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The Asymptotic Closed-Loop Approach to Predictive
Vector Quantizer Design with Application in Video
Coding
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Abstract—The basic vector quantization (VQ) technique em-
ployed in video coding belongs to the category of predictive vector
quantization (PVQ), as it involves quantization of the (motion com-
pensated) frame prediction error. It is well known that the design
of PVQ suffers from fundamental difficulties, due to the prediction
loop, which have an impact on the convergence and the stability
of the design procedure. In this paper we propose an approach to
PVQ design that enjoys the stability of open-loop design while it en-
sures ultimate optimization of the closed-loop system. The method
is derived for general predictive quantization, and we demonstrate
it on video compression at low bit rates, where it provides substan-
tial improvement over standard open and closed loop design tech-
niques. Further, the approach outperforms standard DCT-based
video coding.

Index Terms—Predictive vector quantization, video coding.

I. INTRODUCTION

OST video coding systems use predictive coding and are

composed of two main functional modules: the frame
prediction module, and the prediction error (residual) compres-
sion module (see Fig. 1). The objective of the first module is to
exploit the temporal redundancy that exists between consecu-
tive frames by predicting the contents of the current frame from
the previous frame. Block-based motion compensation (whose
parameters are transmitted as side-information) is used in this
module to achieve better approximation of the current frame.
The second module is the lossy part of the codec where the pre-
diction error, or residual, is compressed to the appropriate bit
rate.

The prediction residual is usually handled as a two-dimen-
sional (2-D) signal and, more specifically, as if it were a still
image. The predominant residual compression approach in-
volves application of the discrete cosine transform (DCT), and
this is the method of choice in the major standards including
H.263 [1] and MPEG [2]. An important justification for the use
of DCT in still image compression hinges on the assumption
that the signal can be well modeled as a Gauss—Markov process
with a high autocorrelation coefficient. It has been shown that
the performance of the optimal (Karhunen—Loeve) transform
on such a signal is closely approximated by that of DCT [3].
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Fig. 1. Basic predictive video coding system.

Wavelet and subband decomposition have also been proposed
for coding the prediction error residual [4], [5]. The success
of these techniques in compression of images is due to their
decorrelation and energy compaction properties.

However, the above arguments which build on statistical char-
acteristics of still images, do not hold for the prediction residual
of video signals whose statistical characteristics are consider-
ably different. In fact, it may be argued that once an effective
motion compensation is performed, the remaining residual ex-
hibits too little correlation to warrant further application of a
decorrelating transform. It is, therefore, plausible that an ap-
proach to direct compression of the residual, which takes into
account the actual signal statistics, would provide substantial
gains. Interesting alternatives to mainstream DCT-based coders
are based on matching pursuits [6] and wavelets [7], [8].

We pursue a known alternative approach for direct compres-
sion of prediction residuals, which is based on vector quantiza-
tion (VQ). There has been prior work on vector quantization of
the residual [9]-[11].In [9], a variable block size scheme is used
where the motion compensated residual is divided into blocks
of varying sizes to suit activity levels. In [10], the randomness
of prediction residuals was considered, and a stochastic VQ
scheme was proposed. Simulation results in these papers were
not compared to standards. Other schemes were proposed in
[12] but performance was reported to be inferior to the then-cur-
rent standard.

There are several arguments in support of VQ for video com-
pression. Shannon’s theory implies that vector quantizers are
asymptotically optimal, where asymptotic here is in terms of
vector length. (Note, in particular, that typical block sizes in
video coding correspond to long vectors.) Another important ar-
gument is that VQ is a very general framework and subsumes,
for example, DCT compression as a special constrained case
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[13]. Thus, it may be argued that DCT cannot outperform the
best VQ. On the other hand, there exist various objections to
the use of VQ in video coding. One major difficulty is that of
complexity. The VQ complexity grows exponentially with the
product of vector dimension and rate. Structurally-constrained
VQ methods have reduced search and/or memory complexity,
but their performance is inevitably compromised. However, it is
important to note that for very low bit rate compression, which
is our target area, even unconstrained VQ would be manageable.
Another major objection is concerned with difficulties in the de-
sign of VQ for video coding applications. Predictive VQ (PVQ)
design is problematic, and the design often fails to produce an
optimal (and often even a good) VQ.

