

ECE 122A VLSI Principles Lecture 9

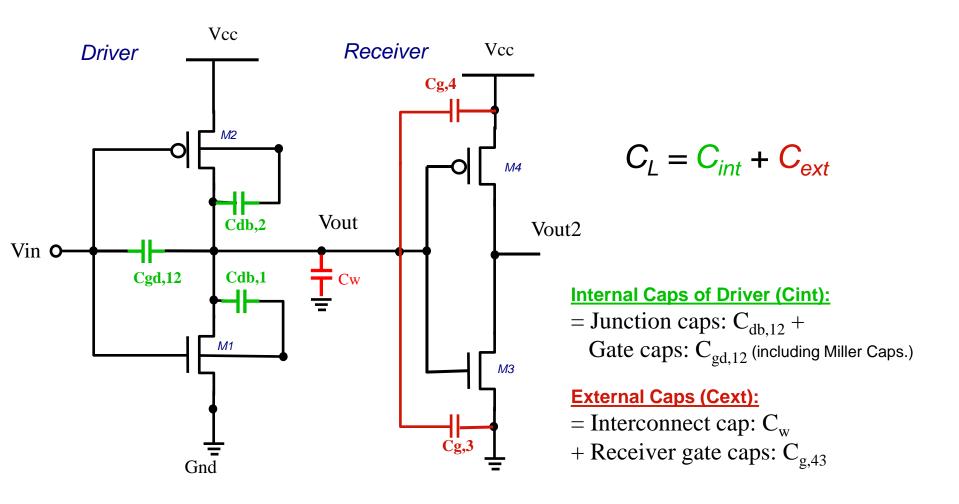
Prof. Kaustav Banerjee Electrical and Computer Engineering University of California, Santa Barbara *E-mail: kaustav@ece.ucsb.edu*

Lecture 9, ECE 122A, VLSI Principles

Inverter Sizing

Lecture 9, ECE 122A, VLSI Principles

Load capacitances



Lecture 9, ECE 122A, VLSI Principles

Inverter Delay

- Minimum length devices, L=0.25 μ m
- Assume that for $W_P = 2W_N = 2W$
 - same pull-up and pull-down currents
 - approx. equal resistances $R_N = R_P$
 - approx. equal rise t_{pLH} and fall t_{pHL} delays
- Analyze as an RC network

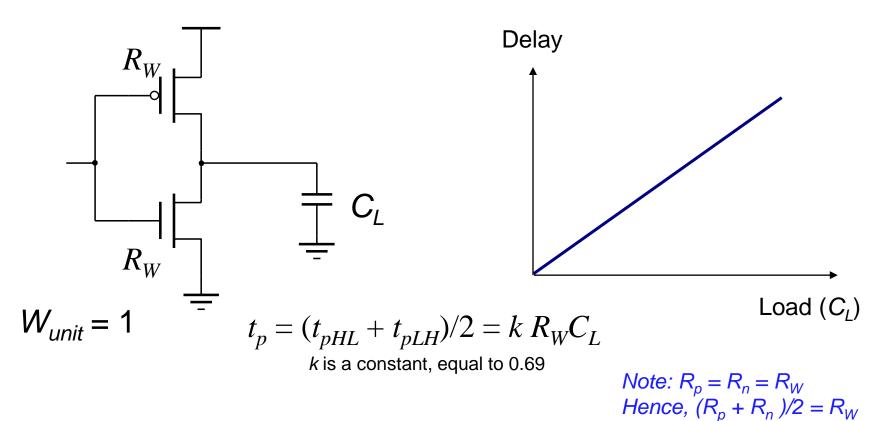
Delay (D):
$$t_{pHL} = (\ln 2) R_N C_L$$

Load for previous stage: $C_{gin} = 3 \frac{W}{W_{unit}} C_{unit}$

W_{unit} and C_{unit} correspond to an unit size (minimum size) device...

Lecture 9, ECE 122A, VLSI Principles

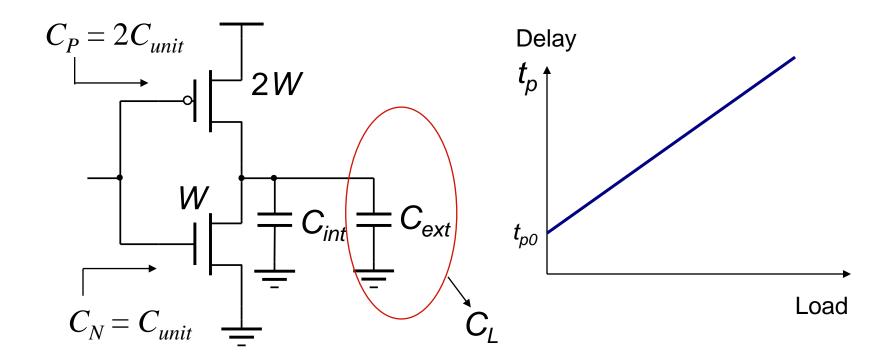
Inverter with Load



Assumptions: no load \rightarrow zero delay?

