Ratioed Logic

Ratioed Logic

Need N+1 transistors vs 2N for complementary CMOS

Note: a depletion mode NMOS is normally ON...an n-type channel connects the source and drain and a negative gate bias is needed to turn it off.....
Goal: to reduce the number of devices over complementary CMOSand gets rid of (almost) the PMOS devices....

Ratioed Logic: Resistive Load

- N transistors + Load
- $\mathbf{V}_{\mathbf{O H}}=\mathbf{V}_{\mathbf{D D}} \quad$ Recall a voltage divider circuit....
- $\mathrm{V}_{\mathrm{OL}}=\frac{\mathbf{R}_{\mathrm{PN}}}{\mathrm{R}_{\mathrm{PN}}+\mathrm{R}_{\mathrm{L}}} \quad \begin{aligned} & \text { Ideally } V_{O L} \text { should be as small as } \\ & \text { possible. Hence, } R_{L} \text { should be large... }\end{aligned}$
- Only R_{L} involved in $t_{\text {plh }}$, while both

Assymetrical response $\quad R_{L}$ and $R_{P N}$ involved in $t_{\text {phl }} \ldots$

- Static power consumption
- $\mathrm{t}_{\mathrm{pL}}=0.69 \mathrm{R}_{\mathrm{L}} \mathrm{C}_{\mathrm{L}}$

Lectures 14, ECE 122A, VLSI Principles
Kaustav Banerjee

Active Loads

Pseudo-NMOS

$$
V_{O H}=V_{D D}(\text { similar to complementary CMOS })
$$

To Find $V_{O L}$:

$$
\mathbf{k}_{\mathbf{n}}\left(\left(\mathbf{V}_{\mathbf{D D}}-\mathbf{V}_{\mathbf{T n}}\right) \mathbf{V}_{\mathbf{O L}}-\frac{\mathbf{V}_{\mathbf{O L}}^{2}}{2}\right)+\mathbf{k}_{\mathbf{p}}\left(\left(-\mathbf{V}_{\mathbf{D D}}-\mathbf{V}_{\mathbf{T p}}\right) \mathbf{V}_{\mathbf{D S A T p}}-\mathbf{V}_{\mathbf{D S A T p}}^{2} / 2\right)=\mathbf{0}
$$

Note: NMOS in linear mode, since ideally Note: PMOS in saturation mode the output $=0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{ds}}=\mathrm{V}_{\mathrm{oL}}<\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{tn}}\right)$

$$
\begin{array}{ll}
\mathbf{V}_{\mathbf{O L}}=\mu_{\mathrm{p}} / \mu_{\mathbf{n}} \mathbf{W}_{\mathbf{p}} / \mathbf{W}_{\mathbf{n}} \mathbf{V}_{\mathbf{D S A T p}} & \begin{array}{l}
\text { Assuming } \mathrm{V}_{\mathrm{OL}} \text { is small relative to } \\
\text { gate drive, }\left(\mathrm{V}_{D D}-V_{T}\right) \text {, and } \mathrm{V}_{T \mathrm{P}}=V_{T \mathrm{n}}
\end{array}
\end{array}
$$

SMALLER AREA \& LOAD BUT STATIC POWER DISSIPATION!!!

Pseudo-NMOS VTC

Sizing of the load device can be used to trade off parameters such as NM, delay, and power......

$$
V_{O L}=\frac{R_{P N}}{R_{P N}+R_{L}}
$$

Note: for $V_{O L}$ to be low, we want large R_{L} or small W / L_{p}

A larger pull-up device (smaller R_{L}) improves performance but increases static power and degrades NM by increasing $V_{O L}$

Pass-Transistor Logic

- \mathbf{N} transistors
- No static consumption

Allows primary inputs to drive gate terminals as well as source-drain terminals

Example: AND Gate

If $\mathbf{B}=\mathbf{1}$ then $T 1$ is $O N$ and $T 2$ is OFF
Then $A=F$, i.e., if $A=1, F=1$ and if $A=0$, $F=0$

When $\mathbf{B}=\mathbf{0}, \mathrm{T} 2$ is ON and passes a Zero

Need fewer transistors: 4 to implement the AND: lower cap.
Need 6 to implement in static CMOS (4 for NAND and 2 for INV)