It is our premise here that suboptimal PVQ design is a major
stumbling block on the way to a truly competitive VQ approach
for video coding. We hence propose to attack this fundamental
problem. We first review traditional design methods and explain
the difficulties in the training procedure (Section II). We de-
velop a novel approach to solve the PVQ design problem in Sec-
tion III. An extension to the design of entropy constrained PVQ
is outlined in Section IV. In Section V, we provide simulation
results as experimental evidence that PVQ is indeed an attrac-
tive approach for video coding.

II. CONVENTIONAL PREDICTIVE VECTOR QUANTIZER DESIGN

A major issue in PVQ design involves the need to obtain a
stable training set that accurately represents the true signal sta-
tistics. To clarify this difficulty, consider the design of a regular
VQ system, where the quantizer directly encodes source sam-
ples. It is possible via the generalized Lloyd algorithm (GLA
[14]) to iteratively adjust the quantizer parameters while de-
creasing the distortion, as computed over the training set, until
convergence. In contrast with standard VQ, the PVQ system op-
erates on the prediction error. But since the prediction is based
on the reconstruction of past samples (previous reconstructed
frame in the case of video), the prediction error depends on the
quantizer itself. Clearly, the “effective training set” which is the
sequence of prediction errors, is not fixed but changes every
time the quantizer parameters are modified. In [15], two tech-
niques were introduced for PVQ design and have been widely
used since. In this section, we briefly sketch these approaches.
The presentation is geared toward emphasizing the unresolved
issues, and highlighting points of distinction with respect to the
approach proposed in this paper.

A. Open-Loop Approach

This simple approach is depicted in Fig. 2. A training set
of prediction error vectors is generated by using the orig-
inal, unquantized source vectors for prediction. It is called
“open-loop” (OL) because the reconstructed vectors are not fed
back through the predictor. Specifically, given a set of original
samples, X: {zg, 1, 2, ---, TN}, We generate the required
training set via

t, =z — Plza—1], n=12.---, N (1

7

where P is the prediction operator.
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Fig. 2. Open-loop procedure: x,, denotes original sample n and ¢,, denotes
prediction error n. P represents the predictor operator.

The main advantage of the OL approach is that the training
set, T: {t1, t2, -+ -, tx } is fixed. Therefore, we can design the
PVQ by applying a standard optimization technique such as
GLA. Since the training set remains unchanged, the design al-
gorithm is guaranteed to converge to at least a locally optimal
solution.

However, the OL approach suffers from a serious short-
coming. The decoder does not have access to the original
source vector for prediction. Therefore, during the actual
operation of the compression system, prediction is performed
using reconstructed source vectors. Thus, the training set of
prediction errors is statistically different from the prediction
errors to be quantized in practice. The statistical mismatch,
which is further amplified by feedback through the prediction
loop, leads to poor performance.

B. Closed-Loop Approach

To alleviate the statistical mismatch problem of the OL
method, a closed-loop approach, denoted by CL, was presented
in [15]. Fig. 3 shows the main steps. Here, a closed-loop
(real) system is used to generate the prediction errors in an
iterative fashion. Given a quantizer at iteration ¢ — 1, which
we denote b{ QU~V  a training set of prediction errors

70, {tgi), tgi Sy tg\i,)}, is generated for iteration ¢
10 =, — P[] @
where

i) = P[]+ Q0 (s -P[a2)]). @

Equations (2) and (3) are sequentially calculated for each n =
1,2, ..., N.For this set of prediction errors, a new quantizer,
Q) is optimized. Next, a new sequence of prediction errors is
generated for iteration ¢ 4 1, and so on.

The initial quantizer Q(°) is usually chosen to be the outcome
of the OL method. Since the training residuals were generated
by the same closed-loop coder that will be used in the actual
mode of operation, the input residual error statistics are expected
to be similar to those used to train the quantizer. However, con-
vergence of the algorithm is not guaranteed, as the training set
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Fig.3. Closed-loop procedure: x,, denotes original vector n, #{? denotes the
nth reconstructed vector at iteration #, and (/) denotes the nth prediction error
at iteration i. Q(?) is the vector quantizer trained on prediction error sequence
from iteration i, and () is t{) quantized by Q¢ ~1>. The design of Q(* cannot
proceed until all ¢{7, forn = 1, 2, ---, N, have been collected and the newly
designed Q") will only be used in the next iteration ¢ + 1.

changes every iteration in an unpredictable fashion. The insta-
bility of the CL method is amplified at very low bit rates as will
be demonstrated in the results section.