Lecture 9, ECE 122A, VLSI Principles

Inverter with Load



Delay
$$(t_p) = kR_W(C_{int} + C_{ext}) = kR_WC_{int} + kR_WC_{ext} = \frac{kR_WC_{int}(1 + C_{ext}/C_{int})}{t_{p0}}$$

This is the net internal capacitance

Lecture 9, ECE 122A, VLSI Principles

Intrinsic delay of CMOS inverter

Let R_{eq} be the equivalent resistance of the gate (inverter), then delay (t_p) is defined as:

$$t_p = 0.69 R_{eq} \left(C_{int} + C_{ext} \right)$$
$$= 0.69 R_{eq} C_{int} \left(1 + \frac{C_{ext}}{C_{int}} \right)$$
$$= t_{p0} \left(1 + \frac{C_{ext}}{C_{int}} \right)$$

 t_{p0} is the intrinsic delay

Lecture 9, ECE 122A, VLSI Principles

Impact of sizing on gate delay

Let S be the sizing factor

 R_{ref} be the resistance of a reference gate (usually a minimum size gate) C_{iref} be the internal capacitance of the reference gate

$$\begin{split} C_{\text{int}} &= S \, C_{iref} \,, \quad R_{eq} = \frac{R_{ref}}{S} \\ t_p &= 0.69 \left(\frac{R_{ref}}{S} \right) \left(S \, C_{iref} \right) \left(1 + \frac{C_{ext}}{S C_{iref}} \right) \\ &= 0.69 \, R_{ref} \, C_{iref} \left(1 + \frac{C_{ext}}{S C_{iref}} \right) \\ &= t_{p0} \left(1 + \frac{C_{ext}}{S C_{iref}} \right) \end{split}$$

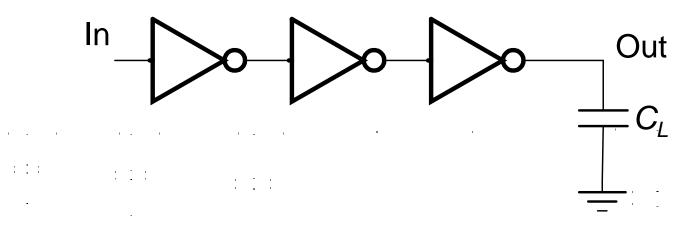
Hence:

- 1. Intrinsic delay is independent of gate sizing, and is determined only by technology and inverter layout
- 2. If S is made very large, gate delay approaches the intrinsic value but increases the area significantly

Kaustav Banerjee

Lecture 9, ECE 122A, VLSI Principles

Inverter Chain

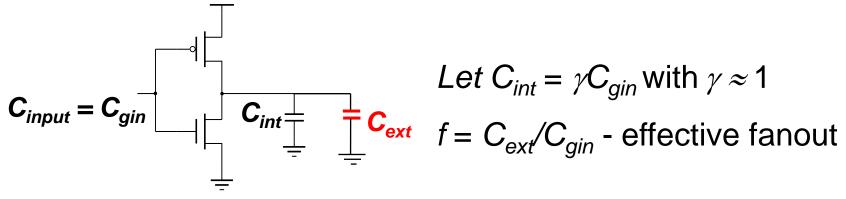


If C_L is given:

- How many stages are needed to minimize the delay?
- How to size the inverters?

May need some additional constraints....

