iTrust with SMS/HTTP

Decentralized Mobile Search and Retrieval Using SMS and HTTP to Support Social Change

a presentation by Isaí Michel Lombera
1 Purpose
2 iTrust network design
3 iTrust with SMS
4 Instant messaging examples
5 Performance evaluation
6 Related work and conclusions
Isaí Michel Lombera

Purpose
iTrust heterogeneous network
Distribution of metadata
Distribution of a request

Source of Information

Request Encounters Metadata

Requester of Information
Retrieval of information
iTrust with SMS bridge diagram

cellular network iTrust with SMS iTrust over HTTP

SMSC

THREAD 1
SMStools
incoming spool

THREAD 2
PHP parser
extract headers

THREAD 3
search.php
register SMS callback

THREAD 4
query.php
register query

THREAD 5
inbox.php
register match

encounter matching

SMS callback
4 Instant messaging examples

MobiCASE 2011

25 October 2011

Isaí Michel Lombera

Instant messaging examples

Tahrir Square
Sent: 11:25 PM

meet near talaat harb street @ 2330.

11:26 PM

Enter message here
iTrust SMS app

Instant messaging examples

Send SMS

Status: waiting to send.

Tahrir Square

Send SMS

Status: waiting to send.

Hit from iTrust node @ +1760689:
meet near talaat harb street @ 2330.
Probability of a match

\[p = 1 - \left(\frac{n - mx}{n} \frac{n - 1 - mx}{n - 1} \cdots \frac{n - r + 1 - mx}{n - r + 1} \right) \]

\(p \) probability of an encounter occurring (match or hit)
\(n \) number of participating nodes
\(m \) number of nodes to which metadata is distributed
\(r \) number of nodes to which requests are distributed
\(x \) proportion of operating nodes
Probability of a match emulation vs. analysis

- 250 Node Network with 100% of the Nodes Operational
- 250 Node Network with 60% of the Nodes Operational
Mean messages for a match

\[
p(k) = \frac{(mx \frac{mx-1}{k-1} \ldots \frac{mx-k+1}{1}) \left(\frac{n-mx}{r-k} \frac{n-mx-1}{r-k-1} \ldots \frac{n-mx-r+k+1}{1}\right)}{\left(\frac{n}{r} \frac{n-1}{r-1} \ldots \frac{n-r+1}{1}\right)}
\]

- \(p(k)\) probability of \(k\) matches
- \(k\) number of matches (\(k\) reporting matches)
- \(n\) number of participating nodes
- \(m\) number of nodes to which metadata is distributed
- \(r\) number of nodes to which requests are distributed
- \(x\) proportion of operating nodes

\[
y = 2 + r + \sum_{k=1}^{\min\{mx,r\}} kp(k)
\]

- \(y\) mean number of messages for a match
Mean messages for a match emulation vs. analysis
Related work

- gnutella
- OneSwarm: Privacy preserving peer-to-peer data sharing
Conclusions
Future work
Contact information

http://itrust.ece.ucsb.edu

Advisors: L. E. Moser and P. M. Melliar-Smith

Isaí → imichel@ece.ucsb.edu
Yung-Ting → ytchhuang@ece.ucsb.edu

NSF: CNS 10-16193