A notable alternative closed-loop method is the stochastic ap-
proach of Chang and Gray [16]. Another approach is the more
recent constrained optimization of Rizvi and Nasrabadi [17].
However, it is generally known that the problem has not been
satisfactorily solved as yet [11], [13], [18].

C. Summary of Shortcomings

The relative merits of the CL design versus the OL design
are not clear. Although OL training has a fixed training set, and
hence is ensured to converge, it is mismatched with the true
mode of operation of the quantizer. On the other hand, the cen-
tral design difficulty of the CL training technique is that quan-
tization errors are fed back through the prediction loop, thus
making the training of the quantizer a highly unstable proce-
dure. In particular, the actual effective training set (the sequence
of prediction errors) of CL is encoded by a quantizer optimized
for the training set of the previous iteration. Due to the feed-
back loop, the effect of this mismatch builds up to large devia-
tion in the statistics, and tends to confuse the design procedure.
CL training “ignores” the above difficulty and iterates as if an
improvement of the quantizer for the current set of prediction
errors ensures better performance on the prediction errors of the
next iteration.
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Fig. 4. Proposed ACL procedure: x,, denotes original vector n, #{) denotes
the nth reconstructed sample at iteration 7, and (/) denotes the nth prediction
error at iteration ¢. Q¢ is the vector quantizer trained on prediction error
sequence from iteration 7,and #(") is t{?) quantized by Q(*). Note that the newly
designed Q) is used in the same iteration ¢ to generate new reconstructed
vectors in preparation for the next iteration ¢ + 1. The main difference between
this design and the CL design is that there is NO FEEDBACK; quantized
prediction error is not fed back into the closed-loop system.

III. PROPOSED METHOD: ASYMPTOTIC CLOSED-LOOP
APPROACH

The objective of the proposed design approach is to enjoy
the best of both worlds, namely, to enjoy the design stability of
the open-loop mode while ultimately optimizing the system for
closed-loop operation. To achieve this, we propose the following
procedure (illustrated in Fig. 4).

Let us first introduce some mathematical notation to facilitate
the algorithm description. The main objective is to avoid accu-
mulation of errors due to mismatched quantization through the
prediction loop. We therefore base our prediction on the recon-
structed samples of the previous iteration. The training set is, in
effect, generated by

n=1,2

7"'7N' (4)

Having collected the set of training samples, we optimize a

new quantizer Q) (via GLA). The new quantizer is then used
to generate the new set of reconstruction samples based on

) = P [09] +.QO (2 — P [02]).
n=12 .-, N. ®)

Compare (4) with equation (1) for standard open-loop, and (2)
for the closed loop design. The CL design alternates between
equations (2) and (3) with every n before moving to the next
iteration. In our approach, execution of (4) is done for the entire
sequence, without the effect of quantization error accumulation.
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We then calculate (5) for all n, before moving on to the next
iteration.

Note that the quantizer Q%) is used to encode exactly the same
prediction error vectors used for its design. Neglecting the pos-
sible local-optimality of the quantizer design algorithm, this is
the best quantizer for these vectors. We are thus assured that the
resulting reconstruction is improved, and this results in better
prediction. Under the reasonable (and common) assumption that
smaller prediction errors lead to smaller quantization error, and
vice versa, we obtain monotonic improvement throughout the
process.

Note that the entire design is in open-loop mode since we
compute prediction errors for the entire sequence before quan-
tization. As the distortion is generally decreasing, we expect the
process to converge. At convergence, further iterations do not
modify the quantizer

QU =W (©)

which immediately ensures that the reconstruction sequence is
fixed

B =2 @)
and that the next-frame prediction sequence is fixed
P [@5?_1} —p [5;5;":1”} . ®)

This implies that the prediction would be unchanged if it were
based on the reconstruction of the current iteration, instead of on
the reconstruction from the previous iteration. In other words,
the procedure is asymptotically equivalent to closed-loop de-
sign. But the algorithm is running at all times in open loop! We
thus have developed a procedure which is “open-loop” in nature,
yet converges to optimization of the closed-loop performance.
We hence refer to this approach as the asymptotic closed-loop
(ACL) approach.

