

# ECE 122A VLSI Principles Lecture 6

Prof. Kaustav Banerjee Electrical and Computer Engineering University of California, Santa Barbara *E-mail: kaustav@ece.ucsb.edu* 

Lecture 6, ECE 122A, VLSI Principles

#### The MOS Transistor



Lecture 6, ECE 122A, VLSI Principles

#### MOS Transistors -Types and Symbols





For NMOS: Body tied to Gnd For PMOS: Body tied to Vdd Why?

#### **MOS Transistor**

Important transistor physical characteristics

- Channel length L
- Channel width W



#### **MOS Transistor Operation**

□ Simple case:  $V_D = V_S = V_B = 0$ 

- Operates as MOS capacitor
- □ When  $V_{GS}$  <  $V_{T0}$  (but positive), depletion region forms
  - No carriers in channel to connect S and D
- $\Box$  V<sub>T0</sub> is known as the *threshold voltage*



#### **MOS Transistor Operation**

- When V<sub>GS</sub> > V<sub>T0</sub>, inversion layer forms
   Source and drain connected by conducting n
  - type layer (for NMOS)



### **Threshold Voltage (V<sub>T0</sub>): Concept**



Note: gate is insulated from the substrate...hence no dc current flows through the oxide...channel is capacitively coupled to the gate through the electric-field in the oxide....that's how it gets the name MOS-FET (field effect transistor)

Lecture 6, ECE 122A, VLSI Principles

# **Physical Parameters that Affect V** $_{T0}$

- Threshold voltage (V<sub>T0</sub>): voltage between gate and source required for inversion
  - NMOS Transistor is "off" when  $V_{GS} < V_{T0}$
- □ Components:
  - Work function difference between gate and channel (Flat-band voltage)
  - Gate voltage to change surface potential
  - Gate voltage to offset depletion region charge
  - Gate voltage to offset fixed charges in gate oxide and in silicon-oxide interface

### **Threshold voltage (1)**

- $\succ$  Work function difference  $q\Phi_{GC}$  between gate and channel
  - Represents built-in potential of MOS system
  - For metal gate:  $\Phi_{GC} = \Phi_{M}(\text{metal-gate}) \Phi_{F}(\text{substrate}) = \Phi_{ms}$
  - For poly gate:  $\Phi_{GC} = \phi_F(\text{poly-Si-gate}) \phi_F(\text{substrate})$

$$V_{T0} = \Phi_{GC} + \cdots$$

#### Threshold voltage (2)

- First component accounts for built-in voltage drop
- Now apply additional gate voltage to achieve inversion: change surface potential by -2\u03c6<sub>F</sub> (note that \u03c6<sub>F</sub> is negative for p-type substrate)

$$V_{T0} = \Phi_{GC} - 2\phi_F + \cdots$$

Lecture 6, ECE 122A, VLSI Principles

#### **Threshold voltage (3)**

- Offset depletion region charge, due to fixed acceptor ions
- > Calculate charge at inversion ( $\phi_{S} = -\phi_{F}$ )

> From before: 
$$Q = -\sqrt{2qN_A\varepsilon_{Si}}|\phi_S - \phi_F|$$

> So: 
$$Q_{B0} = -\sqrt{2qN_A\varepsilon_{Si}} - 2\phi_F$$

Depletion charge is negative....why? (acceptor ions after accepting electrons are –ve)

For non-zero substrate bias ( $V_{SB} \neq 0$ ):

$$Q_B = -\sqrt{2qN_A\varepsilon_{Si}} \left| -2\phi_F + V_{SB} \right|$$

➤Due to larger depletion region

Lecture 6, ECE 122A, VLSI Principles

#### Threshold voltage (3, cont.)

- > To offset this charge, need voltage  $-Q_B/C_{ox}$
- Cox = gate capacitance per unit area
  - $> C_{ox} = \varepsilon_{ox}/t_{ox}$ >  $t_{ox} =$ thickness of gate oxide (normally in Å)

$$V_{T0} = \Phi_{GC} - 2\phi_F - \frac{Q_B}{C_{ox}} + \cdots$$

#### **Threshold voltage (4)**

- Finally, correct for non-ideal fixed charges
  - > Fixed positive charged ions at boundary between oxide and substrate. Density =  $N_{OX}$
  - > Due to impurities, lattice imperfections at interface
  - > Positive charge density  $Q_{ox} = qN_{ox}$
  - > Correct with gate voltage =  $-Q_{ox}/C_{ox}$
- Final threshold voltage formula (for NMOS):

$$V_{T0} = \Phi_{GC} - 2\phi_F - \frac{Q_{B0}}{C_{or}} - \frac{Q_{ox}}{C_{or}}$$

#### Threshold voltage, summary

> If  $V_{SB} = 0$  (no substrate bias):

$$V_{T0} = \Phi_{GC} - 2\phi_F - \frac{Q_{B0}}{C_{ox}} - \frac{Q_{ox}}{C_{ox}}$$

> If  $V_{SB} \neq 0$  (non-zero substrate bias)

$$V_{T} = V_{T0} + \gamma \left( \sqrt{\left| -2\phi_{F} + V_{SB} \right|} - \sqrt{\left| 2\phi_{F} \right|} \right) \qquad \begin{array}{l} \text{For uniform} \\ \text{body doping.} \end{array}$$

