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The MOS Transistor

Polysilicon Aluminum
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MOS Transistors -

Types and Symbols
D
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NMOS

PMOS

B

NMOS with

Body Contact

For NMOS: Body tied to Gnd

For PMOS: Body tied to Vdd

Why?
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MOS Transistor

❑ Important transistor physical characteristics
▪ Channel length L

▪ Channel width W

▪ Thickness of oxide tox

L

W
tox
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MOS Transistor Operation
❑ Simple case: VD = VS = VB = 0

▪ Operates as MOS capacitor

❑ When VGS<VT0 (but positive) , depletion region forms
▪ No carriers in channel to connect S and D

❑ VT0 is known as the threshold voltage

source drain

P-substrate

VB = 0

Vg < VT0

Vd=0Vs=0

depletion

region
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MOS Transistor Operation

❑ When VGS > VT0, inversion layer forms

❑ Source and drain connected by conducting n-

type layer (for NMOS)

source drain

P-substrate

VB = 0

Vg > VT0

Vd=0Vs=0

depletion

region

inversion

layer
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Threshold Voltage (VT0): Concept

n+n+

p-substrate

DS
G

B

VGS

+

-

Depletion

Region

n-channel

Note: gate is insulated from the substrate…hence no dc current flows through 

the oxide…channel is capacitively coupled to the gate through the electric-field 

in the oxide….that’s how it gets the name MOS-FET (field effect transistor)
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Physical Parameters that Affect VT0

❑ Threshold voltage (VT0): voltage between 

gate and source required for inversion

▪ NMOS Transistor is “off” when VGS < VT0

❑ Components:

▪ Work function difference between gate and 

channel (Flat-band voltage)

▪ Gate voltage to change surface potential

▪ Gate voltage to offset depletion region charge

▪ Gate voltage to offset fixed charges in gate oxide 

and in silicon-oxide interface
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Threshold voltage (1)

➢ Work function difference qGC between gate and 

channel

➢Represents built-in potential of MOS system

➢For metal gate: GC = M(metal-gate) - F(substrate) = ms 

➢For poly gate: GC = F(poly-Si-gate) - F(substrate)

+= GCTV 0
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Threshold voltage (2)

➢ First component accounts for built-in 

voltage drop

➢ Now apply additional gate voltage to 

achieve inversion: change surface 

potential by -2F (note that F is 

negative for p-type substrate)

+−= FGCTV 20
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Threshold voltage (3)

➢ Offset depletion region charge, due to fixed acceptor ions

➢ Calculate charge at inversion (S =-F)

➢ From before:

➢ So:

➢ For non-zero substrate bias (VSB  0):

➢Due to larger depletion region

FSSiAqNQ  −−= 2

FSiAB qNQ  220 −−=

SBFSiAB VqNQ +−−=  22

Depletion charge is 

negative….why?  (acceptor  ions 

after accepting electrons are –ve)
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Threshold voltage (3, cont.)

➢ To offset this charge, need voltage -QB/Cox

➢ Cox = gate capacitance per unit area

➢Cox=ox/tox

➢ tox = thickness of gate oxide (normally in Å)

+−−=
ox

B
FGCT

C

Q
V 20
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Threshold voltage (4)

➢ Finally, correct for non-ideal fixed charges

➢Fixed positive charged ions at boundary between 

oxide and substrate.  Density = NOX

➢Due to impurities, lattice imperfections at interface

➢Positive charge density Qox = qNox

➢Correct with gate voltage = -Qox/Cox

➢ Final threshold voltage formula (for NMOS):

ox

ox

ox

B
FGCT

C

Q

C

Q
V −−−= 0

0 2
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Threshold voltage, summary
➢ If VSB = 0 (no substrate bias):

➢ If VSB  0 (non-zero substrate bias)

➢ Body effect (substrate-bias) coefficient:

➢ Threshold voltage increases as VSB increases!

 (easy to explain with a band diagram….)

ox

ox

ox

B
FGCT

C

Q

C

Q
V −−−= 0

0 2

( )FSBFTT VVV  220 −+−+=

ox

SiA

C

qN 


2
= + for NMOS

- for PMOS

For uniform 

body doping….

