ECE 225
High-Speed Digital IC Design
Lecture 16
Latch based Design, Clock Synthesis and Synchronization

Prof. Kaustav Banerjee
Electrical and Computer Engineering
E-mail: kaustav@ece.ucsb.edu
Latch timing

When data arrives to transparent latch:

- Latch is a ‘soft’ barrier

When data arrives to closed latch:

- Data has to be ‘re-launched’
Latch-Based Design

L1 latch is transparent when $\phi = 0$

L2 latch is transparent when $\phi = 1$
Register vs Latch Based Clocking...

- In an edge-triggered system, the worst case logic path between two registers determines the minimum CLK period for the entire system.

- If the logic block finishes before the end of the CLK period, it has to sit idle until the next CLK edge.

- Latch based design offers more flexibility. One stage can pass slack or borrow time from other stages.
Slack-borrowing

In a latch based system, it is possible for a logic block to utilize time that is left from a previous logic block...

If $T_{clk} < t_{pd,A} + t_{pd,B}$ ----- slack-passing has taken place

$T_{clk}/2 = \text{maximum time that can be borrowed from previous stage}$
Timing of two-phase level-sensitive pipeline with time borrowing

Stage 1

Stage 2

$L_{1} + \text{Stage 1a} < P/2$

$L_{2} + \text{Stage 1b} > P/2$

$L_{3} + \text{Stage 2a} > P/2$

$L_{4} + \text{Stage 2b delay} < P/2$

Borrowed time of Stage 2a

Total borrowed time at node f
Clock Synthesis and Synchronization

- Synchronous circuits require a global periodic clock
- Microprocessor CLK frequencies are in the GHz range
- Crystal oscillators have low frequency: 10’s of MHz to approx. 200 MHz
- A Phase Locked Loop (PLL) is used to generate the high frequency—multiplies the low oscillator frequency by a rational number N
PLLs are also used to synchronize communication between chips.

The PLL multiplies the frequency of the reference clock and also de-skews (aligns) the output of the CLK buffer w.r.t. the data.

Theoretically there is no limitation on \(N \), however, jitter and skew of the clock limits the range of VCO output frequency.

\[
f_{\text{system}} = N \times f_{\text{crystal}}
\]
PLL is a complex non-linear feedback circuit…

An *Up* signal increases the value of the control voltage and speeds up the VCO, which causes the local signal to catch up with the reference clock.

A *Down* signal slows down the VCO and eliminates the phase lead of the local CLK.
Loop Acquisition

- When an external signal enters the phase comparator it mixes with the VCO output signal.

- Initially the two frequencies are not equal and the loop is unlock.

- Because the phase comparator is a non-linear device, the external and VCO output signals mix and produces cross-products frequencies (i.e., sum and differences).

- The low pass filter blocks the two input frequencies and the sum of their frequencies. The only signal allowed to pass is the difference of the two signal. This signals is sometimes called the beat frequency.
Loop Acquisition

- The beat frequency is amplified and then inputted to the VCO, where it changes the output frequency of the VCO by an amount proportional to its polarity and amplitude.

- As the VCO output frequency changes, the amplitude and frequency of the beat frequency changes proportionately.

- After several cycles around the loop, the VCO output frequency (divided by N) equals the external frequency, and the loop is said to acquire a lock.
Loop Acquisition

- Once frequency lock has occurred, the beat frequency at the output of the LPF is 0Hz (a dc voltage), and its magnitude and polarity is proportional to the difference in phase between the external signal and the VCO output signal.

- The dc voltage provides an input bias to the VCO, keeping it locked onto the frequency of the external input signal.

- In essence the phase comparator is a frequency comparator until frequency acquisition is achieved, then it becomes a phase comparator.
PLL Capture and Lock Ranges

- **Capture range** is defined as the band of frequencies centered around the VCO natural frequency where the PLL can initially establish or acquire frequency lock with an external input signal from an unlocked condition.

