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P/N Junctions

❑What happens when you put two types 

of semiconductors together?

NP

electrons

holes

NP

➢ Large concentration gradient at junction

➢ Electrons diffuse from N to P side

➢ Holes diffuse from P to N side
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P/N Junctions (2)

E field

NP

Depletion region

➢ Immobile ions are left behind

➢Electrons leave +ve charged ions on N side

➢Holes leave –ve charged ions on P side

➢Electric field forms, from N to P

➢E-field causes drift in opposite direction as 
diffusion

➢Equilibrium!  No current flows
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Depletion Region

➢ Depletion region forms around junction

➢“Depleted” of any mobile charges (holes or 

electrons)

➢Charge in depletion region due to fixed ions

➢Electric field causes a potential difference across 

junction: known as built-in voltage V0

E field

NP

Depletion region
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The Diode

n

p

p

n

B A
SiO2

Al

A

B

Al

A

B

Cross-section of pn-junction in an IC process 

One-dimensional
representation diode symbol

Mostly occurring as parasitic element in Digital ICs
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P/N Junction Band Diagram

➢ At thermal equilibrium, no net current flow

➢When drift+diffusion currents=0,

➢ Bands must bend so that Fermi level is 

constant

0=
dx

dE f

qV0

V0 = built-in 

voltage
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PN Junction Equations

➢ Built-in potential or contact potential 

➢difference between energy bands on p and 

n side of the junction)
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Hint: add the two equations above….

(see slide 31 in Lecture 4)
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P/N Junction Example

A diode is created from two materials:

▪ Si doped with 1016 cm-3 Boron

▪ Si doped with 1017 cm-3 Arsenic

1. Find electron and hole concentration 
on each side of the junction

2. Find position of each Fermi level

3. Find built-in voltage V0
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Depletion Region

hole diffusion
electron diffusion

p n

hole drift
electron drift

Charge
Density

Distance

x+

-

Electrical

xField

x

Potential
V





W2-W1



(a) Current flow.

(b) Charge density.

(c) Electric field.

(d) Electrostatic
potential.

which side is more 

heavily doped?

Drift current equals diffusion 

current under equilibrium: 

zero net current

Charge density higher on p 

side than n side since NA>ND

Sum of all charges = 0

Note: 

d/dx = /e

 = - dV/dx

Emax = - q NA w1 es =  q ND w2 es

qND-qNA

Area=built-in 

potential
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Abrupt PN Junctions

0

)(2
V

NN

NN

q
W

da
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0 xn0-xp0

W

Width of depletion region:
Built-in 

potential

Try to derive this equation…..

Hint: Start with Gauss’s Law…and get to the Poisson’s equation (dE/dx = /e), 

then apply that to each of the two layers in the depletion region.
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Bias Effects on PN Junction
Equilibrium Forward bias Reverse bias

lower potential 

barrier
higher potential 

barrier

• smaller E field

• smaller depletion W

• larger E field

• larger depletion W

h+ diffusion

e- diffusion
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Bias Effect on Depletion Width

❑ When biased, electric field in depletion region 

changes

▪ Forward bias: reduces electric field

▪ Reverse bias: increases electric field

❑ Electric field is a result of uncovered charges.  

Therefore depletion width must change

▪ Forward bias: less charges needed.  Depletion 

width reduces

▪ Reverse bias: more charges needed.  Depletion 

region increases.
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Bias Effect on Depletion Width

0
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Width of depletion region w/o bias:
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Width of depletion region with bias V:

Note: 

If V is +ve (FB), Wd reduces

If V is –ve (RB), Wd increases
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Capacitance of P/N Junction

➢ Separated charges result in depletion 

region capacitance

➢ Similar to parallel-plate capacitor

E field

NP

ad

ad
j

NN

NN

VV

qA
C

+−
=

0

2

2

e
)(2 0 VV

NN

NN
qAQ

ad

ad
j −

+
= e

Charge in depletion region: (q.A.xn0.ND)

                                           =(q.A.xp0.NA)

Capacitance: (e. A)/Wd
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Junction Capacitance

Cj0 = cap. under zero 

bias , m is the grading 

co-efficient

Cj is voltage 

dependent

A small change in voltage (dVD) applied to the junction causes a change in the 

space charge (dQj): Cj = dQj/dVD

Strongly 

Non-Linear!

