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The Wire

transmitters receivers

schematics physical
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Interconnect Impact on Chip

Interconnect delay has become the dominant factor determining chip performance……..
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Wire Vs Gate Delay….. 
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Interconnect delay has 

become the dominant 

factor determining chip 

performance…



Lecture 11, ECE 122A, VLSI Principles Kaustav Banerjee

Impact of Interconnect Parasitics

❑ Interconnect parasitics

▪ affect performance and power consumption 

▪ affect reliability

❑ Classes of parasitics

▪ Resistive 

▪ Capacitive

▪ Inductive
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Wire Resistance 

W

L

H

R = 

H W

L

Sheet Resistance
Ro

R1 R2

Easier to compare wires with different (but uniform) thicknesses…

Unit of 

"Ω/sq" or 

"Ω/ □" 
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Interconnect Resistance 
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Dealing with Resistance

❑Selective Technology Scaling

❑Use Better Interconnect Materials

▪ reduce average wire-length

▪ e.g. copper, silicides

❑More Interconnect Layers

▪ reduce average wire-length
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Sheet Resistance
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Example: Intel 0.25 micron Process

5 metal layers

Ti/Al - Cu/Ti/TiN

Polysilicon dielectric

=h/w
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Interconnect (RC) Delay

On-Chip VLSI interconnects can be modeled as RC elements

• R is the wire resistance = 

  is the resistivity of the metal

 L is the wire length

 A is the cross sectional area = wh (w is the width and h is the height of the wire)

• C is the wire capacitance. For a parallel plate capacitor

A is the area of the plate

d is the distance between the plates

k is the dielectric constant of the insulating material between the plates

e0 is the permittivity of free space
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Will better materials like copper and low-k 

dielectrics solve the interconnect problem?

Cu has lower resistivity than Al, and is more 

robust (reliable) than Al…….

If we can reduce both R and C, 

we can reduce wire delay…..
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Changing Interconnect Materials

❑ Replace Al wires by Cu wires

❑ Resistivity of Al = 2.65 mW-cm

    @ Room Temp. (20-25 0C)

❑ Resistivity of Cu = 1.67 mW-cm

    @ Room Temp. (20-25 0C)

❑ Reduction in R is not even a factor of 2…..
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Metal 6

Metal 4

Metal 5

VLSI Interconnect Structure

Cinter

Cintra

Adjacent wires are orthogonal….why?

Cintra is the dominating capacitance……why?
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Capacitance: The Parallel Plate Model

Dielectric

Substrate

L

W

H

tdi

Electrical-field lines

Current flow

WL
t

c
di

di
int

e
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Valid when, W>>tdi

1-dimensional model
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Permittivity
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Fringing Capacitance Model
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+

(a)

(b)

W

Fringing Cap.

H

w =

Parallel plate Cap.

Approximates the 

capacitance as the sum of 

two components:

Orthogonal field 

between a wire of width 
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ground plane
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Modeled by a 
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Fringing versus Parallel Plate

(from [Bakoglu89])

Saturates to 

~1pF/cm due to 

fringing fields
Total capacitance

Note: aspect ratio = H/W

H/tdi

H/tdi

H
tdi

W/tdi
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❑Usually interconnect layers alternate 
wire direction

Interconnect
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Impact of Interwire Capacitance

(from [Bakoglu89])

• Reduce wire width, w 

• Reduce spacing (=w)

• Ctotal = Cground + Cinterwire

• Cground = Cp-p  + Cfringing

H/W =1.75

For a fixed dielectric and wire thickness

Interwire capacitance (crosstalk), 

becomes important in a multi-level 

structure

More important for higher level wires 

that are far away from substrates 
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Interconnect Modeling



Lecture 11, ECE 122A, VLSI Principles Kaustav Banerjee

Capacitances of Driver-Wire-Load

VDD
VDD

Vin
Vout

M1

M2

M3

M4Cdb2

Cdb1

Cgd12

Cw

Cg4

Cg3

Vout2

Fanout

Interconnect

Vout
Vin

CL

Simplified
Model
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Wire Models

All-inclusive model
Capacitance-only

R
L

C
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The Lumped Capacitor Model

