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On Zero-Error Source Coding With
Decoder Side Information

Prashant KoulgiStudent Member, IEEEErtem Tuncel Student Member, IEEE
Shankar L. RegunathaMember, IEEEand Kenneth Rosé-ellow, IEEE

Abstract—tet (X, Y') be a pair of random variables distributed Witsenhausen initiated the investigation of the zero-error
over a finite product set V. x W according to a probability dis-  side-information problem in [27], where he characterized the
tribution P(z, y). The following source coding problem is con-  sjde.information structure as a confusability graph defined on
sidered: the encoder knowsX, while the decoder knowsY and o <0 rce alphabet. With this characterization, fixed-length
wants to learn X without error. The minimum zero-error asymp- .~ ~. . . .
totic rate of transmission is shown to be the complementary graph S'de"nformat'on codes were ?qu'valent_ to COIO”ngS of the
entropy of an associated graph. Thus, previous results in the lit- associated graph. Alon and Orlitsky considered variable-length
erature provide upper and lower bounds for this minimum rate  zero-error codes in [1]. They defined two classes of such
(further, these bounds are tight for the important class of perfect codes, where the second class is obtained as a subclass of the
graphs). The algorithmic aspects of instantaneous code design arefirst py restricting the structure of allowed codes. Along with
considered next. Itis shown that optimal code design iV .P-hard. - o¢apjishing upper and lower bounds on the rates of scalar
An optimal code design algorithm is derived. Polynomial-time sub- . g .
optimal algorithms are also presented, and their average and worst codes, they characterized the minimum asymptotic rate needed
case performance guarantees are established. for the subclass of codes above as the graph entropy [19] of
the associated graph. But a single-letter characterization of the
minimum asymptotic rate for the class of all variable-length
codes remained elusive.

Building on a partial characterization established in [1], in
Section 11l we show that the minimum asymptotic variable-

I. INTRODUCTION length coding rate for the side-information problem is ¢ben-

lrementary graph entropyf the associated graph. This quantity

HE problem of zero-error source coding when the decod® ) N ; .- L
has side information unknown to the encoder is conside> defined by Korner and Longo, [19], in their investigation

. of a two-step source coding problem. Since no formula is cur-
ered. With the advent of networks (such as the Internet), d'r%'ntly known for the complementary graph entropy, our results

tributed storage and retrieval of very large databases is sgfi},qt yield a single-letter characterization either. But they fur-
as a promising application. Recently, this has renewed interggl; sirengthen the close connections between the zero-error
in multiterminal source coding frameworks such as distributegye-information and zero-error capacity [24] problems, as we
source codes (see, for example, [29], [17], [23]). The scenaf@cuss next.

of theside-information problem-where the encoder tries to ex-  Associated with the zero-error versions of both the channel
ploit side information about the source available to the decodssding and the side-information problems are graphs defined on
but not to itself—is important both as a canonical distributeithe corresponding input alphabets. The duality of the indepen-
source coding system, and as a fundamental building blockdsfnce number (size of the largest edge-free induced subgraph)
more intricate real-world systems. The zero-error version 8fd the chromatic number (minimum cardinality of a partition
this problem, apart from its significance in practical applics2f the graph into edge-free induced subgraphs) of a graph is

tions, has also been studied due to its connections with badf!l known (see [3]). Witsenhausen showed in [27] that the min-

graph-theoretic quantities. imum fixed—length zero-error side-information rate (briefly, the
zero-error rate) is the limit of the normalized chromatic numbers
of normal powers of the underlying graph. In [24], Shannon de-
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numbers of high-probability induced subgraphs in the normalDistinctz, 2’ € V areconfusabléf there is ay € W such
powers of the underlying graphs. Marton showed, in [22], th¢tatP(x, y) > 0 andP(z’, y) > 0. Two confusable letters may
the complementary graph entropy and the zero-error capaciiyt be assigned the same codeword in any valid code. Thus, con-
within a distribution of an arbitrary graph sum to the entropfusability defines a binary-symmetric relation on the letters of
of the underlying probability distribution. Thus, determination, witsenhausen [27] captured this confusability relation of the
of either quantity directly yields the other one. Further, betteburce paif X, V) in thecharacteristic graphi. G = (V, E)
understanding of either one of the two quantities—zero-errgf defined on the vertex sét, and distinctz, 2/ € V are con-
fsid.e-info.rmation rate or zero-error capacity—may lead to neyécted by an edge if they are confusable. The @@irP) de-
insights into the other. notes the probabilistic graph consisting®t= (V, E) together
While no formula is currently known for the complementary,;ity the distribution? over its vertices. (Here we denote also
graph entropy (such a formula would also immediately yield@,p the marginal distribution ofr".)
formula for the zero-error capacity), upper and lower boundsysarigple-length codes for the side-information problem were

have been studied in [19] and [22]. Further, it was shown in [1Q}iroduced by Alon and Orlitsky in [1]. They defined two fami-
that these bounds are tight for the widely studied class of perfggk of pinary variable-length codes.

graphs. . _ . _

Complementary to the asymptotic analysis considered abovel) A restricted 'nEUtS(RD code for(lG, P) is a mapping
is the design of optimal codes for finite block lengths. For pre- ¢V — {0, 1} SHCh that if{z, 2’} € E then¢g(z) is
vious work on constructive code design, see [29], [17], [23],and ot & prefix of¢(a").