Capacitance 

reduces with 

reverse bias

(since depletion 

width increases)

Capacitance 

increases with 

forward bias

(since depletion 

width decreases)
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Diode Equation

➢ Forward bias: barrier lowered, diffusion 

current dominates

➢ Reverse bias: barrier raised, only 

current is small drift current of minority 

carriers

➢ Diode only lets current flow in one 

direction

➢ Diode equation: )1( / −= kTqV

S eII
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Diode Current

Ideal diode equation:

ID= diode current, VD=diode bias voltage

IS= saturation current of diode (constant) proportional to diode area, and function of the 

doping levels and width of neutral regions….determined empirically (saturates at large RB)

FT=thermal voltage =kT/q=26 mV at 300 K

Current 

increases by 

a factor of 10 

every 60 mV

Due to recombination 

of holes and electrons 

in the depletion region
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Models for Manual Analysis

VD

ID = IS(eVD/T  – 1)
+

–

VD

+

–

+

–
VDon

ID

(a) Ideal diode model (b) First-order diode model

Strongly non-linear: 

prohibits rapid first-

order analysis

A fully conducting diode has a 

small range of voltage drop 

(between 0.6 – 0.8 V), hence 

VDon can be assumed to be fixed

Fixed 

voltage 

source
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SPICE Diode Model

ID

RS

CD

+

-

VD

Non-linear 

current source

series resistance due to the 

neutral regions on both 

sides of the junction

For high current levels, Rs 

causes a smaller (internal) 

voltage drop across diode 

than the applied voltage

ID = IS {exp[VD/nT ] – 1}

n is called the emission co-efficient = 1 for most 

common diodes but can be greater than 1 for others

= Cj + Cd

See, The Spice Book by 

Vladimirescu, Wiley 1993, 

for more details…



Lecture 5, ECE 122A, VLSI Principles Kaustav Banerjee

Secondary Effects

–25.0 –15.0 –5.0 5.0

VD (V)

–0.1

I D
(A

)

0.1

0

0

Avalanche Breakdown

Reverse bias increases 

electric field across the 

junction and carriers 

crossing the junction get 

accelerated and attain 

high velocity.  

At E=Ecrit = 2x105 V/cm, 

carriers create e-h pairs 

on collision with immobile 

Si atoms. 

These carriers in turn 

create more carriers….
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SPICE Parameters
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MOS Structure

➢ MOS:  Metal-oxide-semiconductor

➢ Gate: metal (or polysilicon)

➢ Oxide: silicon dioxide, grown on substrate

➢ MOS capacitor: two-terminal MOS structure

Si substrate

Oxide (SiO2)

Metal gate (Al)

Body or substrate terminal

Gate terminal
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MOS Energy Band Diagram

➢ Work function (qFM, qFS): energy required to take electron from 
Fermi level to free space

➢ Electron affinity is the potential difference between the conduction 
band level and vacuum (free-space) level = qXs 

➢ Work function difference between Al and Si = 0.8eV

➢ At equilibrium, Fermi levels must line up!!

qFM

EC

Ei

EFp

EV

qFS

E0

EFm

oxide

bandgap

8eV

Oxide

Metal (Al)

p-type Si (NA = 1015 cm-3)

qoxid

e
qS= 4.1 eV

= 0.95 eV
= 4.05 eV

Eg = 

1.1 eV qFp

= 4.9 eV
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MOS Energy Band Diagram
➢ Bands must bend for Fermi levels to line up

➢ Amount of bending is equal to work function difference: qFM - qFS

➢ Fermi levels equalized by transfer of –ve charge from materials with 

higher EF (smaller work functions) across interfaces to materials with 

lower EF

➢ Part of voltage drop occurs across oxide, rest occurs next to O-S 

interface

EFp

EV

EC

M O S (p-type)

