2-input NOR Gate

$$
\text { 2-input NOR: } Y=\overline{A+B}=\bar{A} \cdot \bar{B}
$$

Table 1.4	NOR gate truth table	
A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

2 PMOS must be in series.....
2 NMOS must be in parallel....

Lecture 3, ECE 122A, VLSI Principles
Kaustav Banerjee

CMOS NOR Implementation

(a)
(b)

FIG 1.15 2-input NOR gate schematic (a) and symbol (b) $Y=\overline{A+B}$

CMOS 3-input NOR Implementation

FIG 1.16 3-input NOR gate schematic $Y=\overline{A+B+C}$

Combinational Logic

FIG 1.13 General logic gate using pull-up and pull-down networks

Output state X should always be avoided: static power

Output state Z indicates a highimpedance state. If a gate's output state $=$ Z, that gate has no influence on the rest of the circuit

Z-state is used in tri-state logic circuits and is of relevance in certain gates such as multiplexers

Compound Gates

$$
Y=\overline{A . B+C . D}
$$

Needs 20 transistors....

FIG 1.23 Inefficient discrete gate implementation of AOI22 indicating transistor counts

Compound Gates $Y=\overline{A \cdot B+C . D}$

(a) Pull-down (when is $Y=0$?)
(b)

(c) Pull-up (when is $Y=1$?)
(d)

(f)
(e)

Need 8 transistors

Compound Gates

FIG 1.18 CMOS compound gate for function $Y=\overline{(A+B+C) \bullet D}$

Pass Transistors

nMOS

(a)
(b)

Input $\underset{0 \rightarrow 0}{ }=1$ Output
$0 \rightarrow-$ strong 0
$\xrightarrow[1 \rightarrow 0]{g=1}$ degraded 1
(c)

Input $\underset{0 \rightarrow 0}{\mathrm{~g}}=0$ Output
$0 \rightarrow$ degraded 0
(d)

$$
\begin{gathered}
g=1 \\
s \rightarrow>o-d
\end{gathered}
$$

(e)

$$
\begin{equation*}
\underset{1 \rightarrow-0}{\mathrm{~g}=0} \text { strong } 1 \tag{f}
\end{equation*}
$$

FIG 1.19 Pass transistor strong and degraded outputs

Transmission Gates:' Pass Transistors in Parallel

Both 0 and 1 passed strongly

(a)

$$
\begin{aligned}
& g=0, g b=1 \\
& a \rightarrow o-b \\
& g=1, g b=0 \\
& a \rightarrow-b
\end{aligned}
$$

(b)

(d)

Tristate Buffer

FIG 1.24 Tristate buffer symbol

Tristate Buffer

\section*{Table 1.5 Truth table for tristate
 | EN $/ \overline{\mathrm{EN}}$ | \boldsymbol{A} | \boldsymbol{Y} |
| :---: | :---: | :---: |
| $0 / 1$ | 0 | Z |
| $0 / 1$ | 1 | Z |
| $1 / 0$ | 0 | 0 |
| $1 / 0$ | 1 | 1 |}

Note: Z indicates a 'high-impedance' third state....

Lecture 3, ECE 122A, VLSI Principles
Kaustav Banerjee

Transmission Gate as Tristate Buffer

Non-restoring: input-signal will slowly degrade over a number of stages.... since Y is not connected to either Vdd or Gnd

FIG 1.25 Transmission gate

Tristate Buffer as Inverter

(a)
$\mathrm{EN}=0$
$Y=' Z '$

(b)

(c)

FIG 1.26 Tristate inverter

Multiplexer (MUX)

Connects one of \boldsymbol{n} inputs to the output....
Used as data selectors...encoders
Y = As +Bs'

4:1 MUX

$$
Y=A s_{1} s_{2}++B s_{1} s_{2}^{\prime}+C s_{1} ' s_{2}+D s_{1} ' s_{2}^{\prime}
$$

In general, 2^{n} inputs will have n select signals $\quad Y=\sum_{k=0}^{2^{n}-1} m_{k} I_{k} \begin{aligned} & \begin{array}{l}m_{k} \text { is a minterm of the } \\ n_{k} \text { control variables and } \\ \boldsymbol{k}_{k} \text { ist } \text { the corresponding } \\ \text { data input }\end{array} \\ & 15\end{aligned}$

2:1 Multiplexer (MUX)

Table 1.6 Multiplexer truth table

S / \bar{S}	$D 1$	$D 0$	\boldsymbol{Y}
$0 / 1$	X	0	0
$0 / 1$	X	1	1
$1 / 0$	0	X	0
$1 / 0$	1	X	1

$\mathrm{Y}=\mathrm{D} 1 . \mathrm{S}+\mathrm{D} 0 . \overline{\mathrm{S}}$ (when $\mathrm{s}=0, \mathrm{D} 1=\mathrm{X}$, when $\overline{\mathrm{s}}=0, \mathrm{D} 0=\mathrm{X}$)
Note: X indicates a don't care condition

Non-restoring MUX

(a)
indicates $S=0$ (1), allows DO (D1) to operate...

(b)

FIG 1.27 Transmission gate multiplexer

Inverting and Restoring MUX

$$
S / \bar{S}=0 / 1
$$

$$
D 0=0: Y=1=\overline{D O}
$$

$$
\overline{\mathrm{Y}}=\mathrm{D} 1 . \mathrm{S}+\mathrm{D} . \overline{\mathrm{S}}
$$

$$
D 0=1: Y=0=\overline{D 0}
$$

(a)

(b)

(c)

FIG 1.28 Inverting multiplexer

A 4:1 MUX

(a) Using three 2:1 MUXs
$\overline{\mathrm{S} 1} \overline{\mathrm{~S} 0} \overline{\mathrm{~S} 1 \mathrm{~S} 0 \mathrm{~S} 1 \overline{\mathrm{~S} 0} \mathrm{~S} 1 \mathrm{~S} 0}$

(b)

FIG 1.29 4:1 multiplexer

Static CMOS Summary

- In static circuits at every point in time (except when switching) the output is connected to either GND or V_{DD} via a low resistance path.
- fan-in of n (or n-inputs) requires $2 n$ ($n \mathrm{~N}$-type $+n \mathrm{P}$-type) devices
- Non-ratioed logic: gates operate independent of PMOS or NMOS sizes (since no conflict between pull-up and pull-down networks)
- No path ever exists between Vdd and GND: low static power
- Fully-restored logic: (NMOS passes "0" only and PMOS passes "1" only
- Gates must be INVERTING: $Y=\bar{X}$, so that $X=1$ (NMOS pulldown network is "ON") for $Y=0$ (node is fully discharged)

Latches (level sensitive device)

(a)
(b)

$C L K=1: D$ to Q
CLK=0:Holds state of Q
(c)

(d)

FIG 1.30 CMOS positive-level-sensitive D latch

Flip-Flops (edge-triggered device)

(a)

(f)

Combines two latches:
One +ve sensitive (slave) and one-ve sensitive latch (master)
Edge Triggered FF or Master-Slave FF
(b)

(d)

Timing Definitions

$\mathbf{t}_{\text {su }}=$ setup time =time for which the data inputs (D) must be valid before the CLK edge $\boldsymbol{t}_{\text {hold }}=$ hold time $=$ time for which data input must remain valid after the CLK edge $\mathbf{t}_{\mathrm{c} 2 \mathrm{q}}=$ worst case propagation time through the Register (w.r.t the CLK edge)