Delay Formula: inverter chain



$$Delay \sim R_{eq} (C_{int} + C_{ext})$$

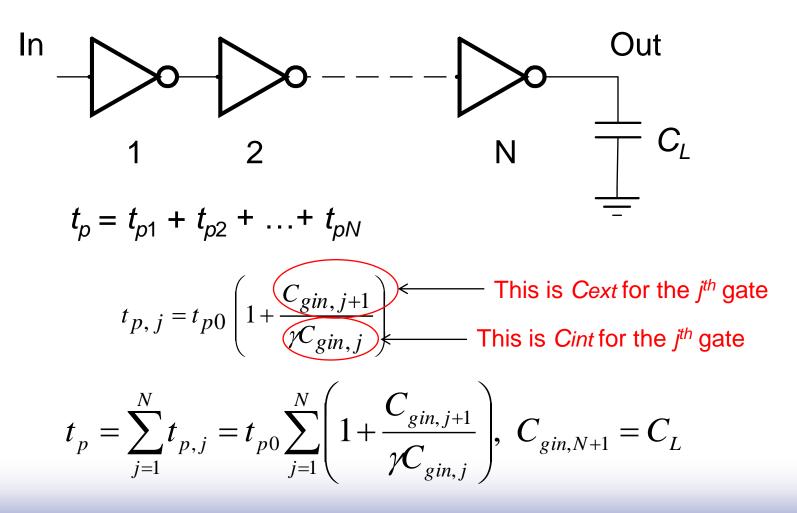
Inverter delay is only a function of the RATIO between C_{ext} and C_{input}

$$t_p = \underbrace{0.69R_{eq}C_{int}} \left(1 + C_{ext} / \gamma C_{gin}\right) = t_{p0} \left(1 + f / \gamma\right)$$

relates the input gate cap. (C_{gin}) and the intrinsic output cap. (C_{int}) of the inverter...

Lecture 9, ECE 122A, VLSI Principles

Apply to Inverter Chain



Lecture 9, ECE 122A, VLSI Principles

Optimal Tapering for Given N

Delay equation has N - 1 unknowns, $C_{g,2}$ $C_{g,N}$ Note: $C_{g,1}$ and $C_{g,N+1}$ are known

Minimize the delay, find *N* - 1 partial derivatives and equate them to zero, or $\binom{\partial t_p}{\partial C_{g,j}} = 0$

Result:
$$C_{g,j+1}/C_{g,j} = C_{g,j}/C_{g,j-1}$$
 With j = 2,....,N

Size of each stage is the geometric mean of two neighbors

$$C_{g,j} = \sqrt{C_{g,j-1}C_{g,j+1}}$$

- each stage has the same effective fanout $(f_j = f = C_{ext}/C_{g,j})$
- hence, each stage has the same delay: $t_p = t_{p0} (1 + f/\gamma)$

Optimum Delay and Number of Stages

When each stage is sized by *f* and has same eff. fanout *f*:

$$\frac{C_L}{C_{g,N}} = \frac{C_{g,N}}{C_{g,N-1}} = \dots = \frac{C_{g,2}}{C_{g,1}} =$$

(multiplying all Hence, $f^N = C_L / C_{g,1} = F$ the terms)

F is the overall effective fanout of the circuit

Effective fanout of each stage: $f = \sqrt[N]{F}$ If C_L and $C_{g,1}$ are known....

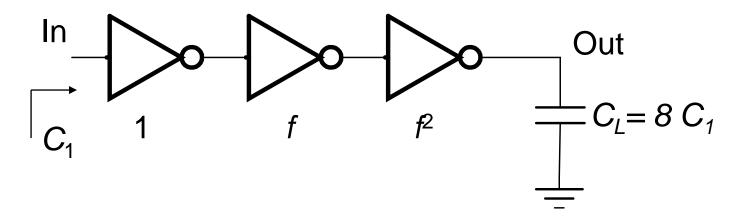
Minimum path delay:

$$t_p = N t_{p0} \left(1 + \sqrt[N]{F} / \gamma \right)$$

How to choose N?

If N is too large, intrinsic delay of stages dominate, while if N is small, effective fanout of each stage (f) is large and the second term dominates

If N is given....



 C_L/C_1 has to be evenly distributed across N = 3 stages:

$$F = (8C_1)/C_1 = 8$$
 $f = \sqrt[3]{8} = 2$

Lecture 9, ECE 122A, VLSI Principles

Optimum Number of Stages

For a given load, C_L and given input capacitance C_{in} Find optimal sizing f

$$C_{L} = F \cdot C_{in} = f^{N} C_{in} \quad with \quad N = \frac{\ln F}{\ln f}$$
$$t_{p} = N t_{p0} \left(\frac{F^{1/N}}{\gamma} + 1 \right) = \frac{t_{p0} \ln F}{\gamma} \left(\frac{f}{\ln f} + \frac{\gamma}{\ln f} \right)$$

$$\frac{\partial t_p}{\partial f} = \frac{t_{p0} \ln F}{\gamma} \cdot \frac{\ln f - 1 - \gamma/f}{\ln^2 f} = 0$$

If self-loading is ignored....