For modern 

FETs with 

retrograde 

doping, VT 

varies ~linearly 

with VSB
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The Body Effect
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Draw a band 

diagram to 

convince 

yourself…
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Threshold Voltage (NMOS vs. PMOS)

NMOS PMOS

Substrate Fermi potential F < 0 F > 0

Depletion charge density QB < 0 QB > 0

Substrate bias coefficient  > 0  < 0

Substrate bias voltage VSB > 0 VSB < 0

Threshold voltage 
(enhancement devices)

VT0 > 0 VT0 < 0

Remember: You need not memorize this table but rather should be able to 

fill it in based on the band diagrams…
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Threshold Voltage Adjustment

❑ Threshold voltage can be changed by doping the 

channel region with donor or acceptor ions

❑ For NMOS:

▪ VT increased by adding acceptor ions (p-type)

▪ VT decreased by adding donor ions (n-type)

▪ Opposite for PMOS

❑ Approximate change in VT0:

▪ Density of implanted ions = NI [cm-2]

▪ Assume all implanted impurities are ionized

ox

I
T

C

qN
V = 0
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Example: VT0 Adjustment

❑ Consider an NMOS device:

▪ P-type substrate: NA = 2 x 1016 cm-3

▪ Polysilicon gate: GC = -0.92V

▪ tox = 600 Å   (1Å = 1 x 10-8 cm)

▪ Nox = 2 x 1010 cm-2

▪ Si = 11.7 0,  ox = 3.97 0

❑ (a) Find VT0

❑ (b) Find amount and type of channel implant to get 

VT0 = 0.4 V
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MOS Capacitor (Review)



Kaustav BanerjeeLecture 6, ECE 122A, VLSI Principles

Pinch-off: conduction 

still takes place from 

Source to Drain due to 

drift of electrons under 

the influence of the +ve 

drain voltage

MOSFET Operation (NMOS)

VGS –V(x) < Vt  

Conduction 

dominated by DRIFT

Remember, both 

drift and diffusion 

currents play a 

role…

Easy to understand 

with a band diagram 

across S-Ch-D…..
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NMOS Output Characteristics

Quadratic
Relationship

Long Channel Transistor:

Recall that the 

surface channel 

vanishes at the 

drain end of the 

channel….when 

current 

saturates…known 

as “pinch-off” 

Any voltage 

VDS > VD,sat  is 

dropped across the 

high-field pinch-off 

region…where 

inversion charge =0

The saturation 

voltage VD,sat can 

be estimated  by 

equating 

dIds/dVds to zero
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Vds = Vgs - Vgd

Qchannel = Cg (Vgc – Vt)

Channel Mobile Charge
NMOS Transistor:

Note: i) The inversion layer 

thickness is assumed to be 

zero: all charges are 

assumed to be located at 

the Si surface….like a 

sheet of charge….

ii) Hence, there is no 

potential drop or band 

bending across the 

inversion layer….

Use Kirchoff’s voltage law:  -Vgs + Vds + Vdg = 0 
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Cg = Cox = ox WL/tox

Gate Capacitance
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Transistor Currents (NMOS)
Cutoff Region: Ids = 0, Vgs<Vt

Linear Region: Vgs> Vt, Vds< Vgs-Vt  

Ids= W Qchannel .carrier velocity(v)

Ids = m Cox W/L (Vgs-Vt-Vds/2)Vds

Since Vds is small, Vds/2 can be neglected…and Ids is 

linearly proportional to Vds….like a resistor

Saturation Region: Vgs>Vt, Vds > Vgs – Vt

Note: as Vds increases, average Qchannel decreases…since Vgc decreases

 dIds/dVds = 0 at Vds=Vdsat=Vgs-Vt

Substituting Vds with Vdsat above: Ids = b/2 (Vgs-Vt)
2

v = mE

Elateral = Vds/L

b = m Cox W/L

Note: for PMOS Vtp = Vtn           mp < mn, hence (W/L)PMOS ~ 2 (W/L)NMOS

Qchannel = Cg (Vgc – Vt)

