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Interconnect Impact on Chip
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Interconnect delay has become the dominant factor determining chip performance........




Wire Vs Gate Delay.....
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Interconnect delay has
become the dominant
factor determining chip
performance...

K. Banerjee et al., Proc. IEEE, May 2001.



Impact of Interconnect Parasitics

Q Interconnect parasitics
» affect performance and power consumption
= affect reliability

Q Classes of parasitics
= Resistive
= Capacitive
* [nductive




Wire Resistance

Ro

o R4 =

R

Sheet Resistance Unit of

"Q/sq" or
"Q/ D"

Easier to compare wires with different (but uniform) thicknesses...




Interconnect Resistance

Material p (2-m)
Silver (Ag) 1.6 x 1078
Copper (Cu) 1.7 x 1078

Gold (Au) 2.2x% 1078

Aluminum (Al) 2.7 % 1078
Tungsten (W) 5.5 x 1078




Dealing with Resistance

1 Selective Technology Scaling

1 Use Better Interconnect Materials
» reduce average wire-length
" e.g. copper, silicides

2 More Interconnect Layers
* reduce average wire-length




Sheet Resistance

Material Sheet Resistance (Q2/0)
n- or p-well diffusion 1000 — 1500
n', p' diffusion 50 - 150
n, p* diffusion with silicide 3-5
n', p* polysilicon 150 — 200
n', p' polysilicon with silicide 45
Aluminum 0.05 -0.1
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Example: Intel 0.25 micron Process

5 metal layers
Ti/Al - Cu/Ti/TiN
Polysilicon dielectric

LAYER  PITCH THICK A.R.

Isolation 0.67 0.40
Polysilicon 0.64 0.25

Metal 1 0.64 0.48 1.5

Metal 2 0.93 0.90 1.9

Metal 3 0.93 0.90 1.9

Metal 4 1.60 1.33 1.7

Metal 5 2.56 1.90 1.5
1Lm Lm

Lavyer pitch, thickness and aspect ratiq =h/w
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Interconnect (RC) Delay

On-Chip VLSI interconnects can be modeled as RC elements

* R Is the wire resistance =

Yo,
pis the resistivity of the metal A w-h

L is the wire length

A is the cross sectional area = wh (w is the width and h is the height of the wire)

 C Is the wire capacitance. For a parallel plate capacitor

C=¢g, g, eg=ke&g

A is the area of the plate
d is the distance between the plates

k is the dielectric constant of the insulating material between the plates

& Is the permittivity of free space




If we can reduce both R and C,
we can reduce wire delay.....

Will better materials like copper and low-k
dielectrics solve the interconnect problem?

Cu has lower resistivity than Al, and is more
robust (reliable) than Al.......




Changing Interconnect Materials

0 Replace Al wires by Cu wires
QO Resistivity of Al = 2.65 nQ-cm

@ Room Temp. (20-25 °C)
O Resistivity of Cu = 1.67 uQ2-cm

@ Room Temp. (20-25 °C)
0 Reduction in R is not even a factor of 2.....




VLSI Interconnect Structure
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Adjacent wires are orthogonal....why?

Ciwa IS the dominating capacitance...... why?




Capacitance: The Parallel Plate Model

1-dimensional model

Valid when, W>>t

Current flow

Electrical-field lines




Permittivity

Material e,

Free space 1
Aerogels ~1.5
Polyimides (organic) 3-4
Silicon dioxide 3.9

Glass-epoxy (PC board) 5
Silicon Nitride (S1;N,)) 7.5
Alumina (package) 9.5
Silicon 11.7




Fringing Capacitance Model

Approximates the
capacitance as the sum of
two components:

B Wy 27E ;
- Cpp + Cfringe - +

b arccosh (ﬁ + 1)
1 H

Orthogonal field

between a wire of width
H w=W-H/2 w = (W- H/2) and the
ground plane

C

wire

Modeled by a
cylindrical wire
of diameter=H

arccosh ﬁﬂ ~In ﬁ+2
H H

ast, >0.5H

Fringing Cap.
HHE i In parallel with.. Parallel plate Cap.




Fringing versus Parallel Plate
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Note: aspect ratio = H/W (from [Bakoglu89])




Interconnect

................

................ W o ,
TH1s =314

Parallel-plate capacitanc

1 Usually interconnect layers alternate
wire direction




Impact of Interwire Capacitance

For a fixed dielectric and wire thickness

T I 1 T T I 1 T T
i 1 pm field oxide i
1 m motal * Reduce wire width, w
4k 1 pym sin cap layer .
=t Do « Reduce spacing (=w)
L°
w 3 —
-;5 * Ciotal = Cground + Cinterwire
L L
= —
% o | * Cground - Cp—p + Cfringing
= ":'intemire
S
Interwire capacitance (crosstalk),
1 becomes important in a multi-level
L structure
0 More important for higher level wires
0 1 that are far away from substrates
Design rule (um)
(from [Bakoglu89])

H/W =1.75




Interconnect Modeling




Capacitances of Driver-Wire-Load
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Wire Models
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All-inclusive model Capacitance-only




The Lumped Capacitor Model

Assuming no voltage drops along the wire....
I.e., wire is equipotential

Drnver

If r is small and switching
frequencies are not too high...