The algorithm for ACL design of PVQ can be summarized as
follows.

Step 1) Apply an initial PVQ to the training sequence of
source samples to obtain a reconstructed sequence,
with the corresponding sequences of next-sample
prediction, and prediction error.
Design an optimal VQ for the current sequence of
prediction errors.
Apply the current VQ to quantize the prediction er-
rors used in its design.
Add the sequence of quantized prediction errors to
the next-sample-prediction sequence to obtain a new
reconstructed sequence.
Apply prediction to the reconstructed sequence to
generate a next-sample-prediction sequence.
Subtract the prediction sequence from the original
sequence to generate the new sequence of prediction
ITOrS.

Step 7) Go to Step 2.

As our assumption (better quantization results in better pre-
diction and vice versa) is not perfectly valid, in our experiments,
the algorithm terminates in a small limit cycle instead of perfect

Step 2)
Step 3)

Step 4)

Step 5)

Step 6)
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convergence. However, this appears to have no practical signif-
icance (more on this issue in the results section).

IV. VARIABLE RATE PREDICTIVE VECTOR QUANTIZER DESIGN

For simplicity and clarity, the main ideas have been presented
so far in the context of fixed-rate PVQ design. As the target
application in the experimental part of the work is low bit rate
video coding, we must account for variation in local signal sta-
tistics. It is well known that variable rate coders can adapt to
changing statistics, and offer higher compression efficiency than
fixed rate coders. Hence, we propose to design a variable rate
PVQ system for video compression. The design algorithm de-
scribed above can be easily adapted for this purpose by incor-
porating in Step 2 an appropriate technique for optimizing en-
tropy-constrained quantizers. An entropy-constrained optimiza-
tion produces variable length codewords, where code vectors of
higher probability are assigned shorter codewords, so as to min-
imize the expected rate.

The standard optimization technique for entropy-constrained
vector quantizers consists of a known modification of GLA
which we will refer to as entropy-constrained GLA (EC-GLA)
[19]. A Lagrangian formulation is employed, where the cost
of encoding is a function of distortion and encoding rate:
L = D + AR. The Lagrangian multiplier, A, controls the
rate-distortion trade-off. The standard EC-GLA starts with a
fixed rate (A = 0) codebook and modifies it into a variable
rate codebook by increasing A in a series of steps. There are
two drawbacks to standard EC-GLA. The computational com-
plexity can be considerable if the codebook is large. Further,
the final codebook heavily depends on the initialization, and
the optimization may easily get stuck in a poor local minimum.

To reduce the complexity of EC-GLA, the pairwise nearest
neighbor (PNN) algorithm [20] was extended to entropy con-
strained quantizer optimization by Finamore ef al. [21] This de-
sign procedure uses the entire training set as the initial code-
book, and recursively merges the pair of reproduction vectors
that yields the least increase in distortion, until the desired code-
book size is reached. The reduction in complexity is normally
achieved at the cost of some degradation in performance of the
codebook.

We instead propose a selective splitting approach to improve
the optimization of entropy constrained quantizers. Our objec-
tive is two-fold: 1) directly optimize the codebook to operate
at the desired rate/distortion tradeoff, in contrast to [19], and
thereby reduce complexity and 2) improve the initialization. In
a logical reverse of PNN, selected codevectors are recursively
split. The splitting mechanism is closely related to the greedy
splitting approach of Riskin and Gray [22], which was devel-
oped for the design of tree-structured VQ. However, we use
splitting as a means to improve the initialization and reduce
complexity, and not for imposing a structure on the solution.
The selective splitting approach was used by us for designing
standard variable rate quantizers and was found to outperform
standard EC-GLA [23]. Here, it is applied to our primary ob-
jective of designing optimal variable rate PVQ for video com-
pression. At the end of this section, we explain the additional
advantages offered by selective splitting for PVQ design.
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We now summarize the selective splitting approach for de-
signing entropy-constrained quantizers.
Selective Splitting Approach:
Step 1) Initialize the codebook to contain only the centroid
vector of the entire training set.

Step 2) For all entries ¢; of the codebook, test for the cost

effectiveness of a potential split by calculating
AL, = AD,; — AAR; )
where

AL; decrease in Lagrangian cost;

AD,; decrease in distortion;

AR; increase in rate.

