Lecture 1a: Review of The Wave Equation in Dielectric Media
Notation

• MKS units
• Lower case for time varying quantities
• Capitals for the amplitudes of time varying quantities
• Complex quantities used to represent amplitude and phase:

\[a(t) = \text{Re}[A e^{i\omega t}] \]

• (at least in Chapter 1. In Chapter 2, \[E(x,y,z,t) = \text{Re} [E(x,y,z) e^{i\omega t}] \]
Maxwell’s Equations

\[\nabla \times \vec{h} = i + \frac{\partial \vec{d}}{\partial t} \]

\[\nabla \times \vec{e} = -\frac{\partial \vec{b}}{\partial t} \]

\[\nabla \cdot \vec{d} = 0 \]

\[\nabla \cdot \vec{b} = 0 \]

where \(\vec{e} \) and \(\vec{h} \) are the electric and magnetic field vectors
\(\vec{d} \) and \(\vec{b} \) are the electric and magnetic displacement vectors
No free charge.
Constitutive Relations

\[\vec{d} = \varepsilon_0 \vec{e} + \vec{p} \]
\[\vec{b} = \mu_0 (\vec{h} + \vec{m}) \]

\(p \) and \(m \) are the electric and magnetic polarizations of the medium
\(\varepsilon_0 \) and \(\mu_0 \) are the electric and magnetic permeabilities of vacuum
\(e \) and \(h \) are the electric and magnetic field vectors
\(d \) and \(b \) are the electric and magnetic displacement vectors
Electric Susceptibility χ (Isotropic)

Isotropic Media: χ is a complex number

$$P = \varepsilon_0 \chi E$$

The real part determines the index (velocity) and the imaginary part determines the gain or absorption.

Isotropic media: Vacuum, gasses, glasses (optical fibers)
Anisotropic media: Semiconductors, crystalline materials.
Electric Susceptibility χ (Anisotropic media)

Anisotropic Media: χ is a complex second rank tensor

$$\vec{P} = \varepsilon_0 \vec{\chi} \vec{E}$$

$$P_i = \varepsilon_0 \sum \chi_{ij} E_j$$

$$P_x = \varepsilon_0 (\chi_{xx} E_x + \chi_{xy} E_y + \chi_{xz} E_z)$$

One can always choose a coordinate system such that off axis elements are zero. These are the principal dielectric axes of the crystal. We will only use the principal coordinate system.

$$P_x = \varepsilon_0 \chi_{11} E_x$$

$$P_y = \varepsilon_0 \chi_{22} E_y$$

$$P_z = \varepsilon_0 \chi_{33} E_z$$
Principal Axes

D, E and P are not parallel in general. D and E are related by the electric permeability tensor ε

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$

$$\vec{D} = \varepsilon \vec{E}$$

Principal axes can always be chosen such that D and E are parallel and the off diagonal elements of ε are zero.

$$\varepsilon_{11} = \varepsilon_0 (1 + \chi_{11})$$

$$\varepsilon_{22} = \varepsilon_0 (1 + \chi_{22})$$

$$\varepsilon_{33} = \varepsilon_0 (1 + \chi_{33})$$
Wave Propagation in Lossless, Isotropic Media

• Lossless: $\sigma=0$, χ is real, ε is real.
• Isotropic: χ, ε are scalars (not tensors).

\[
\nabla \times \vec{e} = i + \frac{\partial \vec{b}}{\partial t} = 0 + \mu \frac{\partial \vec{h}}{\partial t}
\]

\[
\nabla \times \vec{h} = i + \frac{\partial \vec{d}}{\partial t}
\]

\[
\nabla \times (\nabla \times \vec{e}) = \mu \frac{\partial (\nabla \times \vec{h})}{\partial t} = \mu \frac{\partial^2 \vec{d}}{\partial^2 t} = \mu \varepsilon \frac{\partial^2 \vec{e}}{\partial^2 t}
\]

\[
\nabla \times (\nabla \times \vec{e}) = \nabla^2 \vec{e} - \nabla (\nabla \cdot \vec{e})
\]

\[
\nabla^2 \vec{e} = \mu \varepsilon \frac{\partial^2 \vec{e}}{\partial^2 t} \quad \text{Wave Equation}
\]
Wave Equation

\[e(x, y, z, t) = \text{Re}[E(x, y, z)e^{i\omega t}] \]
\[\nabla^2 \vec{E} + \omega^2 \mu \varepsilon \vec{E} = 0 \]
\[\nabla^2 \vec{E} + k^2 \vec{E} = 0 \]

where

\[k = \omega \sqrt{\mu \varepsilon} = \omega n / c \]
\[c = 1 / \sqrt{\mu_0 \varepsilon_0} \]
\[n = \sqrt{\frac{\mu \varepsilon}{\mu_0 \varepsilon_0}} \]
Step Index Circular Waveguide (lossless, isotropic)