Ensures that gate is static: provides low impedance path when $B=0$

Note: F will charge only up to $\mathrm{V}_{\mathrm{DD}} \mathrm{V}_{\mathrm{tn}}$
Also, $\mathrm{V}_{\mathrm{T} \mathrm{n}}$ will be a function of V_{F} (increase due to RBB)

VTC of Pass-Transistor AND Gate

When $B=V_{D D}, T 1$ is $O N$ until the input reaches $V_{D D}-V_{T n}$

When $A=V_{D D}$, and B makes a transition from 0 to 1 , T2 is turned on until $\mathrm{V}_{\mathrm{DD}} / 2$ and Output $=0$. Once T2 is turned off, output follows the input B minus a threshold drop.

VTC of Pass Transistor Logic is data dependent

NMOS-Only Logic

Voltage Drop Issue:

$$
V_{x}=V_{d d}-V_{T n}\left(V_{x}\right)
$$

Hence, pass transistor gates cannot be cascaded by connecting the output of a pass gate to the gate input of another pass transistor. They can only be cascaded in series....

Cascading Pass Transistors

Swing on $Y=V_{D D^{-}} V_{T n 1}$
(b)

Let $B=V_{D D}, A=1$ (NMOS $\left(M_{1}\right)$ pulling up node X):

$$
\begin{aligned}
& \text { Let } B=C=V_{D D}, A=1 \\
& V_{X}=V_{D D}-V_{t n 1} \& \\
& V_{Y}=V_{D D}-V_{t n 2}=V_{D D}-V_{t n 1} \\
& \text { (assuming } V_{t n n}=V_{n 22} \text {) }
\end{aligned}
$$

Note: Vgs>Vtn for NMOS to turn ON.

NMOS-only Switch

Difficult to switch
V_{B} does not pull up to 2.5 V , but $2.5 \mathrm{~V}-V_{T n}$
 energy!
off the PMOS!

Solutions to the Voltage Drop Problem: Solution 1: Level Restoring Transistor

Pass Transistor Logic suffers from static power dissipation and reduced NMs

$$
\begin{aligned}
& \text { At } B=V_{D D} \text {, if } A: 0 \text { to } V_{D D} \\
& V_{x}=V_{D D}-V_{T n}, O u t=0, \\
& M_{r}=O N \text { and } V_{x}=V_{D D}
\end{aligned}
$$

Eliminates static power in the Inverter

No static power between M_{r} and M_{n}

- Advantage: Full Swing
- Restorer adds capacitance, takes away pull down current at X (for high to low transition at X, M_{n} must be stronger than M_{r}), can slow down gate
- Ratio problem

Restorer Sizing

Need to size M_{n} and M_{r} to bring $V_{x}<V_{M}\left(=V_{D D} / 2\right)\left(V_{M}\right.$ is a function of R1 and R2) R1 and R2 are the equivalent on-resistances of M1 and M2

- Upper limit on restorer size when too large (R_{r} too small), V_{x} can't be brought below V_{M} - Pass-transistor pull-down can have several transistors in stack

Transient Response: V_{x} vs. time

Solution 2: Single Transistor Pass Gate with

 $V_{T}=0$Only Pass Transistor Devices have $\mathrm{V}_{\mathrm{T}}=0$

But even if $V_{T}=0$, there is still body effect...which prevents full swing!

WATCH OUT FOR LEAKAGE CURRENTS in the IDLE State!!!

Solution 3: Transmission Gate

Acts like a
bidirectional switch controlled by the gate signal C
When $C=1$, both
MOSFETS are ON
allowing the signal to pass through the

gate ($A=B$, if $C=1$)

Because of the PMOS, C_{L} charges to Vdd

Because of NMOS
C_{L} discharges to 0

Pass-Transistor Based Multiplexer

Lectures 14, ECE 122A, VLSI Principles
Kaustav Banerjee

Transmission Gate XOR

B=1: M1 and M2 act as an INV, Transmission gate is off and $F=\bar{A} B$

B=0: M1 and M2 are off and Xgate is on, $F=A \bar{B}$

Fast adder circuits and registers can also be implemented with Xgates

Resistance of Transmission Gate

When Vout is low, NMOS is working, hence Rn dominates the equivalent resistance....similarly Rp dominates when Vout is high.....