- **Lock range** is defined as the band of frequencies centered on the VCO’s natural frequency over which a PLL can maintain frequency lock with an external input signal.
Capture Range

- The capture range is generally between 0.5 and 1.7 times the VCO’s natural frequency.

- Capture rage is sometimes called the acquisition range.

- Pull-in range is the capture range expressed as a peak value.

- The lowest frequency the PLL can lock onto is called the lower capture limit \(f_{cl} \), and the highest frequency the PLL can lock onto is called the upper capture limit \(f_{cu} \).
Phase Detector

Output before filtering

Output before filtering

Transfer characteristic

(a) Phase Detector

(b) Output before filtering

(c) Transfer characteristic

Lecture 16, ECE 225

Kaustav Banerjee
Phase-Frequency Detector

(a) schematic

(b) state transition diagram

(c) Timing waveforms
PFD Response to Frequency

A
B
UP
DN
PFD Phase Transfer Characteristic

\[V_{DD} \]

\[\text{Average (UP-DN)} \]

\[-2\pi \]

\[2\pi \]

phase error (deg)
Charge Pump

Charge pump circuit diagram with labels:
- V_{DD}
- UP
- DN
- To VCO Control Input
PLL Simulation

Control Voltage (V) vs Time (μs)

- ref
- div
- vco
Clock Generation using DLLs

Main idea is to delay the output clock so that it lines up perfectly with the reference.

Delay-Locked Loop (Delay Line Based)
Consists of a cascade of delay elements

Phase-Locked Loop (VCO-Based)
Delay Locked Loop

Does not alter the freq. of input reference...only adjusts the phase...a local clock (it can be generated by a PLL) is used as a reference for DLL

\[F_{REF} \xrightarrow{\Delta PH} \text{Phase detect} \xrightarrow{U \rightarrow D} \text{Charge pump} \xrightarrow{C} V_{CTRL} \xrightarrow{\text{VCDL}} F_O \]

(a)

REF
OUT
UP
DN

(b)

ΔPH
\[V_{CTRL} \]

Delay

(c)
DLL-Based Clock Distribution

GLOBAL CLK

VCDL

CP/LF

Phase Detector

Digital Circuit

...
3-D ICs: Extending Moore’s Law in the Z-Dimension, and more....
Interconnect Delay is Increasing (ITRS ’99)

If we can reduce both R and C, we can reduce wire delay.....

Will better materials like copper and low-k dielectrics solve the interconnect problem?

Cu has lower resistivity than Al, and is more robust (reliable) than Al.......
Changing Interconnect Materials

• Replace Al wires by Cu wires
• Resistivity of Al = 2.65 $\mu\Omega$-cm
 @ Room Temp. (20-25 °C)
• Resistivity of Cu = 1.67 $\mu\Omega$-cm
 @ Room Temp. (20-25 °C)
• Reduction in R is not even a factor of 2.....
Low-k Dielectrics

IBM Says Process Can Make Chips More Powerful

By Dave McNeir
Associated Press

New York — IBM Corp. has developed a method for insulating the tiny circuits on a computer chip so they can be placed even closer together, making room for more computing power on each semiconductor.

The new process, which coats the circuits with a chemical polymer instead of silicon dioxide, can either improve a chip’s processing speed by as much as 30 percent or halve the amount of power it uses, IBM said yesterday.

The insulation cuts down on magnetic interference, or “crosstalk,” between the electrical pulses that travel along the millions of copper circuits that a chip uses to crunch data.

Because the electrical pulses are better shielded from the magnetic fields generated by neighboring pulses, the distance between circuits can be reduced by more than a quarter to 0.13 microns — a measurement 600 times thinner than a human hair.

Thanks to the space savings, chipmakers can double the number of transistors they cram onto a piece of silicon to about 400 million, said Bijan Davari, a vice president of IBM’s semiconductor research and development center in East Fishkill, N.Y.

