Single Frequency Lasers
Read: Kasip, Chapter 4
Yariv, Chapter 15,16
Coldren/Corzine Chapter 3,5
Agrawal/Dutta Chapter 6,7,8

ECE 162C
Lecture #13
Prof. John Bowers
Large Signal Modulation

The analysis is based on the rate equations:

\[
\frac{dS}{dt} = \Gamma v_g a(N - N_{tr})S - \frac{S}{\tau_p} + \frac{\beta \Gamma N}{\tau_n}
\]

\[
\frac{dN}{dt} = \frac{I}{qV} - v_g a(N - N_{tr})S - \frac{N}{\tau_n}
\]

For simplicity gain non-linearities are omitted.

With the small-signal approximation no longer valid, the equations must be solved numerically.
Consider a laser with initial carrier density N_i, excited with a charge impulse at $t = 0$

$$N = \begin{cases}
N_i & t < 0 \\
N_i + \frac{Q}{qV} & 0 < t < t_{on}
\end{cases}$$

Ignoring spontaneous emission we get:

$$\frac{dS}{S} = \left(\Gamma v_g (N(t) - N_{tr}) - \frac{1}{\tau_p} \right) dt$$

With the solution

$$S = S_0 e^{t/\tau_r}$$

$$\frac{1}{\tau_r} = \Gamma v_g a \left(\frac{Q}{qV} + N_i - N_{tr} \right) - \frac{1}{\tau_p}$$
Large Signal Modulation
Impulse Response

The fall-time depends on how far below threshold the carrier density can be brought. Unless charge is extracted electrically $N > N_{tr}$, which means:

$$\frac{1}{\tau_f} = \frac{1}{\tau_p} - \Gamma v_g a(N - N_{tr})$$

$$\frac{1}{\tau_f} < \frac{1}{\tau_p}$$

$$\tau_f > \tau_p \approx 1 \text{ps}$$

This is best case, more often τ_f is on the order of 10-20 ps
Large Signal Modulation
Impulse Response

Example:
\[\Gamma = 0.1 \]
\[v_g = 10^8 \text{ m/s} \]
\[a = 3 \cdot 10^{16} \text{ cm}^2 \]
\[V = 300 \cdot 1 \cdot 0.1 \mu m^3 = 30 \mu m^3 \]
\[N_{tr} = 10^{18} \text{ cm}^{-3} \]
\[N_i = 10^{18} \text{ cm}^{-3} \]
\[\tau_p = 1 \text{ ps} \]
\[Q = 6 \cdot 10^{-11} \text{ C} \]
Turn-on delay:

\[\tau_d = \tau_n \ln \left(\frac{I - I_b}{I - I_{th}} \right) \]

Oscillation frequency:

\[f_r = \sqrt{\frac{1 + \Gamma \nu_a N_{tr} \tau_p}{\tau_p \tau_n}} \left(\frac{I - I_{th}}{I_{th}} \right) \]
Pulse Generation: Mode-Locking

- Modulation at cavity frequency phase locks modes
- More modes and better phase lock gives shorter pulses
- Pulse repetition rate determined by cavity length - does not depend on bias conditions

ECE 162C
Pulse Generation : Mode-Locking

Resonant modulation of roundtrip gain or phase at the cavity frequency

- Active mode-locking
 - modulation signal applied externally
- Passive mode-locking
 - Non-linear element in cavity provide modulation
- Hybrid mode-locking
Pulse Generation : Mode-Locking

Limits to minimum pulsewidth

- **Gain bandwidth**
 - Very wide, potential for pulses <100fs

- **Self Phase Modulation**
 - Refractive index depends on carrier density
 - Spectral width larger than transform limit
 - Generation of chirped pulses

- **Dispersion**
 - Causes broadening of chirped pulses
Passive Mode-Locking in External Cavity

- Pulsewidth: 1-2 ps
- Repetition rate 1-26 GHz
- Transform limited pulses

Passive Mode-Locking
Monolithic Cavity

- Mode-locking at 1.54 THz
- Monolithic integrated DBR laser
- Total cavity length 1.1mm (cavity resonance: 40GHz)
- λ = 1.55µm
- 400, 800 GHz and 1.54 THz.

Y. Ogawa, International Workshop on Femtosecond Technology FST'95
Chirp

Modulation of injection current causes not only intensity modulation, but also frequency modulation. The linewidth enhancement factor α quantifies this:

$$\alpha = \frac{\frac{dn}{dN}}{\frac{dg}{dN}}$$

The chirping is

$$\Delta v(t) = -\alpha \frac{1}{4\pi P} \frac{dP}{dT} + 2 \frac{\Gamma \varepsilon}{V \eta h \nu} P$$

The linewidth enhancement factor changes with wavelength, and can also depend on the structure.

Chirp

Low chirp laser is a requirement to achieve the full potential of an optical communication system.

DCPBH Laser

Ridge Waveguide Laser

ECE 162C
Single Longitudinal Mode Lasers

• A technique is needed to filter the gain or loss so only one mode reaches threshold.

• Possibilities:
 – Short cavity lasers
 – Coupled cavity lasers (3 or 4 mirror cavities)
 – Grating feedback
 • Distributed feedback (DFB)
 • Distributed Bragg Reflector (DBR)
 • Bulk grating (external cavity)
Single Longitudinal Mode Lasers

- A technique is needed to filter the gain or loss so only one mode reaches threshold.
- Possibilities:
 - Short cavity lasers
 - Coupled cavity lasers (3 or 4 mirror cavities)
 - Grating feedback
 - Distributed feedback (DFB)
 - Distributed Bragg Reflector (DBR)
 - Bulk grating (external cavity)
 - Vertical Cavity Surface Emitting Laser (VCSEL)
\[\alpha_m(\lambda) \]
\[\Gamma g - \alpha_i \]

FIGURE 3.20 Definition of gain and loss margins for use in MSR calculations.

The net modal gain for the main mode, \(\delta_g = \alpha_m(\lambda_0) - [\Gamma g(\lambda_0) - \alpha_i] \), the loss in \(\Delta g \), and the mode-gain margin \(\Delta \).
FIGURE 3.15 Schematic illustration of how a single axial mode is selected in an in-plane or vertical cavity DBR laser. The VCSEL mode locations is a zero of a gain of...