For $\gamma = 0$, f = e = 2.718, $N = \ln F$

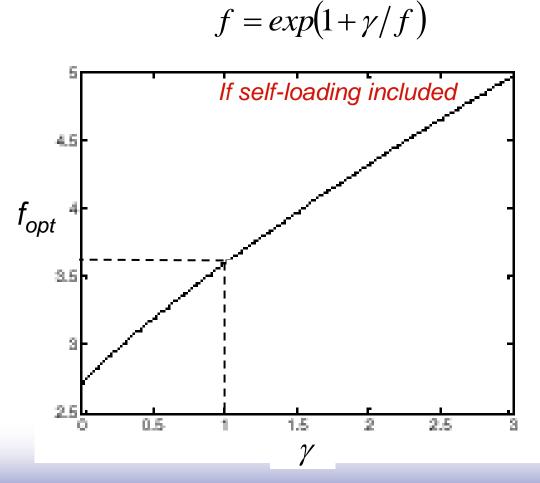
Otherwise

 $f = \exp(1 + \gamma / f)$

Lecture 9, ECE 122A, VLSI Principles

Optimum Effective Fanout f

Optimum f for given process defined by γ



Optimum tapering factor:

$$f_{opt} = 3.6$$

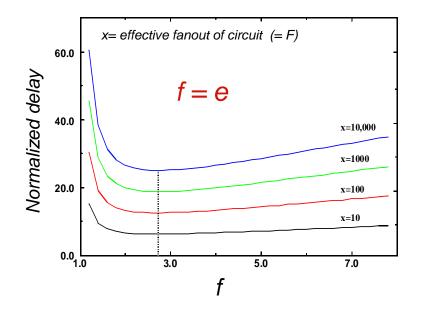
for $\gamma = 1$ (typical case)

Lecture 9, ECE 122A, VLSI Principles

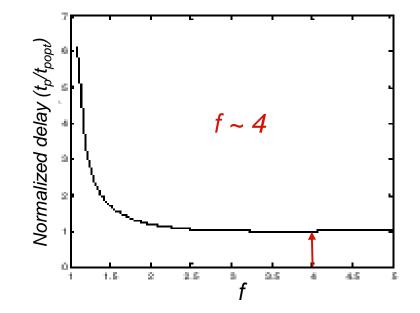
Impact of Self-Loading on tp

No Self-Loading, $\gamma=0$

With Self-Loading γ =1



Optimal number of stages, N= ln(F)