[28].. Our approqch is different from these, in that we emphasize 2) Anunrestricted input§Ul) code for(G, P) is a mapping

design compIeX|ty. as well as cod'e performance. In Section IV, ¢:V — {0, 1}* such that, for every distinct pait =’ €V,

we show that op_t|mal code_de3|gn NP-_hard f(_)r both the ¢(x) is not a proper prefix of(z'), and, if {z, '} € E,

classes of codes introduced in [1]. Thus, if the widely held con- theng(z) # ().

jecture thatP # N P is true, no polynomial-time optimal code

design algorithm exists. (These definitions generalize in the obvious way to the case of
In some applications, optimal code design may be desiraigry codesk > 2.)

even at the cost of high design complexity. Examples includeVU! codes, which form a subclass of the class of Rl codes, may

applications where the size of the source alphabet is small, gifiPreferred to the latter in some applications. Since the code-

design is off-line. In Section V, we develop an optimal cogword set is prefix free, Ul codes protect against loss of synchro-

design algorithm based on recursively building up the optimgization if the side information at the decoder is occasionally

code for the entire graph from optimal codes of its subgrap¥¢rong. On the other hand, the use of an RI code in such appli-

Analyzing this algorithm, we show that it has exponential (in theations may lead to catastrophic errors. The motivation behind

size of the source alphabet) worst case complexity, and deridse two classes of codes is discussed in more detail in [1] (also

the value of the exponent. see [12] for a communication complexity viewpoint).
Polynomial-time suboptimal algorithms may be of interest The rate of a code is the expected number of bits transmitted

when large graphs are encountered. We explore two different TN )

strategies toward the development of such algorithms in i) = Z P(@)lé()l.

Section VI. Our first strategy is based on approximate graph

coloring. Of the two such algorithms we propose, the firsie denote byl.(G, P) (£(G, P)) the minimum rate of an RI

guarantees good worst case performance, while the secon@p code for(G, P)

extremely simple, and promises good performance for most _ - )

inputs. As a second strategy, we develop a class of algorithms E(G P) = min {f(@: ¢ is an Rl code fo(G, P)}

to design codes by approximating a lower bound on the optimal  £(G, P) = min {I(¢): ¢ is a Ul code fo(G, P)}

scalar coding rate established in [1]. Code performance can - - .
d call the codes attaining these minima the optimal codes.

then be traded off against design complexity by suitab = —
choosing an algorithm from this class. ?{:} general, we writelx(G, P) and Ly(G, P) for the cor-

We formulate the problem and establish notation in Sectiongs’go;di”_gzmigm;m rac';%s (;df}gr{CzOdeé(kp > 2). Thus,
All our results are then summarized in Section Ill. In the co -(W’ h) - tr12(t , P)andL(G, P) = Ly(G, P).)
cluding Section VIII, we remark on a few open problems. ¢ have tha

zeV

L(G, P) < L(G, P).
Il. PRELIMINARIES
To define variable-length block codes, we extend the notion

Let{(X;, ¥;)};Z, be a sequence ofindependent drawings gt ..\ sanility to vectors. Thus, distinct

a pair of dependent random variablEs Y. Here(X, Y') take

values in the finite product sét x W according to the proba- " = (21, T9, ..., Ty) EV"

bility distribution P(x, y). Itis desired to en_code the sequence 2 = (2, &, .. Th) VT

{X,} such that the decoder can decodevithout error. The

special assumption made here is that the decoder has accessd@onfusable iff every distinct paig;, x%),i = 1,2, ..., n

the side informatiodY; }. We will call this theside-information is confusable. The characteristic graph {of™, Y™) is then
problem the so-calledh-fold normal power of G, denotedG™. G =
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(V™. E,), with, for distinctz™, /™ € V", {2™, 2"} € E,, iff on probabilistic graphs: trgraph entropyH (G, P) (previously
{z;, %} € E for all distinct pairs(z;, =}),i = 1,2, ..., n. definedin[18]) and theomplementary graph entrogy(G, P)

Note that the normal power is also referred to asathie power (this is also referred to as the co-entropy orthentropy in the
in the literature. We denote hi™ the product distribution in- literature). They showed that these quantities characterize the

duced onV" by P minimum asymptotic rates for the coding problems they consid-
n ered. While Korner derived a formula féf (G, P) in [18], no
P"((z1, w2, ..., Tn)) = HP(‘“)' formulais currently known fofl (G, P). Marton, in her investi-
i=1 gation of the zero-error capacity of a probabilistic graph [22], re-

