Controllability (and Observability)

Today: Look at meaning of "controllability" in more depth.

* Note, observability is a very analogous concept.

Review: From last time, recall that for a linear dynamic system, there are two definitions we can (equivalently) use to test for controllability.

1. If we can pick \(n \) gain values in \(K \) to set locations of \(n \) poles (in an \(n \)-th order system) arbitrarily.

2. If we can get to an arbitrarily new state vector \((n \text{ states})\) given an appropriately chosen \(u(t) \) (control action).

Let's look at each definition more closely.

\[
X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix},
\begin{align*}
X &= AX + Bu \\
Y &= CX + DU
\end{align*}
\]

- \(X \) \((n \times 1)\) states
- \(A \) \((n \times n)\)
- \(B \) \((n \times m)\)
- \(U \) \((m \times 1)\)
- \(Y \) \((k \times 1)\)
- \(C \) \((k \times n)\)
- \(D \) \((k \times m)\)

* Usually, \(D = 0 \)

\(n \) states \(m \) inputs \(K \) outputs

Assume \(m = 1 \) for now (single input).

a) Open-loop poles are at \(\text{eig}(A) \).

b) From poles, we can create the characteristic eqn:

\[
s^n + a_1 s^{n-1} + \ldots + a_{n-1} = 0
\]
For example:

\[m_1 \ddot{x}_1 + (b_1 + b_2) \dot{x}_1 + (k_1 + k_2) x_1 = u + b_2 \dot{x}_2 + k x_2 \]
\[m_2 \ddot{x}_2 + b_2 \dot{x}_2 + k_2 x_2 = b_2 \dot{x}_1 + k_2 x_1 \]

Let

\[X = \begin{bmatrix} x_1 \\ x_2 \\ \dot{x}_1 \\ \dot{x}_2 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{(k_1 + k_2)}{m_1} & \frac{k_2}{m_1} & \frac{-b_2}{m_1} & \frac{k_2}{m_1} \\ \frac{-k_2}{m_2} & \frac{-b_2}{m_2} & \frac{k_2}{m_2} & \frac{-k_2}{m_2} \end{bmatrix} \]

For \(m_1 = 1, \quad m_2 = 2 \)
\(b_1 = 1, \quad b_2 = 2 \)
\(k_1 = 5, \quad k_2 = 10 \)

\[A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -15 & 10 & -3 & 2 \\ 5 & -5 & 1 & -1 \end{bmatrix} \]

and \(B = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \)

\[S = \text{eig}(A) \]

\[p = \text{conv}(p, [1, -s(n)]) \]

\[p = \left[1, 4, 21, 10, 25 \right] \]

Characteristic Equation given A matrix.

\[s^4 + 4s^3 + 21s^2 + 10s + 25 = 0 \]
Now, given open-loop poles, which determine a (unique) characteristic equation (if highest order in s has coeff. 1),

...we can generally define a new dynamic system

with such that eigenvalues are the same.

For example, the **canonical** form, where top row of A_c is built directly from the char. poly.:

$$s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4 = 0$$

$$A_c = \begin{bmatrix}
-a_1 & -a_2 & -a_3 & \cdots & -a_n \\
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix}$$

$$B_c = \begin{bmatrix}
1 \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix}$$

Here, $X = \begin{bmatrix}
x \\
x \\
x \\
\vdots \\
x
\end{bmatrix}$ \textit{Not easy to interpret physically.}
Controllability matrix

\[C = \begin{bmatrix} B, AB, A^2B, \ldots, A^{n-1}B \end{bmatrix} \]

\((n \times n)\)

* If \(C \) is **full rank**, then it is invertible, and then you can set pole arbitrarily by picking \(K \).

Why? Let

\[T = CC_c^{-1} \]

For the canonical system, control gains are:

\[K_c = \begin{bmatrix} K_{1c}, K_{2c}, \ldots, K_{nc} \end{bmatrix} \]

Control law is:

\[u = -Kx \]

\[\dot{x} = A_c x + B_c u \]

\[= A_c x - B_c K_c x \]

\[\dot{x} = (A_c - B_c K_c)x \]

Since \(B_c = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \), \(B_c K_c = \begin{bmatrix} K_1 & K_2 & K_3 & K_4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \), \(A_c - B_c K_c \) are at:

\[S = \text{eig}(A_c - B_c K_c) \]

Our example

\[\begin{bmatrix} \begin{array}{cccc} -a_3 & K_4 & 0 & 0 \\ K_1 & K_2 & K_3 & K_4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \end{bmatrix} \]
Say we want poles $s = \{ \begin{array}{c} -1+j \\ -1-j \\ -10 \\ -10 \end{array} \}$