Step 3) Sort and list all entries of the codebook in decreasing
order of AL;.

Step 4) Starting at the top of the sorted list, split codewords
one by one until a specified criterion is met. Insert
the new codewords into the codebook.

Step 5) Given the codebook, run EC-GLA over the entire
training set.

Step 6) If target codebook size is achieved, stop. Otherwise,

go to Step 2.
Comments and Observations:

* In Step 2, we first calculate the distortion I); of the training
subset 7; associated with codevector 7. Then we split the
codevector into two new vectors, and apply GLA to 7;
producing two training subsets 7 and T}’. For these two
subsets, we calculate the corresponding distortions D} and
DY . We then evaluate AD; = D; — (D} + D). If the
number of vectors in 7; is V;, we assume (for simplicity)
that we need an extra bit for each vector in 7; resulting in
a rate increase of AR; = N, bits.

e A “healthy” split is ensured by testing for AL;. Clearly,
anegative AL, indicates a counter-productive split, while
large positive values of AL; indicate advantageous splits.

» The complexity of testing for a codeword split is not exces-
sive, as the training samples considered are only the subset
associated with the codevector. The number of splits per
iteration of Step 4 can be either predetermined, or vary
depending on the current versus target codebook size. In
general, the number of splits per iteration determines the
tradeoff between quality and complexity.

e Step 5 allows rectification of “near-sighted” or overly
greedy splits of individual codewords, as the whole
training set is reconsidered. Usually, a couple of iterations
are sufficient to ensure convergence.

* We reemphasize that selective splitting is used in Step 2 of
the PVQ design algorithm for optimizing the entropy-con-
strained PVQ (ECPVQ) codebook. An important advan-
tage of this algorithm for ECPVQ design is that it facil-
itates execution of Step 2 of the ACL method. When a
new Q) is designed, we use the QU1 as an initializa-
tion to speed up the algorithm. Some of its entries may
become unused, and the selective splitting approach nat-
urally solves this problem by dropping those unused vec-
tors, and creating new ones by splitting existing codevec-
tors.
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Fig. 5. Performance comparison of standard OL and CL designs and the

proposed ACL approach to PVQ design at low bit rate. Average distortion
over the synthetic first-order Gaussian-Markov training sequence is shown
for the PVQ available at the end of each iteration. Both designs start from the
same initial point using the outcome of OL design. Note how the CL design
improves output initially but becomes unstable after a few iterations. The ACL
design remains stable throughout all iterations.

V. SIMULATION RESULTS

The proposed PVQ design is tested in the context of both
synthetic sources and very low bit rate video coding.

A. Experiments on Synthetic Sources

A synthetic source process of first-order Gauss—Markov vec-
tors was generated with intra-vector and inter-vector correla-
tion coefficients of 0.9. A first-order predictor is used in the
PVQ design. We present results for two target bit rates: 1) 0.83
bits/sample (referred to as low bit rate) and 2) 1.5 bits/sample
(high bit rate).

Fig. 5 shows the average distortion over the training set and
its evolution with the iterations. In the low bit rate case, the
CL design becomes very unstable after a few iterations. The
performance of the codebooks obtained via ACL design remains
stable throughout the design process.

In Fig. 6, we present the corresponding results for the case of
high bit rate. Here we note that both the CL and ACL designs are
stable (though the CL design displays more pronounced oscilla-
tions). These results support our premise that the accumulation
of errors is the main cause of difficulties in PVQ design. When
the available bit rate is high, the accumulation of error is greatly
reduced and thus, the traditional design approach is not severely
affected.

It is interesting to note that the curve for the ACL method
is much smoother than that of the CL method. Also, at low bit
rates, the simple OL design may outperform the CL design if
the latter training procedure is allowed to run long enough.

