Dynamic Behavior of MOS Transistor

G

- Oxide Capacitance
- Gate to Source overlap
- Gate to Drain overlap
- Gate to Channel/Bulk
- Junction Capacitance
- Source to Bulk junction

- Drain to Bulk junction
capacitances limit the operation frequency and switching speed

Oxide capacitances

Overlap

- Overlap capacitances
- gate electrode overlaps source and drain regions
- X_{D} is overlap length on each side of channel
- $L_{\text {eff }}=L_{d}-2 X_{D}$
- Total overlap capacitance:

Gate oxide capacitance per unit area

Oxide capacitances
 Channel

- Channel capacitances
- Gate-to-source: C_{gs}
- Gate-to-drain: C_{gd}

- Gate-to-bulk: C_{gb}
- Cutoff:
- No channel connecting source and drain (to form "other" side of the capacitor)
- $\mathrm{C}_{\mathrm{gs}}=\mathrm{C}_{\mathrm{gd}}=0$
- $\mathrm{C}_{\mathrm{gb}}=\mathrm{C}_{\mathrm{ox}} \mathrm{WL}_{\text {eff }}$
- Total channel capacitance $\mathrm{C}_{\mathrm{GC}}=\mathrm{C}_{\mathrm{ox}} \mathrm{WL}_{\text {eff }}$

Oxide capacitances
 Channel

\square Linear mode

- Channel spans from source to drain
- Capacitance split equally between S and D

$$
C_{G S}=\frac{1}{2} C_{o x} W L_{e f f} \quad C_{G D}=\frac{1}{2} C_{o x} W L_{e f f} \quad C_{G B}=0
$$

Electric field
completely
shielded by
channel charges

- Total channel capacitance $\mathrm{C}_{\mathrm{GC}}=\mathrm{C}_{\mathrm{ox}} \mathrm{WL}_{\text {eff }}$
\square Saturation mode
- Channel is pinched off:

$$
\begin{aligned}
& \begin{array}{l}
\text { Drain voltage no } \\
\text { longer affects } \\
\text { channel charge }
\end{array} \\
& \\
& \left.C_{G D}=0 \quad C_{G S}=\frac{2}{3} C_{o x} W L_{e f f} \quad C_{G B}=0,0\right)=0 .
\end{aligned}
$$

- Total channel capacitance $\mathrm{C}_{\mathrm{GC}}=2 / 3 \mathrm{C}_{\text {ox }} \mathrm{WL}_{\text {eff }}$

Oxide capacitances

Channel

Lecture 7, ECE 122A, VLSI Principles
Kaustav Banerjee

Gate-to-Channel Capacitance

Note: $C_{G C}=C_{G C B}+C_{G C S}+C_{G C D}$

Capacitance as a function of V_{Gs} (with $\mathrm{V}_{\mathrm{DS}}=0$)

Capacitance as a function of the degree of saturation

Bottom Line: Cap. components are non-linear

Gate-to-Channel Capacitance (summary)

$$
C_{G C}=C_{g b}+C_{g s}+C_{g d}
$$

Operation Region	$\boldsymbol{C}_{g b}$	$\boldsymbol{C}_{g s}$	$\boldsymbol{C}_{\boldsymbol{g} \boldsymbol{d}}$
Cutoff	$C_{o X} W L_{e f f}$	0	0
Resistive	0	$C_{o X} W L_{e f f} / 2$	$C_{o X} W L_{e f f} / 2$
Saturation	0	$(2 / 3) C_{o X} W L_{e f f}$	0

Diffusion Capacitance

$$
\begin{aligned}
C_{\text {diff }} & =C_{\text {bottom }}+C_{s w}=C_{j} \times A R E A+C_{j s w} \times \text { PERIMETER } \\
& =C_{j} L_{S} W+C_{j s w}\left(2 L_{S}+W\right)
\end{aligned}
$$

Junction Capacitance

Recall: Forward Biasing a junction increases the junction Cap.

$$
C_{j}=\frac{C_{j 0}}{\left(1-V_{D} / \phi_{0}\right)^{m}} \quad \begin{aligned}
& \mathrm{m}=0.5: \text { abrupt junction } \\
& \mathrm{m}=0.33: \text { linear junction }
\end{aligned}
$$