Advantage: Operation
SRR BB can be described by
L L ordinary differential

-------------------------- equation




The Lumped Capacitor Model

Drivermodeledasa voltagesourceanda

Operationof a simple RC circuit: source resistance(Rgriver ) Crumped =L * Cuire
dVv Vot —Vi
Clumped dOU'[ i CI;;Jt In .y
t driver
If a step inputis applied fromOtoV :
_t
V (t)= 1—e 4 V Only impact on performance
out is due to the loading effect of
the capacitor on the driving

where 7 =Ryriver Clumped : time—constant of network  gate

Thetimetoreach50% pointcanbecalculatedas:

t=In(2)z=0.697

If Ryriver =10KQand Cyympeq =11 pF:

t=76ns (averylargenumber for high— performancedigitalcircuits




The Lumped RC-Model

* On-chip metal wires at the semi-global and global tiers can
be several millimeters long and can have significant
resistance

* The equipotential assumption is no longer valid

* Need an RC model......

« Asimple approach: lump wire resistance of each segment
into a single R and the global capacitance into a single C

* This is called a lumped RC model....pessimistic and
Inaccurate for long wires

* Should use a distributed RC model for such long wires

Then what is the use of the lumped RC model?




Lumped RC-Networks.....

* The distributed RC model is complex: involves partial differential
equations, closed form solution does not exist

* However, the behavior of a distributed RC line can be adequately
modeled by a simple RC network

* It is more convenient to reduce any driver-wire-load networks to
an equivalent RC network and predict its first order response

 However, unlike the single R-C network analyzed earlier that
had a single time constant (network pole), deriving the correct
waveforms for a complex network becomes intractable

* Need to solve a set of ordinary differential equations with
many time constants (poles and zeroes)....

* Or, run time-consuming SPICE simulations for the entire
network....




Elmore Delay Comes to the Rescue.....

2
Rz f_,fl
SN RC Tree: unique resistive
= 1 T 4 paths between s and any
1 - ] e ——— .
;W\/_' = 7 node i
0 ... I— Cy —_— Rﬁ__ Cy
1 g \‘< 1 Total resistance along
- 1. g this path is called the
CS::LZZ/,; ; path resistance R
T c, e.g., path resistance

between s and node 4:
T Ry =Ry +R3+Ry

Shared path resistance: resistance shared among
the paths from root node s to nodes k and i

Ry = Y Ry = (R; € [path(s i)  path(s > k)])

Example: R,=R;+R;
Ri=R,




Elmore Delay-RC Chain (Branched)

W. C. EImore, “The transient response of Ra
damped linear networks,” J. Appl. Phys., vol. / VWA

19, pp. 55-63, Jan. 1948.

If a step input Vin is

6 7 8
applied at t=0 N JI'CG fc fcs

Elmore Delay at nodei: Tp, — E CkR;-:'k N = # of

capacitances
k=1 In the network

(First-order time constant of the network)

Hence, Tau_D1=C1.R11+C2.R12 + ..... Cn.R1In=C1.R1+C2.R1+..... +Cn.R1




Wire Model
v, R, 1 R, - R, -1 R, : v,
C, T C, T C, T C, T Cy T

For a chain, number of capacitances = number of nodes, hence,

N
For a non-branched RC chain: 7oy =Y.Ci R;;  thi = CiRy + C (Ri+Ry)+...... + C, (R;+R,+...R)

i=1

If wire modeled by N equal-length segments (Rge,= rL/N, Cqoy= CL/N)
L\? > N(N + 1 N+1
TpN — (Kf) (re+2rc+ ... +Nrc) = (rcl™) (2N2 ) _ RC—2N

r and c represent the resistance and capacitance
per unit length of the wire, respectively...

For large values of N: N
RC rel

‘DN T T 5




The Distributed RC-line

(can be approximated by the lumped RC network model)




Step-response of RC wire as a
function of time and space
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RC-Models

Voltage Range | Lumped RC- Distributed
network RC-network
0—-30% (i) 0.69 RC 0.38 RC
0—63% (1) RC 0.5 RC
10%—90% (t.) 2.2 RC 0.9 RC

Step Response of Lumped and Distributed RC Netw orks:
Points of Interest.

E Es2 k2
AT AT
SPICE Wire (RC) Models: “T T T°
accuracy of the model » " o y Tm y
determined by number of AN AT AT A
StageS y CMj —=|_Cf2 jCM —=|_Cf2 jCJ’E
T T T2
Rz ki3 Ei3 Eid Ef3 ES3 Eié
Cf;— —:LCB jCG —:L'fﬁ ijB ijB jCG




RC Delay: Design Rules of Thumb

a rc delays should only be considered when
trc>>t of the driving gate

P
Lerit >> V t5ae/0.38rC

a rc delays should only be considered when the
rise (fall) time at the line input is smaller than
RC, the rise (fall) time of the line

trise <RC

= when not met, the change in the signal is slower
than the propagation delay of the wire

pgate




lllustration of Rule:
Driving an RC-line

R, (rw,Cw,L.) Vou

r'\/\/\'—/\/\/\/—'o

V.
)

=5 c, =c,L

R.C ,
Total Propagation Delay: TD — RSCW + w2 ¥ = RSCW +O.5FWCWL

Delay due to wire resistance becomes important when
(R,C/2) 2R, C, orwhenL 2 2RJr,

0 to 50% Response Delay: fp — O69RSCW+O38RWCW