B. Experiments on Video Sequences

In the second set of experiments, we evaluate the proposed
PVQ design on video sequences. VQ-based techniques in video
coding applications are mainly employed at very low bit rates.
It is thus expected that the CL design approach will meet with
considerable training difficulties due to accumulation of errors.
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Synthetic Source (High Bit Rate)
20 T T T T T T T

x oL
1-- oL 4
— ACL

=
8

=

g

2

(=] -

2 18 4
o

<]

S

<C

p
PR
AYRYARY Y
PR

PR
NN
YA l.\l\ (AVAY]

10 20 30 40 50 60 70 80
lteration Number :

Fig. 6. Performance comparison of standard OL and CL design and the
proposed ACL approach to PVQ design at high bit rate. Average Distortion
over the synthetic first-order Gaussian—-Markov training sequence is shown for
the PVQ available at the end of each iteration. Both designs start from the same
initial point using the outcome of OL design. Notice that in this experiment,
high coding rate allows even the CL design to be stable.
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Fig.7. Performance comparison of standard CL design and the proposed ACL

approach to PVQ design. Average PSNR on the training sequence Carphone is
shown for the PVQ available at the end of each iteration. Both designs start from
the same initial point using the outcome of OL design.

In this section, we compare traditional approaches to the pro-
posed ACL design.

We implemented a video codec where 8 x 8 residual blocks
are used as vectors. The video sequences are in QCIF format
and the frame rate is ten frames/sec. The general structure of
the codec is as shown in Fig. 1. The system uses half-pixel
motion compensation, and is basically a “bare-bones” H.263
scheme where the DCT/quantization module was replaced with
the ECPVQ, and where each 8 x 8 block is considered as a sepa-
rate macroblock. After the first frame, all frames are compressed
in interframe mode. This simplification has the sole purpose of
focusing the results on predictive coding and eliminating unre-
lated factors, but all features of H.263 can be readily added to
the VQ system. The Lagrange multiplier A is used to control
the rate. In all our simulations, Huffman codes are employed to
generate variable length codewords.

Two main experiments with video have been performed. In
the first experiment, a total of 30 frames (luminance component)
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Fig.8. Percentage of codevectors per codebook that become unused (and thus
dropped) on updating the training set. Note that many more vectors in the CL
design get dropped in every iteration indicating that its convergence capability
is rather limited.

of the sequence Carphone were used as the training sequence.
We design an ECPVQ using each of the OL, CL, and ACL tech-
niques described in Section III. Fig. 7 compares the performance
of ECPVQ designed by the proposed ACL design method with
that of the standard CL design. The PSNR shown is that of the
actual closed-loop performance of the coder using an ECPVQ
obtained at each iteration and is equal to the average PSNR over
the training video sequence. Note that both systems start their it-
erations by designing an OL-designed codebook, and thus have
the same performance at the first iteration. Both systems im-
prove performance in the first few iterations. However, the CL
design algorithm leads to gradual accumulation of error in the
system and causes the subsequent drop in overall PSNR. On the
other hand, the proposed ACL approach shows persistent im-
provements, and eventually provides performance that is supe-
rior by several decibels. For reference, it should be mentioned
that the corresponding “bare-bones” H.263 (with the standard
DCT module) achieved PSNR of about 31 dB which is signifi-
cantly below the performance of our ECPVQ. The bit-rate was
fixed at about 12 kb/s for transmitting the prediction residual of
this QCIF sequence. All other side information (including mo-
tion vectors) required rate identical for all coders. It is impor-
tant to note the instability of the CL algorithm even within the
training set. One may notice that the near-monotonic improve-
ment of ACL with iterations is punctuated by occasional drops
in PSNR. The reasons for this behavior are the suboptimalities in
motion compensated prediction and minor fluctuations in rate.

The effective convergence of the ACL algorithm can be
demonstrated as follows. Recall that the codebook of the
previous iteration is used as initialization for the design of the
codebook of the current iteration. When any of the codebook
vectors become unused and are removed, the algorithm will
fill up the empty codebook entries by selectively splitting
additional vectors. The number of unused codevectors at each
iteration is a good indication of how well the codebook is
converging. Ideally, as the codebook approaches convergence,
a minimal number of vectors will be dropped and updated,
i.e., virtually all vectors will be retained. Fig. 8 shows the
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TABLE 1