Vgc = Vgs – Vds/2
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PMOS Transistor 
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PMOS Output Characteristics
Long Channel Transistor:
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Channel Length Modulation

❑ In saturation, pinch-off point moves

▪ As VDS is increased, pinch-off point moves closer to source

▪ Effective channel length becomes shorter

▪ Current increases due to shorter channel

( ) ( )DSTNGSoxnD VVV
L

W
CI

LLL

m +−=

−=

1
2

2
1

'

 = channel length modulation coefficient
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Summary: MOS Output I/V
I/V curve for NMOS device:

Drain voltage VDS

D
ra

in
 c

u
rr

en
t 

I D
S

VGS1

VGS2

VGS3

Linear

Saturation

without channel-

length modulation 

(=0)

with channel-length 

modulation

VDS = VGS-VT
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Current-Voltage Relations

Short-Channel Transistors

Linear
Relationship

-4
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VGS= 1.0 V

Early Saturation
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Velocity Saturation

x (V/µm)xc = 1.5

u
n

(m
/s

)

usat = 105

Constant mobility (slope = µ)

Constant velocity

v = mE

Beyond the critical 

electric-field, higher 

energy optical phonons 

are generated that 

reduce and eventually 

saturate the carrier 

velocity….
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Perspective

ID
Long-channel device

Short-channel device

VDS
VDSAT VGS - VT

VGS = VDD
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Output Characteristics: ID versus VDS

-4
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Resistive Saturation

VDS = VGS - VT

Long Channel Short Channel

L = 10 um L = 0.25 um

W/L = 1.5 for both cases….

VGS-VDS = VT

Velocity Saturation



Kaustav BanerjeeLecture 6, ECE 122A, VLSI Principles

Input Characteristics: ID versus VGS
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Note: These are Linear-Linear Plots!!

Shorter channel length

but same VDS

↓

Early velocity saturation

↓

Linear current

At small VGS - current is dominated by pinch-off, hence, ID is quadratic with VGS
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Simple Model (solid lines) versus SPICE 
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VDSAT = L vsat/mn

Spice

VGT = VGS - VT

Above this curve, 

VGS-VT >VDSAT

High carrier 

concentration, 

hence, no pinch-off

Below this curve, 

VGS-VT < VDSAT

Low carrier conc. 

hence, pinch-off

Above this curve, 

VGS-VT > VDS, 

hence linear

Below this curve, 

VGS-VT < VDS, 

hence saturated
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A PMOS Transistor (short-channel)
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Assume all variables
negative!

VGS = -1.0V

VGS = -1.5V

VGS = -2.0V

VGS = -2.5V
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Alpha-Power MOSFET Model

Ids  (Vgs – Vt)
a

1<a<2, is the velocity saturation index, determined by curve fitting…..also accounts for 

mobility degradation due to high vertical field (Vgs/tox)

At low lateral E-fields, Vds/L, current 

increases linearly with E-field

At high fields, E= Esat

Carrier velocity saturates due to 

carrier scattering = vsat (= m Esat)

Ids = m Cox W/L (Vgs – Vt)
2 

---no velocity saturation

Ids = Cox W (Vgs – Vt) vsat 
---complete velocity saturation

Practical situation: carrier velocity 

doesn’t increase linearly with field but 

is not completely velocity saturated….

Sakurai Model:

Note: Shockley method is based on the drift-diffusion transport….no velocity saturation effect
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How to Extract SS, Gm, and Rout
L
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g

1
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 I
d

Linear scale Vgs

SS: Sub-threshold 

voltage swing

10(log )
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Gm: Transconductance

L
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Linear scale Vds

Rout: output 

resistance
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d
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R
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=

dsV
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,
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Methods to Extract Vth

③ Second derivative of Id

L
o
g
 s

c
a
le

 I
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L
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 I
d

Linear scale Vgs

Constant current, 

typically 10-7 A/μm

Vth

Linear scale Vgs

Vth

L
in

e
a
r 

s
c
a
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Vth

d

g

dI

dV

dI
2

2

d

g

d I

dV

Vgs

① Constant current

② Tangent method

derivative of Gm

= Gm

Also called 

maximum Gm 

method…
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