Vout

Driver

cwire

Vin

Clumped

Rdriver
V
out

If r is small and switching 

frequencies are not too high…

Advantage: Operation 

can be described by 

ordinary differential 

equation

Assuming no voltage drops along the wire…. 

i.e., wire is equipotential
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The Lumped Capacitor Model
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 Only impact on performance 

is due to the loading effect of 

the capacitor on the driving 

gate
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The Lumped RC-Model

• On-chip metal wires at the semi-global and global tiers can 

be several millimeters long and can have significant 

resistance

• The equipotential assumption is no longer valid

• Need an RC model……

• A simple approach:  lump wire resistance of each segment 

into a single R and the global capacitance into a single C

• This is called a lumped RC model….pessimistic and 

inaccurate for long wires

• Should use a distributed RC model for such long wires

Then what is the use of the lumped RC model?
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Lumped RC-Networks…..

• The distributed RC model is complex: involves partial differential 

equations, closed form solution does not exist

• However, the behavior of a distributed RC line can be adequately 

modeled by a simple RC network

• It is more convenient to reduce any driver-wire-load networks to 

an equivalent RC network and predict its first order response

• However, unlike the single R-C network analyzed earlier that 

had a single time constant (network pole), deriving the correct 

waveforms for a complex network becomes intractable

• Need to solve a set of ordinary differential equations with 

many time constants (poles and zeroes)….

• Or, run time-consuming SPICE simulations for the entire 

network….
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Elmore Delay Comes to the Rescue…..

Shared path resistance: resistance shared among 

the paths from root node s to nodes k and i

Example: Ri4=R1+R3  

  Ri2=R1

s

RC Tree: unique resistive 

paths between s and any 

node i

Total resistance along 

this path is called the 

path resistance Rii

e.g., path resistance 

between s and node 4: 

R44 = R1 + R3 + R4
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Elmore Delay-RC Chain (Branched)

Elmore Delay at node i:

(First-order time constant of the network)

If a step input Vin is 

applied at t=0

N = # of 

capacitances 

in the network

W. C. Elmore, “The transient response of 

damped linear networks,” J. Appl. Phys., vol. 

19, pp. 55–63, Jan. 1948.

Hence, Tau_D1 = C1 . R11 + C2 . R12 + ….. Cn . R1n = C1 . R1 + C2 . R1 + …..  + Cn . R1
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Wire Model

If wire modeled by N equal-length segments  (Rseg= rL/N, Cseg= cL/N)

For large values of N:

tDi = C1R1 + C2 (R1+R2)+…….+ Ci (R1+R2+…Ri)For a non-branched RC chain: 
=

=
N

i
iiiDN RC

1



Vin

R1

C1

R2

C2

Ri-1

Ci-1

Ri

Ci

RN

VN

1 2 i-1 i N

CN

r and c represent the resistance and capacitance 

per unit length of the wire, respectively…

For a chain, number of capacitances = number of nodes, hence,
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The Distributed RC-line

The diffusion equation

(can be approximated by the lumped RC network model)
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Step-response of RC wire as a 

function of time and space

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

time (nsec)

v
o

lt
a

g
e

 (
V

)

x= L/10 

x = L/4 

x = L/2 

x= L 

Voltage diffuses 

(degrades) along 

the RC wire
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RC-Models

SPICE Wire (RC) Models: 

accuracy of the model 

determined by number of 

stages
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RC Delay: Design Rules of Thumb

❑ rc delays should only be considered when 
tpRC >> tpgate of the driving gate

Lcrit >>  tpgate/0.38rc

❑ rc delays should only be considered when the 
rise (fall) time at the line input is smaller than 
RC, the rise (fall) time of the line

trise < RC
▪ when not met, the change in the signal is slower 

than the propagation delay of the wire

or 0.38(rL).(cL) >> tpgate
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Illustration of Rule:

Driving an RC-line

V
in

Rs Vout

(rw,cw,L)

Rw = rwL

Cw = cwL

Delay due to wire resistance becomes important when 

(RwCw/2) ≥ Rs Cw  or when L ≥ 2Rs/rw

Total Propagation Delay:

0 to 50% Response Delay:
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