PERFORMANCE COMPARISON OF H.263 AND PVQ FOR THE TEST IMAGE

SEQUENCES “SALESMAN,” “CLAIRE,” AND “AKIYO.” THE PVQ RESULTS
SHOWN ARE FOR THE FOLLOWING: 1) OL METHOD, 2) CL METHOD AFTER
ONE ITERATION (CL(1}), 3) CL METHOD AFTER TWO ITERATIONS (CL(2}),
and 4) CL METHOD AFTER COMPLETION OF ITERATIONS (CL(25)), AND V)
ACL METHOD AFTER COMPLETION OF ITERATIONS. THE COMPARISON IS IN
TERMS OF PSNR IN DECIBELS, RATE IN Kb/s, AND THE RATE-DISTORTION

LAGRANGIAN PER PIXEL (LOWER VALUES ARE BETTER)

TABLE 1I
PERFORMANCE COMPARISON OF H.263 AND PVQ AVERAGED OVER ALL
THREE TEST IMAGE SEQUENCES “SALESMAN,” “CLAIRE,” AND “AKIYO.” THE
PVQ RESULTS SHOWN ARE FOR THE FOLLOWING: 1) OL METHOD, 2) CL
METHOD AFTER ONE ITERATION (CL(1), 3) CL METHOD AFTER TWO
ITERATIONS (CL(2)), 4) CL METHOD AFTER COMPLETION OF ITERATIONS
(CL(23)), AND 5) ACL METHOD AFTER COMPLETION OF ITERATIONS. RESULTS
SHOWN HERE ARE SUMMARIZED FROM TABLE I, AND ARE AVERAGE
RATE-DISTORTION LAGRANGIAN PER PIXEL OVER ALL THREE TEST SEQUENCES

Coder | Design | Average D + AR

H.263 46.27

PVQ | OL 44.47
CLW 44.65
CL® 54.34
CL(®) 77.33
ACL 43.05

TABLE Il

PERFORMANCE COMPARISON OF H.263 AND PVQ AVERAGED OVER
ALL 13 TRAINING IMAGE SEQUENCES. THE PVQ RESULTS SHOWN ARE
FOR THE FOLLOWING: 1) OL METHOD, 2) CL METHOD AFTER ONE
ITERATION (CL(*)), 3) CL METHOD AFTER TWO ITERATIONS (CL(%),
4) CL METHOD AFTER COMPLETION OF ITERATIONS (CL(?3), AND
5) ACL METHOD AFTER COMPLETION OF ITERATIONS. RESULTS ARE
IN TERMS OF AVERAGE RATE-DISTORTION LAGRANGIAN PER PIXEL
OVER ALL 13 TRAINING IMAGE SEQUENCES

Sequence | Coder | Design | PSNR | Rate | D + AR
Salesman | H.263 30.15 | 9.40 70.07
PVQ | OL 3023 | 899 | 68.73

CLM | 29.21 | 9.28 | 69.29

CL® | 20.36 | 9.97 | 83.20

CL®) | 28.24 | 17.67 | 111.47

ACL | 30.41 | 9.37 | 66.56

Claire H.263 34.54 | 6.57 | 28.04
PVQ | OL 34.74 | 6.04 | 26.59

CLY) | 3473 | 6.28 | 26.85

CL® | 3414 | 638 | 30.13

CL®) | 32.03 | 9.46 | 48.21

ACL | 35.02 | 6.53 | 25.60

Akiyo H.263 32.67 | 7.04 | 40.70
PVQ | OL 32.98 | 6.81 | 38.08

CLM | 3290 | 6.89 | 3881

CL® | 31.70 | 7.27 | 49.70

CL(®) | 30.20 | 12.89 | 72.30

ACL | 33.15| 7.02 | 37.00

Coder | Design | Average D + AR

H.263 71.39

PVQ | OL 55.87
CL®M 55.17
CcL® 59.58
CL(®» 80.69
ACL 38.67

relative percentage of vectors that become unpopulated at each
iteration. The decreasing percentage of unpopulated vectors
indicates that the ACL algorithm is converging. Also included
in the graph is a demonstration of the instability of the CL
approach. It can be seen that almost 40% of the codebook
entries become unpopulated in any CL iteration, indicating that
further iterations are not producing representative training sets,
nor will they lead to convergence of a good codebook.