Body effect (substrate-bias) coefficient:

$$\gamma = \frac{\sqrt{2qN_A}\mathcal{E}_{Si}}{C_{ox}} + \text{for NMOS} - \text{for PMOS}$$

For modern FETs with retrograde doping, V<sub>T</sub> varies ~linearly with V<sub>SB</sub>

Threshold voltage increases as V<sub>SB</sub> increases! (easy to explain with a band diagram...) Lecture 6, ECE 122A, VLSI Principles
Kaustav Banerjee

#### **The Body Effect**



# Threshold Voltage (NMOS vs. PMOS)

|                                            | NMOS                | PMOS                |
|--------------------------------------------|---------------------|---------------------|
| Substrate Fermi potential                  | $\phi_{F} < 0$      | $\phi_{F} > 0$      |
| Depletion charge density                   | Q <sub>B</sub> < 0  | Q <sub>B</sub> > 0  |
| Substrate bias coefficient                 | γ > <b>0</b>        | γ < 0               |
| Substrate bias voltage                     | $V_{SB} > 0$        | $V_{SB} < 0$        |
| Threshold voltage<br>(enhancement devices) | V <sub>T0</sub> > 0 | V <sub>T0</sub> < 0 |

**Remember:** You need not memorize this table but rather should be able to fill it in based on the band diagrams...

Lecture 6, ECE 122A, VLSI Principles

#### **Threshold Voltage Adjustment**

- Threshold voltage can be changed by doping the channel region with donor or acceptor ions
- □ For NMOS:
  - V<sub>T</sub> increased by adding acceptor ions (p-type)
  - V<sub>T</sub> decreased by adding donor ions (n-type)
  - Opposite for PMOS
- **\Box** Approximate change in V<sub>T0</sub>:
  - Density of implanted ions = N<sub>1</sub> [cm<sup>-2</sup>]
  - Assume all implanted impurities are ionized

$$\Delta V_{T0} = \frac{qN_I}{C_{ox}}$$

# Example: V<sub>T0</sub> Adjustment

#### Consider an NMOS device:

- P-type substrate:  $N_A = 2 \times 10^{16} \text{ cm}^{-3}$
- Polysilicon gate:  $\Phi_{GC} = -0.92V$
- $t_{ox} = 600 \text{ Å} (1\text{ Å} = 1 \text{ x } 10^{-8} \text{ cm})$
- $N_{ox} = 2 \times 10^{10} \text{ cm} 2$
- $\epsilon_{Si} = 11.7 \epsilon_{0,} \epsilon_{ox} = 3.97 \epsilon_{0}$

#### □ (a) Find $V_{T0}$

# □ (b) Find amount and type of channel implant to get $V_{T0} = 0.4 \text{ V}$

#### **MOS Capacitor (Review)**



#### Lecture 6, ECE 122A, VLSI Principles

### **MOSFET Operation (NMOS)**

Easy to understand with a band diagram across S-Ch-D.....



regions of operation

Lecture 6, ECE 122A, VLSI Principles

Remember, both drift and diffusion currents play a role

**Pinch-off:** conduction still takes place from Source to Drain due to drift of electrons under the influence of the +ve drain voltage



Lecture 6, ECE 122A, VLSI Principles

#### **Channel Mobile Charge**



Note: i) The inversion layer thickness is assumed to be zero: all charges are assumed to be located at the Si surface....like a sheet of charge.... ii) Hence, there is no potential drop or band bending across the inversion layer....

 $V_{ds} = V_{gs} - V_{gd}$  Use Kirchoff's voltage law: -Vgs + Vds + Vdg = 0

Average gate to channel potential:

$$V_{gc} = (V_{gs} + V_{gd})/2 = V_{gs} - V_{ds}/2$$

 $Q_{channel} = C_g \left( V_{gc} - V_t \right)$ 

FIG 2.5 Average gate to channel voltage

Lecture 6, ECE 122A, VLSI Principles



FIG 2.6 Transistor dimensions

Lecture 6, ECE 122A, VLSI Principles

#### **Transistor Currents (NMOS)**

Cutoff Region:  $I_{ds} = 0$ ,  $V_{gs} < V_t$ Linear Region:  $V_{gs} > V_t$ ,  $V_{ds} < V_{gs} - V_t$   $I_{ds} = W Q_{channel}$  .carrier velocity(v)  $I_{ds} = \mu C_{ox} W/L (V_{gs} - V_t - V_{ds}/2)V_{ds}$ Since Vds is small, Vds/2 can be neglected...and Ids is linearly proportional to Vds....like a resistor

$$Q_{channel} = C_g (V_{gc} - V_t)$$
$$V_{gc} = V_{gs} - V_{ds}/2$$
$$V = \mu E$$
$$E_{lateral} = V_{ds}/L$$
$$\beta = \mu C_{ox} W/L$$