If f<f_{opt} (too many stages) will result in delay to increase

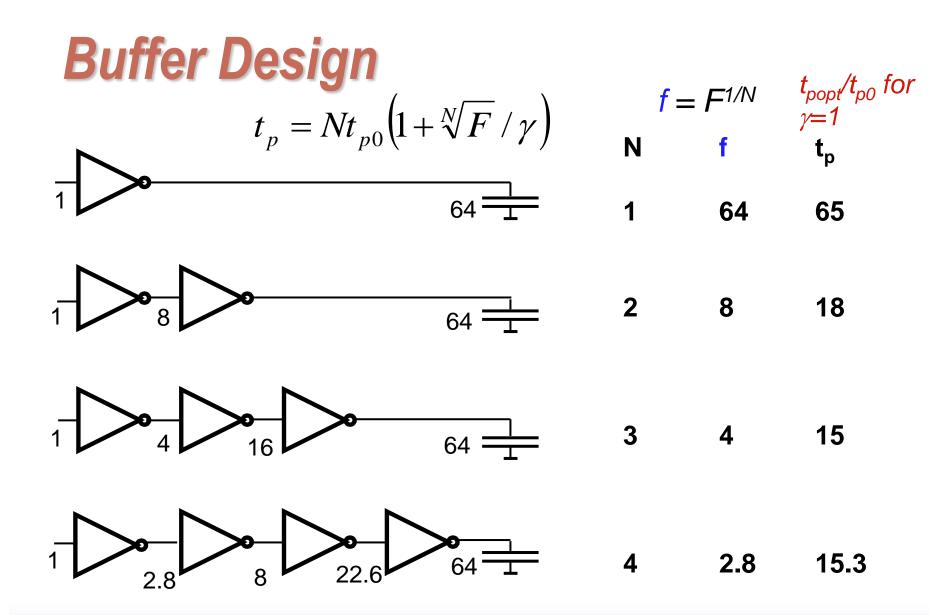
Normalized delay function of F

$$t_p = N t_{p0} \left(1 + \sqrt[N]{F} / \gamma \right)$$

 t_{popt}/t_{p0} for $\gamma=1$

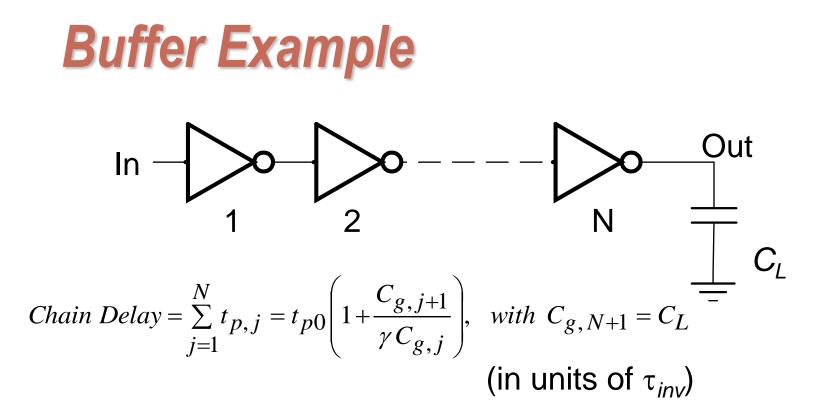
F	Unbuffered	Two Stage	Inverter Chain
10	11	8.3	8.3
100	101	22	16.5
1000	1001	65	24.8
10,000	10,001	202	33.1

As F increases, the differences between the unbuffered case (or two-stage buffer case) and the case of inverter chain increases.....



Sizing Logic Paths for Speed

- Frequently, input capacitance of a logic path is constrained
- □ Logic also has to drive some capacitance
- Example: ALU load in an Intel's microprocessor is 0.5pF
- How do we size the ALU datapath to achieve maximum speed?
- We have already solved this for the inverter chain – can we generalize it for any type of logic?



For given *N*: $C_{g, j+1}/C_{g, j} = C_{g, j}/C_{g, j-1}$ Optimal fanout (f): $C_{g, j+1}/C_{g, j} \sim 4$ How to generalize this to any logic path?

Minimizing Delay in Complex Logic Networks

$$Delay = t_{p0} \left(1 + \frac{f}{\gamma} \right) (inverter)$$
$$= t_{p0} \left(p + \frac{g \cdot f}{\gamma} \right) (Complex \ gate)$$

Everything Normalized w.r.t an inverter: $g_{inv} = 1, p_{inv} = 1$

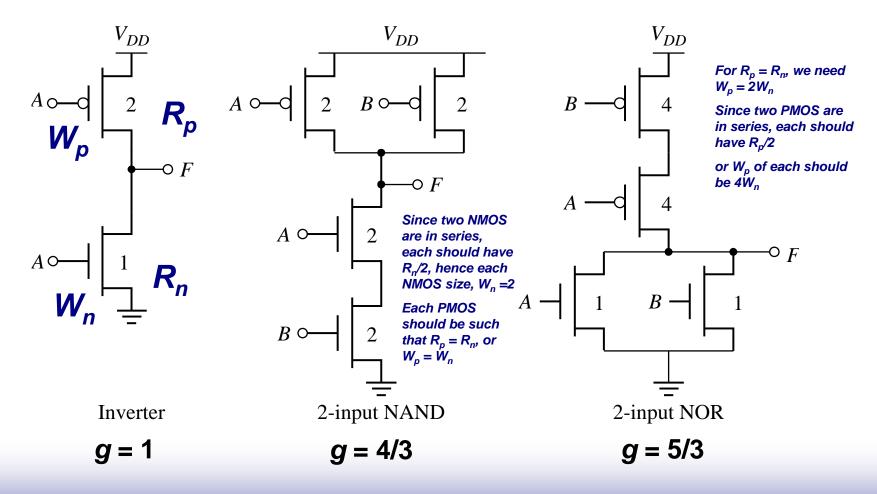
f – effective fanout (ratio of external load and input cap. of gate)
p – ratio of intrinsic delays of complex gate and inverter (value increases with complexity of gate)
g – logical effort: how much more input capacitance is presented by the complex gate to deliver the same output current as an inverter (depends only on circuit topology)

