Inverter Sizing

Lecture 10, ECE 122A, VLSI Principles

Load capacitances

Inverter Delay

- Minimum length devices, $L=0.25 \mu \mathrm{~m}$
- Assume that for $W_{P}=2 W_{N}=2 W$
- same pull-up and pull-down currents
- approx. equal resistances $\boldsymbol{R}_{N}=\boldsymbol{R}_{P}$
- approx. equal rise $t_{p L H}$ and fall $t_{p H L}$ delays
- Analyze as an RC network

$$
\begin{aligned}
& \text { Delay }(D): t_{p H L}=(\ln 2) R_{N} C_{L} \quad t_{p L H}=(\ln 2) R_{P} C_{L} \\
& \text { Load for previous stage: } C_{g i n}=3 \frac{W}{W_{\text {unit }}} C_{\text {unit }}
\end{aligned}
$$

$W_{u n i t}$ and $C_{u n i t}$ correspond to an unit size (minimum size) device...

Inverter with Load

$W_{\text {unit }}=1=t_{p}=\underset{\text { kis a constant equal to } 0.69}{\left(t_{p H L}+t_{p L H}\right) / 2=k} R_{W} C_{L}$
Note: $R_{p}=R_{n}=R_{W}$ Hence, $\left(R_{p}+R_{n}\right) / 2=R_{w}$
Assumptions: no load \longrightarrow zero delay?

Inverter with Load

Delay $\left(\mathrm{t}_{\mathrm{p}}\right)=k R_{w}\left(C_{i n t}+C_{\text {ext }}\right)=k R_{W} C_{\text {int }}+k R_{W} C_{\text {ext }}=\underset{t_{p o}^{\downarrow}(\text { intrinsic delay })}{k R_{W} C_{\text {int }}\left(1+C_{\text {ext }} / C_{\text {int }}\right)}$
This is the net internal cap.

Intrinsic delay of CMOS inverter

Let $R_{\text {eq }}$ be the equivalent resistance of the gate (inverter), then delay $\left(t_{p}\right)$ is defined as:

$$
\begin{aligned}
& t_{p}=0.69 R_{e q}\left(C_{i n t}+C_{e x t}\right) \\
& =0.69 R_{e q} C_{i n t}\left(1+\frac{C_{e x t}}{C_{i n t}}\right) \\
& =t_{p 0}\left(1+\frac{C_{e x t}}{C_{i n t}}\right)
\end{aligned}
$$

$t_{p 0}$ is the intrinsic delay

Impact of sizing on gate delay

Let S be the sizing factor
$R_{\text {ref }}$ be the resistance of a reference gate (usually a minimum size gate)
$C_{\text {iref }}$ be the internal capacitance of the reference gate

$$
\begin{aligned}
C_{\text {int }} & =S C_{\text {iref }}, \quad R_{e q}=\frac{R_{r e f}}{S} \\
t_{p} & =0.69\left(\frac{R_{r e f}}{S}\right)\left(S C_{\text {iref }}\right)\left(1+\frac{C_{\text {ext }}}{S C_{\text {iref }}}\right) \\
& =0.69 R_{\text {ref }} C_{\text {iref }}\left(1+\frac{C_{\text {ext }}}{S C_{\text {iref }}}\right) \\
& =t_{p 0}\left(1+\frac{C_{e x t}}{S C_{\text {iref }}}\right)
\end{aligned}
$$

Hence:

1. Intrinsic delay is independent of gate sizing, and is determined only by technology and inverter layout
2. If S is made very large, gate delay approaches the intrinsic value but increases the area significantly

Lecture 10, ECE 122A, VLSI Principles
Kaustav Banerjee

Inverter Chain

If C_{L} is given:

- How many stages are needed to minimize the delay?
- How to size the inverters?

May need some additional constraints....

Delay Formula: inverter chain

$$
\text { Delay } \sim R_{e q}\left(C_{i n t}+C_{e x t}\right)
$$

Inverter delay is only a function of the RATIO between $C_{\text {ext }}$ and $C_{\text {input }}$

$$
t_{p}=0.69 R_{e q} C_{i n t}\left(1+C_{e x t} \mathcal{C}_{\text {gin }}\right)=t_{p 0}(1+f / \gamma)
$$

relates the input gate cap. $\left(C_{\text {gin }}\right)$ and the intrinsic output cap. $\left(C_{i n t}\right)$ of the inverter...