Dynamic CMOS

- In static circuits at every point in time (except when switching) the output is connected to either GND or V_{DD} via a low resistance path.
- fan-in of n requires $2 n$ ($n \mathrm{~N}$-type $+n$ P-type) devices (for static CMOS)
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
- requires only $n+2$ ($n+1$ N-type and 1 P-type) transistors

Dynamic Gate

Two phase operation

Precharge (Clk = 0)
Evaluate $\quad(\mathrm{Clk}=1)$
Out $=\overline{C L K}+(\overline{A B})+C . C L K$

Conditions on Output

\square During evaluation phase, the only possible path between output node and supply rail is to ground. Hence, once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation.

- Inputs to the gate can make at most one transition during evaluation.
- Output can be in the high-impedance state during and after evaluation (if PDN is off), state is stored on C_{L}

Properties of Dynamic Gates

- Logic function is implemented by the PDN only
- number of transistors is $\mathrm{N}+2$ (versus 2 N for static complementary CMOS)
- Full swing outputs $\left(\mathrm{V}_{\mathrm{OL}}=\mathrm{GND}\right.$ and $\left.\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}\right)$
- Non-ratioed - sizing of the devices does not affect the logic levels
- PDN starts to work as soon as the input signals exceed V_{Tn}, so $\mathrm{V}_{\mathrm{M}}, \mathrm{V}_{\mathrm{IH}}$ and V_{IL} equal to V_{Tn}
- Low noise margin (NM_{L})
- Needs a precharge/evaluate clock
- Faster switching speeds:

- reduced load capacitance due to lower input capacitance $\left(\mathrm{C}_{\text {in }}\right)$ resulting from lower number of transistors per gate and single transistor load per fan-in (reduced logical effort, 2/3 for a 2-input dynamic NOR)
- no $I_{s c}$, so all the current provided by PDN goes into discharging C_{L}

Properties of Dynamic Gates

- Advantages:
- Lower physical capacitance: uses fewer transistors
- No glitching (dynamic gates can have at most one transition per CLK cycle)
- Only consumes dynamic power.....no static current path ever exists between V_{DD} and GND (including P_{sc})
- In spite of the above.....overall power dissipation usually higher than static CMOS
- CLK power can be significant: extra load on Clk + transition every CLK cycle
- Number of transistors is more than the minimal set required for implementing logic
- Higher switching activity due to higher transition probabilities

Issues in Dynamic Design 1: Charge Leakage

A dynamic inverter

Due to leakage, a minimum CLK rate required...(few KHz)

CLK

Leakage sources: reverse biased diode and subthreshold
Dominant component is subthreshold current
Note: leakage of precharge PMOS can partially compensate for the charge loss at the dynamic node

Solution to Charge Leakage

Same approach as level restorer for pass-transistor logic

H. F. Dadgour and K. Banerjee, "A Novel Variation-Tolerant Keeper Architecture for High-Performance LowPower Wide Fan-in Dynamic Gates," IEEE Transactions on VLSI Systems, Vol. 18, No. 11, pp. 1567-1577, 2010.

Issues in Dynamic Design 2: Charge Sharing

Charge stored originally on C_{L} is redistributed (shared) over C_{L} and C_{A} leading to reduced robustness

Output node voltage drops and cannot be recovered due to the dynamic nature of the circuit.

Charge Sharing Example

Dynamic 3-input EXOR gate

Out $=A \oplus B \oplus C$

Worst case change in Output is obtained by exposing the maximum number of internal capacitances to the output: this happens for $\bar{A} B C$ or $A \bar{B} C$

Solution to Charge Redistribution

Precharge internal nodes (to V_{DD}) using a clock-driven transistor (at the cost of increased area and power)

Issues in Dynamic Design 3: Backgate (Output-to-input) Coupling

Static NAND

Dynamic NAND

Capacitive coupling between dynamic node Out1 and H-L transition at Out2 (when In_1 goes high) through the gate-drain and gate-source capacitance of M4

Backgate Coupling Effect

Simulation result

Coupling causes dynamic node Out1 to drop significantly, which further prevents Out2 from dropping all the way to zero---static power dissipation.