Ei

EFm

qFqS

F = Fermi potential 

(difference between EF 

and Ei in bulk)

S = surface potential 

-vely charged 

acceptors
+vely charged 

sheet at metal 

surface

Can’t transfer charge
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Flat-Band Voltage

➢ Flat-band voltage

➢Built-in potential of MOS system

➢Flat Band Voltage: VFB = Fm - FS

➢Apply this voltage to “flatten” energy bands

➢ For the MOS system considered on the previous slide, a –ve 

voltage applied to the metal w.r.t the Si opposes the built-in 

voltage on the capacitor and tends to reduce the charge 

stored on the capacitor plates below its equilibrium value

➢ Example

➢P-type substrate: qFp = 0.2 eV, qS = 4.05 eV

➢Aluminum gate (qFm = 4.1 eV)

➢What is flatband voltage?
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MOS Capacitor Operation
➢ Assume p-type substrate

➢ Three regions of operation

➢Accumulation (VG < 0)

➢Depletion (VG > 0 but small)

➢ Inversion (VG >> 0)

P-type Si substrate

VB = 0

VG
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Accumulation

➢ Negative voltage on gate: attracts holes in substrate 

towards oxide

➢ Holes “accumulate” on Si surface (surface is more 

strongly p-type)

➢ Electrons pushed deeper into substrate

P-type Si substrate

VG < 0

VB = 0

EFp

EV

EC

Ei

EFm

qVG
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Depletion
❑ Positive voltage on gate: repels holes in substrate

▪ Holes leave behind negatively charged acceptor ions

❑ Depletion region forms: devoid of carriers

▪ Electric field directed from gate to substrate

❑ Bands bend downwards near surface

▪ Surface becomes less strongly p-type (EF close to Ei)

P-type Si substrate

VG > 0

VB = 0

EFp

EV

EC

EiEFm

qVG

Depletion region
Eox
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Depletion Region Depth

➢ Calculate thickness xd of depletion region

➢Find charge dQ in small slice of depletion area

➢Find change in surface potential to displace dQ by 

distance xd from the surface (Poisson equation):

xd

dx

dQ
dxqNdQ A−=

Si
A

Si

dx
xqNd              

dQ
xd

e


e
 =−=



Lecture 5, ECE 122A, VLSI Principles Kaustav Banerjee

Depletion Region Depth (cont.)

➢Integrate perpendicular to surface

➢Result:

0

2

2

S d

F

x

A
S

Si

A d
S F

Si

qN x
d dx

qN x






e

 
e

=

− =

 

A

FSSi

d
qN

x
e −

=
2
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Depletion Region Charge

➢ Depletion region charge density

➢Due only to fixed acceptor ions

➢Charge per unit area 

FSSiA

dA

qNQ

xqNQ

e −−=

−=

2
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Inversion
➢ Increase voltage on gate, bands bend more

➢ Additional minority carriers (electrons) attracted from 

substrate to surface

➢ Forms “inversion layer” of electrons

➢ Surface becomes n-type

P-type Si substrate

VG >> 0

VB = 0

EFp

EV

EC

Ei

EFm

qVG

electrons

Eox
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Inversion
➢ Definition of inversion

➢ Point at which density of electrons on 

surface = density of holes in bulk

➢ Surface potential (S) is same as F, but 

different sign

EV

EFp

Ei

EC

qF

qS = -qF

Remember:

qF = EF - Ei
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MOS Transistor

➢ Add “source” and “drain” terminals to MOS 
capacitor

➢ Transistor types
➢NMOS: p-type substrate, n+ source/drain

➢PMOS: n-type substrate, p+ source/drain

source drain

P-substrate

N+ N+

NMOS

source drain

N-substrate

P+ P+

PMOS



Lecture 5, ECE 122A, VLSI Principles Kaustav Banerjee

What is a Transistor?

VGS  VT

Ron

S D

A Switch!

|VGS|

An MOS Transistor
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