Apply to Inverter Chain

$$
\begin{aligned}
& t_{p, j}=t_{p 0} \\
& t_{p}= \sum_{j=1}^{N} t_{p, j}=t_{p 0} \sum_{j=1}^{N}\left(1+\frac{C_{g i n, j+1}, C_{g+1}}{\gamma C_{g i n, j}}\right), C_{g i n, N+1}=C_{L}
\end{aligned}
$$

Optimal Tapering for Given N

Delay equation has $N-1$ unknowns, $C_{g, 2} \ldots C_{g, N}$
Minimize the delay, find $N-1$ partial derivatives and equate them to zero, or $\left(\begin{array}{c} \\ t_{p} \\ \partial C_{g, j}\end{array}\right)=0$
Result: $C_{g, j+1} / C_{g, j}=C_{g, j} / C_{g, j-1}$ With $\mathrm{j}=2, \ldots \ldots, \mathrm{~N}$
Size of each stage is the geometric mean of two neighbors

$$
C_{g, j}=\sqrt{C_{g, j-1} C_{g, j+1}}
$$

- each stage has the same effective fanout ($f_{j}=f=C_{e x i} / C_{g, j}$)
- hence, each stage has the same delay: $t_{p}=t_{p 0}(1+f / \gamma)$

Optimum Delay and Number of Stages

When each stage is sized by f and has same eff. fanout f :

$$
\frac{C_{L}}{C_{g, N}}=\frac{C_{g, N}}{C_{g, N-1}}=\cdots \cdots \cdots=\frac{C_{g, 2}}{C_{g, 1}}=f
$$

(multiplying all Hence, $f^{N}=C_{L} / C_{g, 1}=F \quad$ Fis the overall effective fanout of the the terms)

Effective fanout of each stage: $\quad f=\sqrt[N]{F} \quad$ If C_{L} and $C_{g, 1}$ are known....

Minimum path delay:

$$
\begin{gathered}
t_{p}=N t_{p 0}(1+\sqrt[N]{F} / \gamma) \\
\text { How to choose } N ?
\end{gathered}
$$

If N is too large, intrinsic delay of stages dominate, while if N is small, effective fanout of each stage (f) is large and the second term dominates

Example

 If N is given....
C_{L} / C_{1} has to be evenly distributed across $N=3$ stages:

$$
F=\left(8 C_{1}\right) / C_{1}=8 \quad f=\sqrt[3]{8}=2
$$

Optimum Number of Stages

For a given load, C_{L} and given input capacitance $C_{\text {in }}$ Find optimal sizing f

$$
\begin{gathered}
C_{L}=F \cdot C_{\text {in }}=f^{N} C_{\text {in }} \text { with } N=\frac{\ln F}{\ln f} \\
t_{p}=N t_{p 0}\left(F^{1 / N} / \gamma+1\right)=\frac{t_{p 0} \ln F}{\gamma}\left(\frac{f}{\ln f}+\frac{\gamma}{\ln f}\right) \\
\frac{\partial t_{p}}{\partial f}=\frac{t_{p 0} \ln F}{\gamma} \cdot \frac{\ln f-1-\gamma / f}{\ln ^{2} f}=0
\end{gathered}
$$

If self-loading is ignored....
For $\gamma=0, f=\mathrm{e}=2.718, N=\ln F$
Otherwise....

$$
f=\exp (1+\gamma / f)
$$

Optimum Effective Fanout f

Optimum f for given process defined by γ

$$
f=\exp (1+\gamma / f)
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Optimum } \\
\text { tapering factor: } \\
f_{\text {opt }}=3.6 \\
\text { for } \gamma=1 \text { (typical case) }
\end{array}
\end{aligned}
$$

Lecture 10, ECE 122A, VLSI Principles

Impact of Self-Loading on tp

No Self-Loading, $\gamma=0$

Optimal number of stages, $N=\ln (F)$

With Self-Loading $\gamma=1$

If $f<f_{\text {opt }}$ (too many stages) will result in delay to increase

Normalized delay function of F

$$
t_{p}=N t_{p 0}(1+\sqrt[N]{F} / \gamma)
$$

$$
t_{\text {popt }} / t_{p o} \text { for } \gamma=1
$$

F	Whlbutiered	Twistiay	lumerier chain
10	11	8.3	8. 3
16	141	22	16.5
$10^{\text {a }}$	1-1)-1	0	24.8
10¢70]	10,4ill	202	33.1

As Fincreases, the differences between the unbuffered case (or two-stage buffer case) and the case of inverter chain increases.....

Buffer Design
 $$
t_{p}=N t_{p 0}(1+\sqrt[N]{F} / \gamma)
$$

Do

Lecture 10, ECE 122A, VLSI Principles
$\begin{array}{lll}4 & 2.8 & 15.3\end{array}$

Kaustav Banerjee

Sizing Logic Paths for Speed

\square Frequently, input capacitance of a logic path is constrained

- Logic also has to drive some capacitance
- Example: ALU load in an Intel's microprocessor is 0.5 pF
- How do we size the ALU datapath to achieve maximum speed?
- We have already solved this for the inverter chain - can we generalize it for any type of logic?