Linearizing the Junction Capacitance

Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest

$$
\begin{gathered}
C_{e q}=\frac{\Delta Q_{j}}{\Delta V_{D}}=\frac{Q_{j}\left(V_{h i g h}\right)-Q_{j}\left(V_{\text {low }}\right)}{V_{h i g h}-V_{l o w}}=K_{e q} C_{j 0} \\
K_{e q}=\frac{-\phi_{0}^{m}}{\left(V_{h i g h}-V_{l o w}\right)(1-m)}\left[\left(\phi_{0}-V_{h i g h}\right)^{1-m}-\left(\phi_{0}-V_{l o w}\right)^{1-m}\right]
\end{gathered}
$$

Capacitances in $0.25 \mu \mathrm{~m}$ CMOS Process

	$C_{o x}$ $\left(\mathrm{fF} / \mu \mathrm{m}^{2}\right)$	C_{O} $(\mathrm{fF} / \mu \mathrm{m})$	C_{j} $\left(\mathrm{fF} / \mu \mathrm{m}^{2}\right)$	m_{j}	ϕ_{b} (V)	$C_{j s w}$ $(\mathrm{fF} / \mu \mathrm{m})$	$m_{j s w}$	$\phi_{b s w}$ (V)
NMOS	6	0.31	2	0.5	0.9	0.28	0.44	0.9
PMOS	6	0.27	1.9	0.48	0.9	0.22	0.32	0.9

Lecture 7, ECE 122A, VLSI Principles
Kaustav Banerjee

MOS Cap. Summary

In general, these capacitances are nonlinear and voltage dependent....

FIG 2.14 Capacitances of an MOS transistor

Note:

$C_{g s}=C_{G C S}+C_{G S O}$
$C_{g d}=C_{G C D}+C_{G D O}$
$C_{g b}=C_{G C B}$

Note: The diffusion capacitances, C_{sb} and C_{db} are parasitic capacitances....but they do impact circuit performance

Data Dependency

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Effective gate capacitance $\left(C_{g}\right)$ varies with the switching activity of the source and drain....
C_{0} is gate oxide cap. per unit area

Think about a parallel plate capacitor...with the each electrode tied to the same voltage or different voltages...

FIG 2.12 Data-dependent gate capacitance

Subthreshold Leakage

- Dominant leakage mechanism
- Function of both V_{GS} and V_{DS}
- Increases exponentially as temperature increases or Vt decreases.....

Subthreshold swing (S) = (subthreshold slope)-1

$$
S=n(k T / q) \ln (10)
$$

For ideal transistor with sharpest possible roll-off, $\mathrm{n}=1$ and $\mathrm{S}=60 \mathrm{mV} /$ decade
...a fundamental limit for MOSFETs!!!
(b)

IG 2.15 Simulated I-V characteristics

Gate Leakage (Direct Tunneling)

- Increases with gate oxide (SiO2) scaling
-High-k gate oxides can be used to lower gate leakage
-Independent of temperature

FIG 2.20 Gate leakage current from [Song01]

Junction Leakage

FIG 2.19 Reverse-biased diodes in CMOS circuits

- Less significant than gate and subthreshold leakage
- Increases with temperature

Temperature Effects

- Mobility decreases with increase in T
- V_{t} decreases linearly with T

Increasing
Temperature

FIG 2.21 I-V characteristics of nMOS transistor in saturation at various temperatures

Temperature Effects

FIG $2.22 I_{\text {dsat }}$ vs. temperature

Temperature Effects

Chip Cooling can:

1. Improve Circuit performance

- speed up transistors since mobility improves
- decrease the delay of interconnects since metal resistance decreases with temperature
- Lowers junction capacitance (increases depletion width)

2. Decrease leakage (mainly subthreshold)
3. Improve reliability of the chip

For more detailed info. read the paper posted on the class web site: "Cool Chips: Opportunities and Implications for Power and Thermal Management", by S-C. Lin and K. Banerjee, IEEE Transactions on Electron Devices, vol. 55, No. 1, 2008, 245-255

Inverter Operation

- Inverter is the simplest digital logic gate

- Many different circuit styles possible
- CMOS
- Resistive-load
- Pseudo-NMOS
- Dynamic
- Important characteristics
- Performance (operating speed or delay through the gate)
- Power/Energy consumption
- Robustness (tolerance to noise)
- Cost (complexity and area)

CMOS Inverter

The most widely used gate....

