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Two Inverters

Connect in Metal

Share power and ground
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CMOS Inverter

First-Order DC Analysis

VOL = 0

VOH = VDD

VM = f(Rn, Rp)

VDD VDD

Vin
= VDD Vin

= 0

Vout

Vout

Rn

Rp
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CMOS Inverter: Transient Response

tpHL = f(Ron.CL)

= 0.69 RonCL

V out
V out

R n

R p

V DD
V DD

V in =  VDDV in

(a) Low-to-high (b) High-to-low

CL
CL

Vout = 

= 0

Note: CL is composed of 

drain diffusion 

capacitances of 

NMOS/PMOS, wire caps (if 

any), and the input cap. of 

the fanout gates…..
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The Transistor as a Switch

VGS  VT

Ron

S D

ID

VDS

VGS = VD D

VDD/2 VDD
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The Transistor as a Switch
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As VDD increases, drain current increases….for both 

NMOS and PMOS 
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The Transistor as a Switch
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Resistive-load Inverter
❑ Requires only NMOS transistor 

and resistor

❑ When Vin = 0:

▪ NMOS is OFF (VGS = 0)

▪ No current through NMOS 

▪ Vout  Vcc

❑ When Vin = Vcc:

▪ NMOS is ON (VGS = Vcc)

▪ NMOS ON resistance << R

▪ Vout  0

Vin

Vout

Vcc

Gnd

R

G D

S

Remember: if body terminal 

not shown, it is connected to 

gnd for NMOS, Vcc for 

PMOS

Drain current ID = 

Load current IR
(Kirchoff’s Law)

IR

ID

Not suitable for VLSI: large area of R, DC 

power dissipation.
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Resistive-load Inverter

Ids = Vcc/Rload

As Rload increases, VTC

becomes sharper!

Larger Rload = smaller PU transistor...LO skewed…
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Pseudo-NMOS Inverter
❑ Replace resistor with “always-

on” PMOS transistor

❑ Easier to implement in 

standard process than large 

resistance value

❑ PMOS load transistor:
▪ ON when VGS < VT → 

VGS = -VCC: transistor always on

▪ Linear when VDS > VGS-VT → 

Vout-Vcc > -Vcc-VT → Vout > -VT

▪ Saturated when VDS < VGS-VT → 

Vout-Vcc < -Vcc-VT → Vout < -VT

Vin

Vcc

Gnd

G
S

D

VGS,P = -VCC

Remember: 

VT(PMOS) < 0

Vout

Ratioed Logic: 

Vout depends 

on the relative 

size of the 

transistors
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Pseudo-NMOS Inverter

Note: Smaller 

Width of PMOS 

(P) means larger 

resistance

Compare with 

resistive-load 

inverter!



Lecture 9, ECE 122A, VLSI Principles Kaustav Banerjee

Propagation Delay
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Two CMOS Inverters…
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=2l
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CMOS inverter capacitances

Vin

Vcc

Gnd

Cgd,p

Cgs,p

Cdb,p

Csb,p

Cgd,n

Cgs,n Csb,n

Cdb,n Cint Cg

f

Cap on Node f:

• Junction cap: Cdb,p and Cdb,n

• Gate (overlap) capacitance

Cgd,p and Cgd,n (beware of 

Miller effect)

• Interconnect cap: Cint

• Receiver gate cap: Cg

Assumption: Vin is driven by an 

ideal voltage source….with zero 

rise and fall times….hence the 

transistors are either in cut-off or 

saturation mode…hence, no 

channel capacitance
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CMOS inverter capacitances

gatepgdngdpdbndbload CCCCCCC +++++= int,,,,
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CWL
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For each gate
Miller Effect
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CMOS Inverter Propagation Delay

Approach 1

VDD

Vout

Vin = VDD

CLIav

tpHL = CL Vswing/2

Iav

CL

kn VDD

~Note: q = C V

tpHL is defined as time to discharge to 

50% of the “High” value of the Vout… 

hence, Vswing/2

CL Vswing/2 = charge

and charge/Iav = time
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CMOS Inverter Propagation Delay

Approach 2

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36
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Transient Response

tp = 0.69 CL (Reqn+Reqp)/2

?

tpHL
tpLH

Vin

Vout

?