Buffer Example

(in units of $\tau_{i n v}$)
For given $N: C_{g, j+1} / C_{g, j}=C_{g, j} / C_{g, j-1}$
Optimal fanout (f): $C_{g, j+1} / C_{g, j} \sim 4$
How to generalize this to any logic path?

Minimizing Delay in Complex

Logic Networks

$$
\begin{aligned}
& \text { Delay }=t_{p 0}\left(1+\frac{f}{\gamma}\right)(\text { inverter }) \\
& =t_{p 0}\left(p+\frac{g \cdot f}{\gamma}\right)(\text { Complex gate })
\end{aligned}
$$

Everything Normalized w.r.t an inverter:
$g_{i n v}=1, p_{i n v}=1$
f - effective fanout (ratio of external load and input cap. of gate)
p - ratio of intrinsic delays of complex gate and inverter
(value increases with complexity of gate)
g - logical effort: how much more input capacitance is presented by the complex gate to deliver the same output current as an inverter (depends only on circuit topology)

Logical Effort

- Inverter has the smallest logical effort and intrinsic delay of all static CMOS gates
\square Logical effort of a gate is the ratio of its input capacitance to the inverter capacitance when sized to deliver the same current
- Logical effort increases with gate complexity

Logical Effort

Logical effort is the ratio of input capacitance of a gate to the input capacitance of an inverter with the same output current

Inverter
$g=1$

2-input NAND
$g=4 / 3$

Lecture 10, ECE 122A, VLSI Principles

Delay in a Logic Gate

Gate delay:

Effort delay (or gate effort):
logical effort effective fanout $=C_{\text {ext }} / C_{\text {in }}$
$>$ Logical effort is a function of topology, independent of sizing
$>$ Effective fanout (electrical effort) is a function of load/gate size

Logical Effort of Gates

> Delay can be adjusted by:
> transistor sizing that changes the effective fanout
> Choosing a gate with different g

Logical Effort of Gates

Lecture 10, ECE 122A, VLSI Principles

Logical Effort

	Number of Inputs			
Gate Type	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	\mathbf{n}
Inverter	1			
NAND	$4 / 3$	$5 / 3$	$(2 n+2) / 3$	
NOR	$5 / 3$	$7 / 3$	2	
Multiplexer	2	2		
XOR	4	12		

From Sutherland, Sproull

Lecture 10, ECE 122A, VLSI Principles
Kaustav Banerjee

Total delay through a combinational

 logic block$$
t_{p}=\sum_{j=1}^{N} t_{p, j}=t_{p 0} \sum_{j=1}^{N}\left(p_{j}+\frac{f_{j} g_{j}}{\gamma}\right)
$$

Similar to inverter chain delay....find N-1 partial derivatives and equate them to zero....

For minimal delay : $g_{1} f_{1}=g_{2} f_{2}=\ldots=g_{N} f_{N}$ (each stage should have the same gate effort, h)

$$
\text { Path Logic Effort }=G=\prod_{1}^{N} g_{i}
$$

Note: In the text book, this is defined as H

$$
\begin{aligned}
& \text { Path Effective Fanout }=F=\frac{C_{L}}{C_{g 1}} \\
& \text { (or Path Electrical Effort) }
\end{aligned}
$$

Lecture 10, ECE 122A, VLSI Principles

Branching Effort

To relate F to the effective fanouts of the individual gates, one must account for the logical fanout within the network

When fanout occurs at the output of a node, some of the available drive current is directed along the path being analyzed

Branching effort of a logic gate:

$$
b=\frac{C_{\text {on-path }}+C_{\text {off }}-\text { path }}{C_{\text {on-path }} \longleftarrow} \text { Load capacitance of } \begin{gathered}
\text { Lhe gate along the } \\
\text { path under study }
\end{gathered}
$$

$$
\text { Path Branching Effort }=B=\prod_{1}^{N} b_{i}
$$

Total Path Effort

- Path electrical effort can be related to the electrical and branching efforts of the individual gates:

$$
F=\prod_{1}^{N} \frac{f_{i}}{b_{i}}=\frac{\prod f_{i}}{B}
$$

- Total path effort can be defined as:

$$
H=\prod_{1}^{N} h_{i}=\prod_{1}^{N} g_{i} f_{i}=G F B \quad \begin{aligned}
& \text { Note: In the text book, } \mathbf{H} \text { and } \\
& \text { F have been swapped... }
\end{aligned}
$$

- Gate effort that minimizes the path delay = ?
- Minimum delay through path = ?