• Simplest type of fiber
• (Most fiber these days is far more complex)
• Cylindrical symmetry

Figure 3-1 Structure and index profile of a step-index circular waveguide.
Step Index Circular Waveguide (lossless, isotropic)

- Simplest type of fiber
- (Most fiber these days is far more complex)
- Cylindrical symmetry
- Express Laplacian operator in cylindrical coordinates

\[\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2} \]

Separate variables

\[E_r = \psi (r) \Phi (\phi) e^{i(\omega t - \beta z)} \]
Separable Solutions

\[\left[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} + (k^2 - \beta^2) \right] E_z = 0 \]

\(E_r = \psi(r) \Phi(\phi) e^{i(\omega t - \beta z)} \)

\(\Phi(\phi) = e^{\pm il\phi} \quad \text{where} \quad l = 0, 1, 2, \ldots \)
Separable Solutions

\[\left[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} + (k^2 - \beta^2) \right] E_z = 0 \]

\[E_r = \psi (r) \Phi (\phi) e^{i(\omega t - \beta z)} \]

\[\Phi (\phi) = e^{\pm il \phi} \quad \text{where} \quad l = 0, 1, 2, \ldots \]

\[\left[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + (k^2 - \beta^2 - \frac{l^2}{r^2}) \right] \psi = 0 \]

Bessel differential equation

\[\psi = c_1 J_l (hr) + c_2 Y_l (hr) \quad k^2 - \beta^2 = h^2 > 0 \]

\[\psi = c_1 I_l (qr) + c_2 K_l (qr) \quad k^2 - \beta^2 = -q^2 > 0 \]
Boundary Conditions

Decaying fields for $r > a$
$q > 0$

For fields in the core $r < a$, we need finite fields
(which eliminates Y and K which go to infinity as r approaches 0.)
TE $l=0$ Modes

Figure 3-2 Graphical determination of the propagation constants of TE modes ($l = 0$) for a step-index waveguide.
l=1 (not TE or TM, but EH)
Figure 3-4 Graphical determination of the propagation constants of the $l = 1$ HE modes for a step-index dielectric waveguide.
Figure 3-5 Normalized propagation constant as a function of V parameter for a few of the lowest-order modes of a step-index waveguide [4].
For $n_1-n_2 \ll n_1$, LP approximation is valid.

Figure 3-6: Normalized propagation constant b as function of normalized frequency V for the guided modes of the optical fiber, $b = (\beta/k_c - n_2)/(n_1 - n_2)$. (After Reference [5].)

Single mode cut off: $V = 2.405$
Degenerate Modes LP_{11}

Figure 3-8 Sketch of the fiber cross section and the four possible distributions of LP_{11}.
Modes as a function of V parameter

At cutoff, all the power is in the cladding.

Figure 3-9 Fractional power contained in the cladding as a function of the frequency parameter V. (After Reference [5].)
Dispersion

\[\tau = D L \sigma \]

\(D \) is dispersion parameter
\(L \) is the propagation length
\(\sigma \) is the spectral width
Dispersion (sum of material and waveguide dispersion)

Figure 3-10 Group velocity dispersion of (a) dispersion-unshifted 1.3 \(\mu \text{m} \) fiber and (b) dispersion-flattened and dispersion-shifted fibers. (After Reference [1].)
Loss in early optical fibers
(now the O-H peaks around 1.4 µm are small)

![Graph showing loss in single-mode fiber]

Figure 3-19 Observed loss spectrum of a germanosilicate single-mode fiber. Estimated loss spectra for various intrinsic materials effects and waveguide imperfections are also shown. (From Reference [20].)
Summary

- Single mode condition required for high performance
- Multimode fiber used for low cost
- Dispersion is designable.
- 1.3 micron: zero of dispersion
- 1.55 micron: minimum loss
- Zero dispersion is not good because of nonlinearity