Desired char. eq. is: $s^4 + 22s^3 + 142s^2 + 240s + 200 = 0$

So, since G.L. was: $s^4 + 4s^3 + 21s^2 + 10s + 25 = 0$

We need: $k_1 + a_1 = 22 \Rightarrow k_1 = 22 - 4 = 18$
$k_2 + a_2 = 142 \Rightarrow k_2 = 142 - 21 = 121$
$k_3 + a_3 = 240 \Rightarrow k_3 = 240 - 10 = 230$
$k_4 + a_4 = 200 \Rightarrow k_4 = 200 - 25 = 175$

Finally, to get from k_c (for the control canonical form) to k (for original A & B matrices):

$A_c - B_c k_c$
$T(A_c)T^{-1} - T(B_c k_c)T^{-1}$

$A - B(k_c T^{-1})$

$A - Bk$

Where $K = k_c T^{-1}$
2. Arbitrary states in finite time?

With 4 states, we expect to need 4 tunable variables to set each state independently.

So, say we do the following: (Discrete-time control)

\[x_{n+1} = A_d x_n + B_d u_n \]

Can we find values for each \(u_i \) to change all 4 states independently?

Note - It's a lot easier to visualize this for the DT case, but same concept of "getting to a desired state" applies in CT (cont-time) case, too.

So, for 4 time steps,

- after \(u_0 \), \(x_1 = A x_0 + B u_0 \)
- after \(u_1 \), \(x_2 = A x_1 + B u_1 = A (A x_0 + B u_0) + B u_1 = A^2 x_0 + A B u_0 + B u_1 \)
- after \(u_2 \), \(x_3 = A (A^2 x_0 + A B u_0 + B u_1) + B u_2 = A^3 x_0 + A^2 B u_0 + A B u_1 + B u_2 \)
- after \(u_3 \), \(x_4 = A x_3 + B u_3 \)

\[x_4 = A^4 x_0 + A^3 B u_0 + A^2 B u_1 + A B u_2 + B u_3 \]

We want \(x_4 = x_{des} \)
\((X_{\text{des}} - A^4 X_0) = \begin{bmatrix} B & AB & A^2 B & A^3 B \end{bmatrix} \begin{bmatrix} u_3 \\ u_2 \\ u_1 \\ u_0 \end{bmatrix} \)

This is \(C\)!
(Controllability)

To solve for vector \(u\), use matrix algebra:

\((X_{\text{des}} - A^4 X_0) = C u\)

\(C^{-1} (X_{\text{des}} - A^4 X_0) = C^{-1} C u = u\)

\(C\) must be INVERTIBLE for a solution to be guaranteed!

Observability: Given some initial vector of states, \(x_i\), can we identify all values in \(x_i\) by observing the available outputs, \(y\), over some finite time?

\[y = C x + D u\]

\[\downarrow\]

\[y_o = C x_o\]

\[x_1 = A x_0 + B u_0\]

\[y_1 = C (A x_0 + B u_0)\]

\[x_2 = A x_1 + B u_1\]

\[y_2 = C [A (A x_0 + B u_0) + B u_1]\]

\[x_3 = A x_2 + B u_2\]

\[y_3 = C [A [A (A x_0 + B u_0) + B u_1] + B u_2]\]
Rearranging

\[y_0 = CX_0 \]
\[y_1 = CAX_0 + CBU_0 \]
\[y_2 = CA^2X_0 + CABU_0 + CBU_1 \]
\[y_3 = CA^3X_0 + CA^2BU_0 + CABU_1 + CBU_2 \]

All other terms \(y_0, y_1, y_2, y_3, C, A, B \) are measured or known at the start.

\[
\begin{bmatrix}
C \\
CA \\
CA^2 \\
CA^3 \\
\end{bmatrix}
\begin{bmatrix}
X_0 \\
y_0 \\
y_1 - CBU_0 \\
y_2 - CABU_0 - CBU_1 \\
y_3 - CA^2BU_0 - CABU_1 - CBU_2 \\
\end{bmatrix}
=
\begin{bmatrix}
Z_0 \\
Z_1 \\
Z_2 \\
Z_3 \\
\end{bmatrix}
\]

\[X_0 = (A^T)^{-1} \cdot \begin{bmatrix}
Z_0 \\
Z_1 \\
Z_2 \\
Z_3 \\
\end{bmatrix} \]

Can be found if \(A \) is full rank, i.e., invertible.

Matlab

\(\text{eig}(A-BK) \)
\(\text{eig}(A-LC) \)

Control gain

Observer gain

Matlab to find \(K = \text{place}(A, B, pcon) \)

\(L = \text{place}(A', C', pobs) \)

Note 3 transpose char