Saturation Region: 
$$V_{gs} > V_t$$
,  $V_{ds} > V_{gs} - V_t$ 

Note: as Vds increases, average Q<sub>channel</sub> decreases...since Vgc decreases

$$dI_{ds}/dV_{ds} = 0 at V_{ds} = V_{dsat} = V_{gs} - V_t$$

Substituting  $V_{ds}$  with  $V_{dsat}$  above:  $I_{ds} = \beta/2 (V_{gs} - V_t)^2$ Note: for PMOS  $V_{tp} = V_{tn}$   $\mu_p < \mu_n$ , hence  $(W/L)_{PMOS} \sim 2 (W/L)_{NMOS}$ Lecture 6, ECE 122A, VLSI Principles Kaustav Banerjee

#### **PMOS Transistor**



#### FIG 2.4 pMOS transistor

Lecture 6, ECE 122A, VLSI Principles

#### **PMOS Output Characteristics**



FIG 2.8 I-V characteristics of ideal pMOS transistor

Lecture 6, ECE 122A, VLSI Principles

## **Channel Length Modulation**

□ In saturation, pinch-off point moves

- As V<sub>DS</sub> is increased, pinch-off point moves closer to source
- Effective channel length becomes shorter
- Current increases due to shorter channel

$$\dot{L} = L - \Delta L$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TN})^{2} (1 + \lambda V_{DS})$$

 $\lambda$  = channel length modulation coefficient

Lecture 6, ECE 122A, VLSI Principles

#### Summary: MOS Output I/V I/V curve for NMOS device:



#### **Current-Voltage Relations Short-Channel Transistors**



Lecture 6, ECE 122A, VLSI Principles





Lecture 6, ECE 122A, VLSI Principles

Kaustav Banerjee

#### **Perspective**

### **Output Characteristics:** I<sub>D</sub> versus V<sub>DS</sub>

W/L = 1.5 for both cases....



Long Channel

Short Channel

### Input Characteristics: I<sub>D</sub> versus V<sub>GS</sub>

At small  $V_{GS}$  - current is dominated by pinch-off, hence,  $I_{D}$  is quadratic with  $V_{GS}$ 6<sup>× 10<sup>4</sup></sup> 2.5<sup><u>x 10</u><sup>4</sup></sup>  $L = 10 \, um$  $L = 0.25 \, um$ 5 2 Shorter channel length linear but same  $V_{DS}$ 4 quadratic 1.5 Early velocity saturation €<u>3</u> I<sub>D</sub> (A) Linear current 2 0.5 quadratic 0 0 1.5 0.5 2 2.5 0.5 1.5 2 2.5 0 0 1 1  $V_{GS}(V)$  $V_{GS}(V)$ 

Long Channel

Short Channel

Note: These are Linear-Linear Plots!!

Lecture 6, ECE 122A, VLSI Principles

#### Simple Model (solid lines) versus SPICE



#### **A PMOS Transistor (short-channel)**



Lecture 6, ECE 122A, VLSI Principles

#### **Alpha-Power MOSFET Model**

Note: Shockley method is based on the drift-diffusion transport....no velocity saturation effect



**FIG 2.17** I-V characteristics for nMOS transistor with velocity saturation

Sakurai Model:  $I_{ds} \propto (V_{gs} - V_t)^{\alpha}$ 

At low lateral E-fields, V<sub>ds</sub>/L, current increases linearly with E-field

At high fields, E= E<sub>sat</sub>

Carrier velocity saturates due to carrier scattering =  $v_{sat}$  (=  $\mu E_{sat}$ )

 $I_{ds} = \mu C_{ox} W/L (V_{gs} - V_t)^2$ ---no velocity saturation

$$I_{ds} = C_{ox} W (V_{gs} - V_t) v_{sat}$$

---complete velocity saturation

Practical situation: carrier velocity doesn't increase linearly with field but is not completely velocity saturated....

 $1 < \alpha < 2$ , is the velocity saturation index, determined by curve fitting.....also accounts for mobility degradation due to high vertical field ( $V_{gs}/t_{ox}$ )

Lecture 6, ECE 122A, VLSI Principles

### How to Extract SS, G<sub>m</sub>, and R<sub>out</sub>

SS: Sub-threshold voltage swing

*G<sub>m</sub>: Transconductance* 

R<sub>out</sub>: output resistance



#### **Methods to Extract Vth**