Chips made with the new insulation are expected to be available next year, IBM said.

The first application will be to produce powerful microprocessors for major business systems like those used to run Web sites and communications networks.

Old dielectric \(\text{SiO}_2\) \(K = 4\)
New dielectric Silk \(K = 2.5\)
The difference is not even a factor of 2!
Limit of Low-k Dielectrics (Air: $K = 1$)

Air-Gap Interconnect Structure
Effects on Design Process

- Increasing wire delay causes **timing closure problem**
- **Prevents** CAD methodologies to adopt higher levels of abstraction to simplify and accelerate the design process
Integrated SoC to Sense, Process, and Collaborate

Difficult in Planar IC Technology
Novel Design Architectures Needed!

3-D ICs utilize the vertical dimension

Replace horizontal by vertical interconnect
3-D ICs: Multiple Active Si Layers

(DAC 2000)

- Advantages
 - Reduce Interconnect Length by Vertically Stacking Multiple Si Layers
 - Improve Chip Performance
 - Reduce Chip Area
 - Heterogeneous integration possible, e.g., memory, digital, analog, optical, etc.
Performance Analysis Strategy

- Estimate Chip Area
- Estimate Interconnect Delay

Chip Area Determined from Wiring Requirement
(Used 50 nm ITRS Data)
Performance Summary

2-Layer 3-D Chip

Interconnect Delay

Typical Gate Delay

Delay Time (ns)

60 80 100 120 140 160 180

Feature Size (nm)

2-D IC with repeaters
Repeater moved up
3-D IC, constant metal layers
3-D IC, 2X metal layers

Kaustav Banerjee

Lecture 16, ECE 225
3-D Technologies

Epitaxial Lateral Overgrowth

[Diagram showing layers and connections in 3D technology]
Solid Phase Crystallization of α-Si

- Locally induce nucleation
- Grow laterally, inhibiting additional nucleation
- Build MOSFET in a single grain with SOI-like performance
3-D Technologies

Bonding using Glue Layer

Thermocompression

Bonding using Cu Pads
3D ICs: Implications for Circuit Design

- **Critical Path Layout:** By vertical stacking, the distance between logic blocks on the critical path can be reduced to improve circuit performance.

- **Repeaters:** Some chip area can be saved by placing repeaters (~ 10,000 for high performance circuits) on the higher active layers.
3D ICs: Implications for Circuit Design

- **Microprocessor Design**: on-chip caches on the second active layer will reduce distance from the logic and computational blocks.

 “3-D Shared Memory using Wafer Stacking”

 K.W. Lee et al., (Tohoku Univ. Japan) IEDM 2000

- 3-D integration technology -- wafer stacking

- Parallel processor system with three memory layers -- multiport memory, overcomes bus bottleneck
3D ICs: Implications for Circuit Design

- Integration of Disparate Technologies Easier

- **RF and Mixed Signal ICs**: Substrate isolation between the digital and RF/analog components can be improved by dividing them among separate active layers - ideal for system on a chip design.

- **Optical Devices and I/Os** can be integrated on the top layer
3D ICs: Implications for Circuit Design

- ISSCC 2001-- Session on 3-D Technologies...
- Neuromorphic Vision Chip: Tohoku Univ.
 Achieved an image processing and pattern recognition system with parts of functions of the retina and visual cortex using Si
- 3-D Systems-on-a-Chip: MIT, Lincoln Labs
- 3D ring oscillators and back-illuminated 64X64 active pixel sensor arrays with fully parallel A/D conversion
- 3-D Assembly Technology: North Corp., Japan
Cu/low-k alone will not solve interconnect problems in complex VLSI designs

New design architectures will be needed

Performance modeling of 3-D ICs shows significant improvement over 2-D

Wafer Bonding is a promising technique to implement 3-D ICs

Thermal issues in 3-D ICs will require innovative packaging/cooling solutions...but not a show stopper

Exciting applications are emerging......