Logical Effort

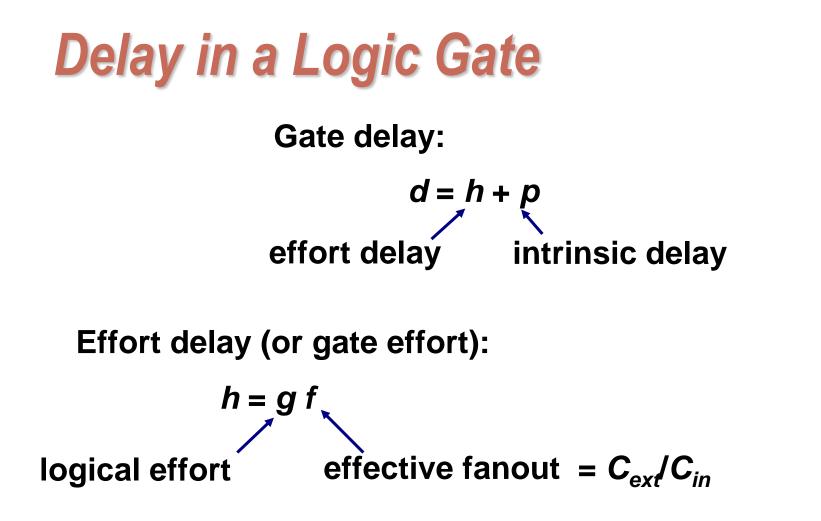
- Inverter has the smallest logical effort and intrinsic delay of all static CMOS gates
- Logical effort of a gate is the ratio of its input capacitance to the inverter capacitance when sized to deliver the same current
- □ Logical effort increases with gate complexity

Logical Effort

Logical effort is the ratio of input capacitance of a gate to the input capacitance of an inverter with the same output current

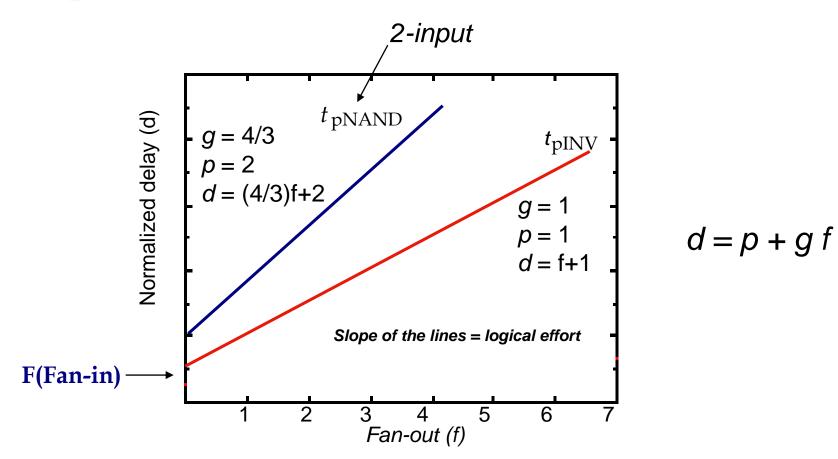


Lecture 9, ECE 122A, VLSI Principles



Logical effort is a function of topology, independent of sizing
 Effective fanout (electrical effort) is a function of load/gate size

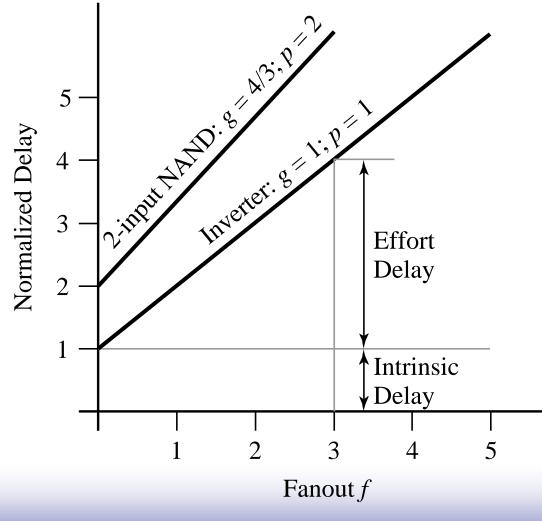
Logical Effort of Gates



- Delay can be adjusted by:
 - transistor sizing that changes the effective fanout
 - Choosing a gate with different g

Lecture 9, ECE 122A, VLSI Principles

Logical Effort of Gates



Lecture 9, ECE 122A, VLSI Principles

Logical Effort

	Number of Inputs			
Gate Type	1	2	3	n
Inverter	1			
NAND		4/3	5/3	(n + 2)/3
NOR		5/3	7/3	(2n + 1)/3
Multiplexer		2	2	2
XOR		4	12	

From Sutherland, Sproull

Lecture 9, ECE 122A, VLSI Principles

Total delay through a combinational logic block

$$t_p = \sum_{j=1}^{N} t_{p,j} = t_{p0} \sum_{j=1}^{N} \left(p_j + \frac{f_j g_j}{\gamma} \right)$$

Similar to inverter chain delay....find N-1 partial derivatives and equate them to zero....