A CMOS inverter

Inverter model: VTC

Voltage transfer curve (VTC): plot of output voltage Vout vs. input voltage Vin

Ideal digital inverter:

- When Vin=0, Vout=Vcc
- When Vin=Vcc, Vout=0
- Sharp transition region

Actual inverter: $V_{\text {OH }}$ and $V_{O L}$

- V_{OH} and V_{OL} represent the "high" and "low" output voltages of the inverter
$-\mathrm{V}_{\mathrm{OH}}=$ output voltage when Vin = '0'
- $\mathrm{V}_{\mathrm{OL}}=$ output voltage when Vin = ' 1 '
- Ideally,
- $\mathrm{V}_{\mathrm{OH}}=\mathrm{Vcc}$
- $\mathrm{V}_{\mathrm{OL}}=0$

$V_{O L}$ and $V_{O H}$

- In transfer function terms:
- $\mathrm{V}_{\mathrm{OL}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{OH}}\right)$
- $\mathrm{V}_{\mathrm{OH}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{OL}}\right)$
- $f=$ inverter transfer function
- Difference $\left(\mathrm{V}_{\mathrm{OH}^{-}} \mathrm{V}_{\mathrm{OL}}\right)$ is the voltage swing of the gate
- Full-swing logic swings from ground to Vcc

Inverter Threshold

when Vin goes just above Vcc/2, the NMOS
overpowers the PMOS and the inverter switches

Inverter switching threshold:

- Point where voltage transfer curve intersects line Vout=Vin
- Represents the point at which the inverter switches state
- Normally, $\mathrm{V}_{\mathrm{M}} \approx \mathrm{Vcc} / 2$
- Why?

Since V_{M} is defined by the intersection of the Vout=Vin line....above that line Vout>Vin, below that line Vout<Vin...hence at the intersection $V_{M}=V c c / 2$

Noise Margins....

- V_{IL} and V_{IH} measure effect of input voltage on inverter output
$\square \mathrm{V}_{\mathrm{IL}}=$ largest input voltage recognized as logic '0'
$\square \mathrm{V}_{\mathrm{IH}}=$ smallest input voltage recognized as logic ' 1 '
Vin
- Defined as point on VTC where slope $=-1$

Inverter Noise Margin

- Noise margin is a measure

Ideally, noise margin should be as large as possible

of the robustness of an inverter

- $\mathrm{N}_{\mathrm{ML}}=\mathrm{V}_{\mathrm{IL}}-\mathrm{V}_{\mathrm{OL}}$
- $\mathrm{N}_{\mathrm{MH}}=\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{IH}}$
- Models a chain of inverters. Example:
- First inverter output is V_{OH}
- Second inverter recognizes input $>\mathrm{V}_{\mathrm{IH}}$ as logic '1'
- Difference $\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{IH}}$ is "safety zone" for noise

Noise Margin (cont)

\square Why are $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}$ defined as unity-gain point on VTC curve?

- Assume there is noise on input voltage $\mathrm{V}_{\text {in }}$

$$
V_{\text {out }}=f\left(V_{\text {in }}+V_{\text {noise }}\right)
$$

- First-order approximation (Taylor Series):

$$
V_{\text {out }}=f\left(V_{\text {in }}\right)+\frac{d V_{\text {out }}}{d V_{\text {in }}} V_{\text {noise }} \quad \begin{aligned}
& \text { Note: } \mathrm{d} \mathrm{~V}_{\text {out }} / \mathrm{d} \mathrm{~V}_{\text {in }}=0 \text { occurs only } \\
& \text { at the beginning and at the end } \\
& \text { of the VTC curve, elsewhere it } \\
& \text { is negative }
\end{aligned}
$$

- If gain $\left(\mathrm{dV}_{\text {out }} / \mathrm{dV}_{\text {in }}\right)>1$, noise will be amplified.
- If gain < 1 , noise is filtered. Therefore $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}$ ensure that gain < 1

CMOS Inverter Noise Margins

FIG 2.28 CMOS inverter noise margins

Lecture 7, ECE 122A, VLSI Principles

Determining V_{H} and $V_{L L}$

A simplified approach: piecewise linear approximation of the VTC

Inverter Time Response

- Propagation delay measured from 50% point of Vin to 50% point of Vout
$\square t_{\mathrm{phl}}=\mathrm{t}_{1}-\mathrm{t}_{0}$,

$$
t_{\mathrm{plh}}=\mathrm{t}_{3}-\mathrm{t}_{2}
$$

$$
t_{\mathrm{p}}=1 / 2\left(\mathrm{t}_{\mathrm{ph}}+\mathrm{t}_{\mathrm{plh}}\right)
$$