Symmetric inverter has 

tpHL=tpLH

Due to Cgd of transistors: directly couples voltage at input 

to output before the transistors can even start to react to 

changes at the input----can affect gate performance
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CMOS Inverter Delay as a function of VDD
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Same trend as the ON resistance of a transistor….

Trade off energy dissipation vs performance…..

Reliability concerns 

at high VDD….

Note: for VDD >> VTn + 

VDSATn/2, tp is almost 

independent of VDD

Some improvement due to 

channel length modulation

This region 

should be 

avoided

2Vtn

Only valid for velocity 

saturated devices…..
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Effect of Device Sizing

(for fixed load)

Self-loading effect:
Intrinsic (diffusion) 
capacitances
dominate

S= sizing factor 

for NMOS/PMOS
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NMOS/PMOS ratio

tpLH improves with 

increasing Wp

tp
b = Wp/Wn

If symmetry and noise margins are not of prime concern, inverter delay can 

be reduced by reducing the width of PMOS….

tpHL degrades with increasing 

Wp (larger parasitic cap)

bopt = 1.9

b = 2.4 yields symmetrical transient response

CMOS inverter loaded by identical gate
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Impact of Rise Time on Delay
t p

H
L
(n

s
e
c
)

0.35

0.3

0.25

0.2

0.15

trise (nsec)

10.80.60.40.20

~ linear

As the input signal 

changes gradually, 

both PMOS and 

NMOS conduct 

simultaneously….
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Design for Performance

❑Keep load capacitances (CL) small

▪ Recall that three major components 
contribute to the load cap.

– internal diffusion + overlap caps

– interconnect cap.

– fan-out (gate cap)

❑ Increase transistor sizes 

▪ watch out for self-loading!

❑ Increase VDD (??)

▪ watch out for reliability issues!
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Power Dissipation
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Where Does Power Go in CMOS?

• Dynamic Power 

Due to charging/discharging of capacitors….

• Leakage Power

• Subthreshold

• Gate

• Junction

• Short-Circuit Power

When NMOS and PMOS are both turned ON…. 
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Dynamic Power Dissipation

Energy/transition = CL * Vdd
2

Power = Energy/transition * f = CL * Vdd
2 * f

Need to reduce CL, Vdd, and f to reduce power.

Vin Vout

CL

Vdd

Energy/transition is not a function of transistor sizes!

( ) 2

000

DDL

V

outDDL
out

LDDDDVV VCdvVCdt
dt

dv
CVdtVtiE

DD

DDDD
==== 



Energy taken from supply during transition:

Note: Here CL

is an external 

capacitor….
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Dynamic Power Dissipation

Vin Vout

CL

Vdd

( ) 2

000

DDL

V

outDDL
out

LDDDDVV VCdvVCdt
dt

dv
CVdtVtiE

DD

DDDD
==== 



Energy taken from supply during transition:

( )
2

2

000

DDL

V

outoutLout
out

LoutVC

VC
dvvCdtv

dt

dv
CdtvtiE

DD

DD
==== 



Energy stored in the capacitor:

Where is the other half of the energy? ….Dissipated by the PMOS

Note: during the 

discharge phase, charge 

is removed from CL and 

its energy is dissipated in 

the NMOS 
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Modification for Circuits with 

Reduced Swing

CL

Vdd

Vdd

Vdd -Vt

E
0 1→

C
L

V
dd

V
dd

V
t

–( )••=

Can exploit reduced sw ing to lower power

(e.g., reduced bit-line swing in memory)

Same as previous equation for 

energy drawn from supply 

voltage (CL Vdd
2)…. integration 

of Vout yields (Vdd-Vt)
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Primary Leakage Mechanisms

Vout

Vd d

Sub-Threshold
Current

Drain Junction
Leakage

Sub-Threshold Current Dominant Factor
Sub-threshold current one of most compelling issues

in low-energy circuit design!