Issues in Dynamic Design 4: Clock

Feedthrough

Coupling between Out and Clk input of the precharge device due to gate to drain capacitance (includes both overlap and channel).

Hence, voltage of Out can rise above V_{DD} on the L-H Clk transition (assuming PDN is off). The fast rising (and falling edges) of the clock couple to Out.

Dynamic circuits need careful simulation!

Clk feedthrough can cause normally reverse biased junction diodes of the precharge transistor to become forward biased---causing electron injection into the substrate that can be collected by a nearby highimpedance node in the 1 state, eventually resulting in faulty operation.

Clock Feedthrough

Other Effects

- Capacitive coupling
\square Substrate coupling
- Minority charge injection
\square Supply noise (ground bounce)

Cascading Dynamic Gates

Simple cascoding doesn't work...

As long as Out1> $\mathrm{V}_{\mathrm{M}}\left(\sim \mathrm{V}_{T n}\right)$ of the second inverter, Out2 will decrease leading to reduced NMs

During precharge both Out1 and

Solution: Set all inputs to 0 during precharge For correct operation only $0 \rightarrow 1$ transitions should be allowed at inputs!

Domino Logic

An n-type dynamic logic followed by a static inverter...

All inputs (are outputs of other Domino gates) are set to 0 at the end of precharge phase
Only 0 to 1 transition at the inputs during evaluation phase: during evaluation, dynamic gate conditionally discharges and the output of the inverter makes a conditional transition from 0 to 1.

Domino Logic

An n-type dynamic logic followed by a static inverter...

The static inverter reduces the capacitance of the dynamic output node by separating internal and load capacitances.....it also increases the NM (due to the low-impedance output)

The inverter can also be used to drive a keeper device to combat leakage and charge redistribution.

Why Domino?

A Domino chain

Precharge: all inputs=0
Evaluation: Output of domino1 either stays at 0 or makes a transition from 0 to 1 , affecting the second gate. This effect might ripple through the whole chain...like a line of falling dominos!

Properties of Domino CMOS Logic

- Only non-inverting logic can be implemented (due to the static inverter)
- Major limitation
- Can be overcome using dual-rail domino (an expensive solution)
\square Very high speed
- Only rising edge delays, and $\mathrm{t}_{\mathrm{pHL}}=0$
- static inverter can be skewed to match the fanout, which is already much smaller than in the complimentary case, since only a single gate capacitance needs to be accounted for per fan-out gate.
- Input capacitance reduced - smaller logical effort

Designing with Domino Logic

Footless Domino

If $\mathrm{In}_{1}=1$, out $\mathbf{1}_{1}=0$ and $\mathrm{In}_{2}=1$
On the falling edge of CLK, let $\mathrm{In}_{1}=0$: but it takes two gate delays for In_{2} to be 0 , during which second gate cannot pre-charge its output (Out ${ }_{2}$), since PDN is fighting the precharge-PMOS

Time taken to precharge equals the critical path delay!
Better to use the evaluation device....
Pre-charge is rippling - short-circuit current A solution is to delay the clock for each stage

Lectures 14, ECE 122A, VLSI Principles

Differential (Dual Rail) Domino

Overcomes the non-inverting property of Domino Logic: used commercially in several microprocessors Uses a pre-charged load....

Possible to implement any arbitrary function....but comes at the expense of increased power since a transition is guaranteed every CLK cycle irrespective of the input values....either Out1 or Out2 must make a 0 to 1 transition.

np-CMOS

Alternative to cascading dynamic gates....uses n-type and p-type dynamic logic
Exploits duality between n-tree and p-tree logic gates to eliminate cascading problem
No extra inverter at the outputs....unless output of n-tree (p -tree) needs to be connected to another n tree (p-tree) gates

Drawback: p-tree gates are slower than the n-tree gates...needs proper skewing of PMOS....area penalty No buffers---so dynamic nodes need to be routed between gates