So far, we have considered the performance on the training
set so as to emphasize the power of the proposed ACL opti-
mization technique over conventional ECPVQ design methods.
We next present results demonstrating performance outside the
training set. In this second experiment, in order for the ECPVQ
to be statistically representative, we used a total of 13 video se-
quences in the training phase. Each video sequence is of length
20 frames. The test set is composed of the three independent
(i-e., unused for training) video sequences, namely, Salesman,
Claire, and Akiyo, each also of 20 frames. Table I compares the
performance of H.263 with that of the various ECPVQ designs.
Bit rates shown are those for coding the residual. The ECPVQ
design, in this case, involved two codebooks: one codebook op-
timized for blocks whose motion vector was zero, and another
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Fig. 9. Performance comparison of standard CL design and the proposed
ACL approach to PVQ design. Average Lagrangian cost on the training
sequences using the PVQ available at the end of each iteration is shown. Both
techniques initially use the outcome of a simple OL design as initialization.
Note the gradual decrease in average Lagrangian distortion of the ACL method
indicating improvements in the quantizer design. On the other hand, the CL
design procedure is unstable.
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codebook optimized for blocks with nonzero motion. Note that
the switching information need not be conveyed to the receiver
as it is determined by the motion. (One can design more code-
books conditioned on the motion vector, but two codebooks
seem to represent a reasonable compromise between compres-
sion performance, computational complexity, and storage re-
quirements.) Codebook sizes were of about 12000 and 2000,
with average bit rates of 3.5 and 1.5 bits/vector, respectively.
The CL and ACL ECPVQ designs were stopped after 25 itera-
tions. The H.263 bit rate was controlled so as to match that of
the ECPVQ system designed by the ACL approach.

For the ECPVQ results, we show the system performance in
five settings:

1) OL method alone is used;

2) CL method after only one iteration;

3) CL method after two iterations;

4) CL method after the completion of the iterative design;
5) ACL method after completion of the iterative design.

It is worthwhile to note that, in this case, OL can outperform CL
on the test set. In fact, CL’s instability is such that further itera-
tions are detrimental to its performance. On the other hand, ACL
with the exact same initial conditions offers stable performance
throughout the iterations, and finally achieves gains of 0.2-0.5
dB over H.263 over the test sequences. Table I also provides
the average rate-distortion Lagrangian D + A = R. Consider-
able improvements were obtained in all test sequences. Table II
summarizes the results of Table I giving averages over the com-
bined test sequences. We opted to show Lagrangians rather than
PSNRs as they can be meaningfully averaged over several dif-
ferent input sequences. For completeness, Table III also pro-
vides the Lagrangian averages when each ECPVQ design is
used to encode the training sequences. In this case, the ACL de-
sign of ECPVQ provides major improvements over H.263. The
evolution of the CL and ACL performance with the number of
iterations is shown in Fig. 9.

Figs. 10 and 11 give subjective comparisons of a sample
frame from the two sequences Salesman and Akiyo, respec-
tively. While blocking artifacts are clearly visible in the H.263
coded Salesman frame, this effect is significantly reduced in the
ACL-designed ECPVQ coded frame. For the Akiyo frame, it
can be seen that some of the fine details of the image are better
reproduced by the ECPVQ coder, while H.263 causes blurring
of such regions (see, e.g., the earring and the eyes). Note that
the complexity of ECPVQ system for low bit rate coding can be
reduced by exploiting the fact that a large fraction of residual
blocks get quantized to zero. Other fast methods also exist in
the literature (see, e.g., [24]).

VI. CONCLUSION

This paper describes a new approach to training predictive
vector quantizers, which does not suffer from the statis-
tical mismatch typical of OL training algorithms, nor from
the instability of CL approaches. The proposed iterative
ACL algorithm is open-loop in nature but asymptotically
optimizes the closed-loop system. Simulation results were
presented for a simple ECPVQ system for video coding, and
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Fig. 10. Subjective comparison of a frame of the Salesman sequence: (a)
original, (b) H.263, and (c) ECPVQ.

A
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Fig. 11. Subjective comparison of a frame of the Akiyo sequence: (a) original,
(b) H.263, and (c) ECPVQ.

showed the superiority of the proposed design algorithm over
conventional approaches. Further results demonstrate that
ACL-designed PVQ video compression system outperforms
standard DCT-based video coding. It is expected that test
set performance will be further improved by more extensive
training with longer training sets. An important extension
under investigation is that of adaptive PVQ which can exploit
variation in local statistics. We are also examining the use of
multistage codebooks in the design and use of PVQ to further
reduce complexity.
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