Gate Leakage
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Subthreshold Leakage Component

( )10ln
q

kT
nS =

Subthreshold Swing = S = 60 mV/decade at room temperature (for ideal transistor with n=1)

Subthreshold 

slope = S-1
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Reverse-Biased Diode Leakage

N
p+ p+

Reverse Leakage Current

+

-
Vdd

GATE

IDL = JS  A

J
S = 1-5pA/mm2 for a 1.2mm CMOS technology

J
s
 double with every 9oC increase in temperature 

JS = 10-100 pA/mm2  at 25 deg C for  0.25mm CMOS

JS doubles for every 9 deg C!
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Short Circuit Currents

K. Banerjee  and A. Mehrotra, IEEE Transactions on 

Electron Devices, Vol. 49, No. 11, 2002.
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Static Power Consumption

Vin=5V

Vout

CL

Vd d

Istat

Pstat = P(In=1).Vdd . Istat

• Dominates over dynamic consumption

• Not a function of switching frequency

Wasted energy …

Should be avoided in almost all  cases,

but could help reducing energy in others (e.g. sense amps)

In the absence of 

switching….steady-state 

operation Due to all previously 

mentioned leakage 

currents……

Sources:
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Leakage

❑ Effect of leakage current

▪ “Wasted” power: power consumed even when 

circuit is inactive

▪ Leakage power raises temperature of chip

▪ Can cause functionality problem in some circuits: 

memory, dynamic logic, etc.

❑ Reducing transistor leakage

▪ Long-channel devices

▪ Small drain voltage

▪ Large threshold voltage VT
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Principles for Power Reduction

❑Prime choice: Reduce voltage!

▪ Recent years have seen an acceleration in 

supply voltage reduction

▪ Design at very low voltages still open 

question (0.6 … 0.9 V by 2010!)

❑Reduce switching activity

❑Reduce physical capacitance

▪ Device Sizing
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❑ Process scaling

▪ VT reduces with each new process (historically)

▪ Leakage increases ~10X!

❑ Leakage vs. performance tradeoff:

▪ For high-speed, need small VT and L

▪ For low leakage, need high VT and large L

❑ One solution: dual-VT process

▪ Low-VT transistors: use in critical paths for high 

speed

▪ High-VT transistors: use to reduce power

Leakage Power Reduction
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Scaling Theory: 

 

Parameters 
Constant Vdd 

scaling 

Constant E 

scaling 

Width = w 7.0  

Length = L 7.0  

Oxide thickness tox 7.0  
Dimentions 

Junction depth Xj 7.0  

Die Area 2)7.0(  

Gate capacitance per unit area ( 
ox

ox
gox t

C


=  ) 
7.0

1
 

Gate capacitance ( goxg wLCC =  ) 7.0  

Total Capacitance ( C  ) 7.0  

Supply Voltage ( DDV  ) 1 7.0  

Current per device ( DDthgs

ox

ox
DS VVV

tL

w
I )( −


 ) 1 7.0  

Intrinsic Gate Delay ( 
AV

g

I

VC 
=  ) 7.0  7.0  

Frequency ( 


1
f  ) 

7.0

1
 

Active Power Dissipation ( fCVP DDactive

2=  ) 1 
2)7.0(  

Energy-Delay Product ( 2

DDCV  ) 49.0)7.0( 2 =  2401.0)7.0( 4 =  

Power Dissipation density ( 
Area

Pactive  ) 2
)7.0(

1
2

  1
)7.0(

)7.0(
2

2

  

 