Rise and Fall Time

- Fall time: measured from 90% point to 10% point - $t_{F}=t_{1}-t_{0}$
- Rise time: measured from 10\% point to 90% point - $t_{R}=t_{3}-t_{2}$
- Alternately, can define $20 \%-80 \%$ rise/fall time

Ring Oscillator

- Ring oscillator circuit: standard method of comparing delay from one process to another
- Odd-number n of inverters connected in chain: oscillates with period T (usually $n \gg 5$)

For n stages: $\quad T=2 n t_{p}, \quad f=\frac{1}{T}=\frac{1}{2 n t_{p}}, \quad t_{p}=\frac{1}{2 n f}$

CMOS Inverter

- Complementary NMOS and PMOS devices
- In steady-state, only one device is on (no static power consumption)
- Vin=1: NMOS on, PMOS off
- Vout $=\mathrm{V}_{\mathrm{OL}}=0$
- Vin=0: PMOS on, NMOS off
- Vout $=\mathrm{V}_{\mathrm{OH}}=\mathrm{Vcc}$
- Ideal V_{OL} and V_{OH} !
- High input resistance (insulated
 gate) and low output impedance (finite resistance path between output and Vcc or Gnd)
- Ratioless logic

Generating the Inverter VTC

A. Translate PMOS I-V Relations into NMOS Variable Space using the following:

$$
\begin{aligned}
& I_{D s p}=-I_{D s n} \\
& V_{G s n}=V_{\text {in }} ; V_{G s p}=V_{\text {in }}-V_{D D} \\
& V_{D s n}=V_{\text {out }} ; V_{D s p}=V_{\text {out }}-V_{D D}
\end{aligned}
$$

NMOS space

Lecture 7, ECE 122A, VLSI Principles
Kaustav Banerjee

CMOS Inverter Load Characteristics

B. For a DC operating point to be valid, currents through NMOS and PMOS must be equal (for a given $V_{\text {in }}$), hence find the points of intersection.

CMOS Inverter VTC

Lecture 7, ECE 122A, VLSI Principles
Kaustav Banerjee

CMOS Inverter Operation (summary)

Table 2.2 Relationships between voltages for the three regions of operation of a CMOS inverter

	Cutoff	Linear	Saturated
nMOS	$V_{g s n}<V_{t n}$	$V_{g s n}>V_{t n}$	$V_{g s n}>V_{t n}$
	$V_{\text {in }}<V_{t n}$	$V_{\text {in }}>V_{t n}$	$V_{\text {in }}>V_{t n}$
		$V_{d s n}<V_{g s n}-V_{t n}$	$V_{d s n}>V_{g s n}-V_{t n}$
		$V_{\text {out }}<V_{\text {in }}-V_{\text {tn }}$	$V_{\text {out }}>V_{\text {in }}-V_{\text {tn }}$
pMOS	$V_{\text {gsp }}>V_{\text {tp }}$	$V_{\text {gtp }}<V_{\text {tp }}$	$V_{\text {gtp }}<V_{\text {tp }}$
	$V_{\text {in }}>V_{\text {tp }}+V_{D D}$	$V_{\text {in }}<V_{\text {tp }}+V_{D D}$	$V_{\text {in }}<V_{\text {tp }}+V_{D D}$
		$V_{\text {dpp }}>V_{\text {gtp }}-V_{\text {tp }}$	$V_{\text {dsp }}<V_{\text {gjp }}-V_{t p}$
		$V_{\text {out }}>V_{\text {in }}-V_{\text {tp }}$	$V_{\text {out }}<V_{\text {in }}-V_{\text {tp }}$

Switching Threshold as a function

 of Transistor Ratio

Simulated VTC

Note: piecewise linear approximation of the VTC would lead to higher gain

Inverter Gain

Gain is mostly determined by technology parameters, especially channel length modulation, but also by $V_{D D}$

Note: approximately $V_{M} \propto V_{D D}$

Lecture 7, ECE 122A, VLSI Principles

Inverter Skew

Recall:
$\beta=\mu C_{o x} W / L$

FIG 2.26 Transfer characteristics of skewed inverters