For minimal delay: $g_1 f_1 = g_2 f_2 = \dots = g_N f_N$ (each stage should have the same gate effort, h)

Path Logic Effort=
$$G = \prod_{1}^{N} g_i$$

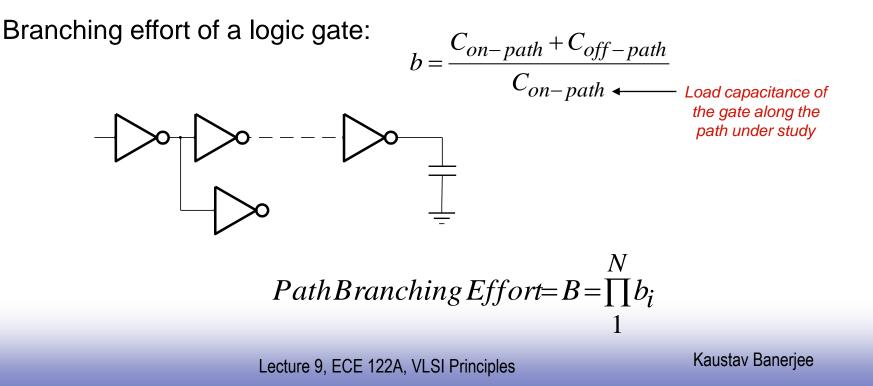
Note: In the text book,
this is defined as H
Path EffectiveFanout = $F = \frac{C_L}{C_{g1}}$

Lecture 9, ECE 122A, VLSI Principles

Branching Effort

To relate F to the effective fanouts of the individual gates, one must account for the logical fanout within the network

When fanout occurs at the output of a node, some of the available drive current is directed along the path being analyzed



Total Path Effort

Path electrical effort can be related to the electrical and branching efforts of the individual gates:

$$F = \prod_{1}^{N} \frac{f_i}{b_i} = \frac{\prod f_i}{B}$$

□ Total path effort can be defined as:

$$H = \prod_{1}^{N} h_i = \prod_{1}^{N} g_i f_i = GFB$$

Note: In the text book, H and F have been swapped...

□ Gate effort that minimizes the path delay = ?

□ Minimum delay through path = ?

Multistage Networks

$$Delay = \sum_{i=1}^{N} (p_i + g_i \cdot f_i)$$

Gate effort: $h_i = g_i f_i$

Path electrical effort: $F = C_L / C_{gin}$

Path logical effort: $G = g_1 g_2 \dots g_N$

Path branching effort: $B = b_1 b_2 \dots b_N$

*Path effort: H = GFB

Path delay $D = \Sigma d_i = \Sigma p_i + \Sigma h_i$

* Note: In the text book, this is defined as: F = GHB

Lecture 9, ECE 122A, VLSI Principles

Optimal Number of Stages

For a given load, and given input capacitance of the first gate Find optimal number of gates and optimal sizing

$$D = NH^{1/N} + Np_{inv}$$
$$\frac{\partial D}{\partial N} = -H^{1/N} \ln \left(H^{1/N} \right) + H^{1/N} + p_{inv} = 0$$

1 / 17

Substitute 'best gate effort': $h = H^{1/N} \longrightarrow \frac{\text{Gate effort that}}{\text{minimizes path delay}}$

A path achieves least delay by using $N = \log_4 H$ stages

Lecture 9, ECE 122A, VLSI Principles

Optimum Effort per Stage

When each stage bears the same effort:

$$h^{N} = H$$
$$h = \sqrt[N]{H}$$

gate efforts: $g_1 f_1 = g_2 f_2 = \dots = g_N f_N$

Effective fanout of each gate: $f_i = h/g_i$

Minimum path delay:

$$D = t_{p0} \left(\sum_{j=1}^{N} p_j + \frac{N\left(\sqrt[N]{H}\right)}{\gamma} \right)$$

