networks

)(

)(1

0

0

gateComplex
fg

pt

inverter
f

tDelay

p

p








 
+=









+=





Everything Normalized w.r.t an inverter:

ginv =1, pinv = 1

f – effective fanout (ratio of external load and input cap. of gate)

p – ratio of intrinsic delays of complex gate and inverter

(value increases with complexity of gate)

g – logical effort: how much more input capacitance is presented 

by the complex gate to deliver the same output current as an 

inverter (depends only on circuit topology)
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Logical Effort

❑ Inverter has the smallest logical effort and 

intrinsic delay of all static CMOS gates

❑ Logical effort of a gate is the ratio of its input 

capacitance to the inverter capacitance when 

sized to deliver the same current

❑ Logical effort increases with gate complexity
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Logical Effort
Logical effort is the ratio of input capacitance of a gate to the input

capacitance of an inverter with the same output current

g = 1 g = 4/3 g = 5/3

B

A

A B

F

VDDVDD

A B

A

B

F

VDD

A

A

F

1

2 2 2

2

2

1 1

4

4

Inverter 2-input NAND 2-input NOR

For Rp = Rn, we need 

Wp = 2Wn

Since two PMOS are 

in series, each should 

have Rp/2

or Wp of each should 

be 4Wn

Since two NMOS 

are in series, 

each should have 

Rn/2, hence each 

NMOS size, Wn =2

Each PMOS 

should be such 

that Rp = Rn, or 

Wp = Wn

Wn

Wp

Rn

Rp
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Delay in a Logic Gate

Gate delay:

d = h + p

effort delay intrinsic delay

Effort delay (or gate effort):

h = g f

logical effort effective fanout  = Cext/Cin

➢Logical effort is a function of topology, independent of sizing

➢Effective fanout (electrical effort) is a function of load/gate size
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Logical Effort of Gates

➢ Delay can be adjusted by:

➢ transistor sizing that changes the effective fanout

➢ Choosing a gate with different g

Fan-out (f)
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pINV

tpNAND

F(Fan-in)

g = 1

p = 1

d = f+1

g = 4/3

p = 2

d = (4/3)f+2

2-input

Slope of the lines = logical effort

d = p + g f
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Logical Effort of Gates
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Delay
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Logical Effort

From Sutherland, Sproull
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Total delay through a combinational 

logic block
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For minimal delay : g1f1 = g2f2 = …  = gNfN  (each stage should 

have the same gate effort, h)

Similar to inverter chain delay….find N-1 partial 

derivatives and equate them to zero….

(or Path Electrical Effort)

Note: In the text book, 

this is defined as H
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Branching Effort

To relate F to the effective fanouts of the individual gates, one must 

account for the logical fanout within the network

When fanout occurs at the output of a node, some of the available 

drive current is directed along the path being analyzed

Branching effort of a logic gate: 

pathon

pathoffpathon

C

CC
b

−

−− +
=

Load capacitance of 

the gate along the 

path under study

==
N

ibBEffortBranchingPath
1
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Total Path Effort

❑ Path electrical effort can be related to the electrical 
and branching efforts of the individual gates:

❑ Total path effort can be defined as:

❑ Gate effort that minimizes the path delay = ?

❑ Minimum delay through path = ?

B

f

b

f
F i

N

i

i 
 ==
1

  ===
N N

iii GFBfghH
1 1

Note: In the text book, H and 

F have been swapped…
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Multistage Networks

Gate effort: hi = gifi

Path electrical effort: F = CL/Cgin

Path logical effort: G = g1g2…gN

Path branching effort: B = b1b2…bN

*Path effort: H = GFB

Path delay D = Sdi = Spi + Shi

( )
=

+=
N

i

iii fgpDelay
1

* Note: In the text book, this is defined as: F = GHB
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Optimal Number of Stages

For a given load, 

and given input capacitance of the first gate

Find optimal number of gates and optimal sizing

inv

N NpNHD += /1

( ) 0ln /1/1/1 =++−=



inv

NNN pHHH
N

D

NHh /1=Substitute ‘best gate effort’:

A path achieves least delay by using N = log4H stages

Gate effort that 

minimizes path delay
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Optimum Effort per Stage

HhN =

When each stage bears the same effort:

N Hh =

Minimum path delay:

Effective fanout of each gate:
ii ghf =

gate efforts: g1f1 = g2f2 = …  = gNfN

( )













+= 

= 

NN

j
jp

HN
ptD

1
0



Lecture 10, ECE 122A, VLSI Principles Kaustav Banerjee

Sizing of Chain of Gates
❑ Consider chain si

❑ Sizing factors for each gate in the chain can be 

derived by working out from front to end (or vice 

versa).

❑ Assume that a unit-size gate has a driving capability 

equal to a minimum-size inverter

❑ Hence, Cgin = g Cin_ref

❑ If s1 is the sizing factor for gate 1:
▪ Cg1 = s1 g1 Cin_ref

▪ Input capacitance of gate 2 is larger by f1/b1:

That is, Cg2 =f1/b1 Cg1 = s2 g2 Cin_ref

▪ For gate i in the chain:
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Example: Optimize Path

1
a

b c

5

g = 1

f = a
g = 5/3

f = b/a

g = 5/3

f = c/b

g = 1

f = 5/c
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Example: Optimize Path

1
a

b c

5

g = 1 g = 5/3 g = 5/3 g = 1

Effective fanout, F = 5/1 = 5

G = 1 x 5/3 x 5/3 x 1 = 25/9

B=1 (no branching)

H = GFB = 125/9 = 13.9
h = H1/4 =1.93 (optimal gate effort)

Derive Fanout Factors (taking gate types into account):

f1 = 1.93 (since h=gf)

f2 = 1.93 (3/5) = 1.16

f3 = 1.16

f4=1.93

Derive Gate Sizes:

a= f1g1/g2 = 1.16

b= f1f2g1/g3 = 1.34

c= f1 f2 f3 g1/g4= 2.6
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Example – 8-input AND



Lecture 10, ECE 122A, VLSI Principles Kaustav Banerjee

Method of Logical Effort

❑ Compute the path effort: H = GFB

❑ Find the best number of stages N ~ log4H

❑ Compute the stage effort h = H1/N

❑ Sketch the path with this number of stages

❑ Work from either end, find sizes: 

Cin = Cout*g/h

Reference: Sutherland, Sproull, Harris, “Logical Effort, Morgan-Kaufmann 1999.
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Summary

Sutherland,

Sproull and

Harris

H = GFB

Ff

g

p

D = DH + Pd = h +p

h = gf

h hiH