Multistage Networks

$$
\text { Delay }=\sum_{i=1}^{N}\left(p_{i}+g_{i} \cdot f_{i}\right)
$$

Gate effort: $h_{i}=g_{i} f_{i}$
Path electrical effort: $F=C_{L} / C_{\text {gin }}$
Path logical effort: $G=g_{1} g_{2} \ldots g_{N}$
Path branching effort: $B=b_{1} b_{2} \ldots b_{N}$
*Path effort: $H=G F B$
Path delay $D=\Sigma d_{i}=\Sigma p_{i}+\Sigma h_{i}$

[^0]
Optimal Number of Stages

For a given load, and given input capacitance of the first gate Find optimal number of gates and optimal sizing

$$
\begin{gathered}
D=N H^{1 / N}+N p_{i n v} \\
\frac{\partial D}{\partial N}=-H^{1 / N} \ln \left(H^{1 / N}\right)+H^{1 / N}+p_{i n v}=0
\end{gathered}
$$

Substitute 'best gate effort': $\quad h=H^{1 / N} \Rightarrow \begin{aligned} & \text { Ginimizes path delay }\end{aligned}$
A path achieves least delay by using $N=\log _{4} H$ stages

Optimum Effort per Stage

When each stage bears the same effort:

$$
\begin{aligned}
& h^{N}=H \\
& h=\sqrt[N]{H}
\end{aligned}
$$

gate efforts: $g_{1} f_{1}=g_{2} f_{2}=\ldots=g_{N} f_{N}$
Effective fanout of each gate: $\quad f_{i}=h / g_{i}$
Minimum path delay:

$$
D=t_{p 0}\left(\sum_{j=1}^{N} p_{j}+\frac{N(\sqrt[N]{H})}{\gamma}\right)
$$

Sizing of Chain of Gates

- Consider chain s_{i}
- Sizing factors for each gate in the chain can be derived by working out from front to end (or vice versa).
- Assume that a unit-size gate has a driving capability equal to a minimum-size inverter
- Hence, $C_{g i n}=\mathrm{g} \mathrm{C}_{\text {in_ref }}$
- If s_{1} is the sizing factor for gate 1 :
- $\mathrm{C}_{\mathrm{g} 1}=\mathrm{s}_{1} \mathrm{~g}_{1} \mathrm{C}_{\text {in_ref }}$
- Input capacitance of gate 2 is larger by f_{1} / b_{1} :

That is, $C_{g 2}=f_{1} / b_{1} C_{g 1}=s_{2} g_{2} C_{\text {in_ref }}$

- For gate i in the chain:

$$
s_{i}=\left(\frac{g_{1} s_{1}}{g_{i}}\right) \prod_{j=1}^{i-1}\left(\frac{f_{j}}{b_{j}}\right)
$$

Example: Optimize Path

Example: Optimize Path

Effective fanout, $F=5 / 1=5$
$G=1 \times 5 / 3 \times 5 / 3 \times 1=25 / 9$
$\mathrm{B}=1$ (no branching)
$H=G F B=125 / 9=13.9$
$h=\mathrm{H}^{1 / 4}=1.93$ (optimal gate effort)
Derive Fanout Factors (taking gate types into account): f1 $=1.93$ (since h=gf)
$f_{2}=1.93(3 / 5)=1.16$
$f 3=1.16$
$f 4=1.93$

Example - 8-input AND

Method of Logical Effort

- Compute the path effort: $H=G F B$
\square Find the best number of stages $N \sim \log _{4} H$
- Compute the stage effort $h=H^{1 / N}$
\square Sketch the path with this number of stages
\square Work from either end, find sizes:
$C_{\text {in }}=C_{\text {out }}{ }^{*} \mathrm{~g} / \mathrm{h}$

Reference: Sutherland, Sproull, Harris, "Logical Effort, Morgan-Kaufmann 1999.

Table 4: Key Definitions of Logical Effort

Term	Stage expression	Path expression
Logical effort	g	$G=\prod g_{i}$
Electrical effort	$f=\frac{C_{\text {out }}}{C_{\text {in }}}$	$F=\frac{C_{\text {out (path) }}}{C_{\text {in (path) }}}$
Branching effort	n/a	$B=\prod b_{i}$
Effort	$h=g f$	$H=G F B$
Effort delay	h	$D_{H}=\sum h_{i}$
Number of stages	1	N
Parasitic delay	p	$P=\sum p_{i}$
Delay	$d=h+p$	$D=D_{H}+P$

Sutherland, Sproull and Harris

Lecture 10, ECE 122A, VLSI Principles

[^0]: * Note: In the text book, this is defined as: F = GHB