Lecture 9, ECE 122A, VLSI Principles

Sizing of Chain of Gates

- □ Consider chain s_i
- Sizing factors for each gate in the chain can be derived by working out from front to end (or vice versa).
- Assume that a unit-size gate has a driving capability equal to a minimum-size inverter
- \Box Hence, $C_{gin} = g C_{in_ref}$
- \Box If s₁ is the sizing factor for gate 1:
 - $C_{g1} = s_1 g_1 C_{in_ref}$
 - Input capacitance of gate 2 is larger by f₁/b₁:

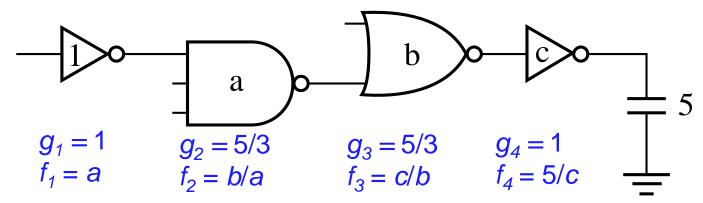
That is, $C_{g2} = f_1/b_1 C_{g1} = s_2 g_2 C_{in_ref}$

For gate i in the chain:

$$s_i = \left(\frac{g_1 s_1}{g_i}\right) \prod_{j=1}^{i-1} \left(\frac{f_j}{b_j}\right)$$

Lecture 9, ECE 122A, VLSI Principles

Example: Optimize Path



Effective fanout, F = 5/1 = 5 $G = 1 \times 5/3 \times 5/3 \times 1 = 25/9$ B=1 (no branching) H = GFB = 125/9 = 13.9 $h = H^{1/4} = 1.93$ (optimal gate effort)

Derive Fanout Factors (taking gate types into account): f1 = 1.93 (since h=gf) f2 = 1.93 (3/5) = 1.16 f3 = 1.16f4=1.93

Using: $s_{i} = \left(\frac{g_{1}s_{1}}{g_{i}}\right) \prod_{j=1}^{i-1} \left(\frac{f_{j}}{b_{j}}\right)$

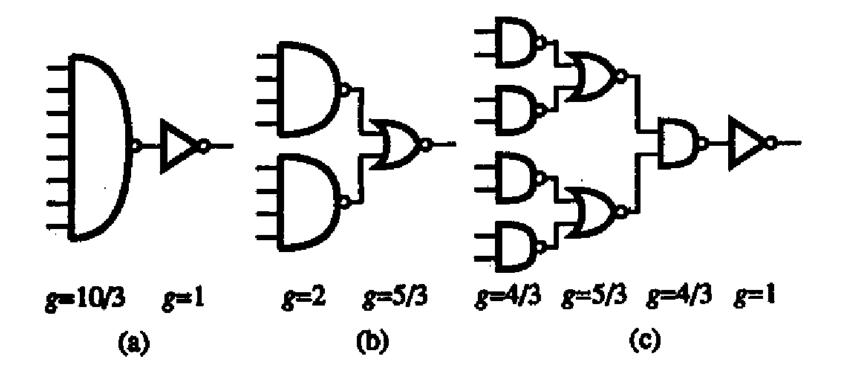
Derive Gate Sizes:

 $a = (s_2) = f_1 g_1 / g_2 = 1.16$ $b = (s_3) = f_1 f_2 g_1 / g_3 = 1.34$ $c = (s_4) = f_1 f_2 f_3 g_1 / g_4 = 2.6$

Kaustav Banerjee

Lecture 9, ECE 122A, VLSI Principles

Example – 8-input AND



Method of Logical Effort

- □ Compute the path effort: H = GFB
- \Box Find the best number of stages $N \sim \log_4 H$
- □ Compute the stage effort $h = H^{1/N}$
- □ Sketch the path with this number of stages
- □ Work from either end, find sizes:
 - $C_{in} = C_{out}^* g/h$

Reference: Sutherland, Sproull, Harris, "Logical Effort, Morgan-Kaufmann 1999.

Summary

Table 4: Key Definitions of Logical Effort

Term	Stage expression	Path expression
Logical effort	g	$G = \prod g_i$
Electrical effort	$f = \frac{C_{out}}{C_{in}}$	$F = rac{C_{out (path)}}{C_{in (path)}}$
Branching effort	n/a	$B = \prod b_i$
Effort	h = gf	H = GFB
Effort delay	h	$D_{H} = \sum h_{i}$
Number of stages	1	N
Parasitic delay	р	$P = \sum p_i$
Delay	d = h +p	$D = D_H + P$

Sutherland, Sproull and Harris