The previous definitions of Rl and Ul codes f6&, P) may vealed the close connection between the complementary graph
now be extended to RI and Ul block codes 6i", j)n)_ entropy and the zero-error capacity [24]. Thus, a formula for

We shall briefly summarize some standard notations and cdfi€ complementary graph entropy of an arbitrary probabilistic
cepts from graph theory, which we will use extensively in tharaph would imply, via her results, a formula for the zero-error

sequel (see, for example, [3]). We assume that all graphs SfPacity of the corresponding graph. This, in turn, would re-
undirected and have no loops or multiple edges. For our pL§|leeamajorunsolved problem of information theory and graph

poses, these assumptions do not entail any loss of generalfgory- _ ,
Two distinct nodes are connected @—the complement of  UPPer and lower bounds faf (G, P) have been studied
G = (V, E)—if they are not connected i&. The subgraph by Csiszar, Kérner, Marton, and others. In [19], Kérner and
Q' = (V7’. E') induced inG by a subseV’ C V is called an Longo established bounds féf (G, P) in terms of H(G, P)

induced subgraphA subset of the vertex sgétis an independent andH (G, P)

set ofG if itinduces an edge-free subgrapttnLeto(G)—the H(P)-H (G, P) <H(G, P)< H(G, P), 3)
independence numbef G—be the maximum size of an in- )

dependent set aff, and lety(G)—the chromatic numbeof ~(Where(P) is the Shannon entropy df). We show that the
G—be the minimum cardinality of a coloring @, i.e., a par- lower boun_d al_)ove may be derived by_ recognizing its equiva-
tition of V' into independent sets. It is clear thetG) < y(G) lence to a side-information problem. Csiseéal., [10], showed
anda(G)x(G) > |V|. G is aperfectgraph if y(G') :_a(@) that both the bounds in (3) are tight for all distributiaRsf the

for every induced subgraph 6f. For the extensive literature on9"@PhG is perfect. Thus, perfect graphs satisfy an optimality

perfect graphs, see [3], [20], and the references therein. condition for zero-error side-information coding, as we show.
Finally, note that all logarithms are to base two, unless me¥e &/s0 provide an example where neither bound in (3) is tight.
tioned otherwise. Other bounds fo (G, P) include those of Marton in [22],

in terms of a generalization of the Lovag#unctional [21] to
probabilistic graphs. These bounds are also tight if the under-
lying graph is perfect.

Ill. SUMMARY OF RESULTS
A. Characterization of Minimum Asymptotic Rate

Let Z(G™, P™) denote the minimum rate of an RI code fo?- Design and Analysis of Codes
(G, P™). The minimum asymptotic rate per source letter re- In [1], it was shown that an RI code f¢t7, P) may be in-

quired for the side-information problem is terpreted as a coloring @¥, followed by one-to-one encoding
T(Gn, P of the colors. Similarly, a Ul code is a coloring 6f followed
R*(G, P)= lim —————=. (1) Dby prefix-free coding of the colors. But in neither of these cases
n—oo n

o o does the optimal code necessarily induce a coloring efith
(Note that, by subadditivity, the limit exists.) the minimum number of colors. Consider theolorable graph

The characterization ok* (G, P) was first considered by i Fig. 1. The optimal binary RI code (which, in this case, is the
Alon and Orlitsky in [1]. They defined thehromatic entropy game as the optimal Ul code), also shown in Fig. 1, induces a
of a probabilistic graphfZ, (G, P), as the minimum entropy of coloring with four colors.

its colorings. They then showed that Considerk-ary coding of a given probabilistic graghy, P),
n. P wherek > 2 is fixed. Let|V| be the cardinality of the vertex set
RYG, P) = lim (G P") wiheret > V] y
n—oo n .
An efficient algorithm for the design of optimal prefix-free

but a single-letter characterization Bf (G, P) remained elu-
sive. g (@ P) codes (“Huffman codes”) was discovered by Huffman in [16].

While we are also unable to derive such a characterization,Vi\qa consider the corresponding design pro_blems for RI and_UI
Section IV we build on the results of Alon and Orlitsky in [1]c0d€s: Note that Rl and Ul codes may be viewed as generaliza-

to equate the minimum asymptotic rate to twnplementary tions _of prefix-free codes: for a complete graph (where every
graph entropy H(G, P), of the characteristic gragii, P). In noge is C(l)lnnected tho ev<fary o;_hefr node)a the clashsesr(])f RI ?fnd ul
particular, we prove that codes collapse to that of prefix-free codes, so that the Huffman

R algorithm may be used to design the optimal code. By contrast,
lim H,(G", P) =H(G, P). ) _for arbitrary(G, P), we showthatd_esign ofthe optimal RI c_:ode_
n—oo n is N P-hard (the various complexity classes considered in this
Motivated by a two-step source coding problem, Kdrner arghper are discussed in detail in [13]). Similarly, optimal Ul code
Longo considered in [19] two information-theoretic functionaldesign is alsaV P-hard.
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drawing on the rich literature on approximate graph coloring,
we demonstrate that good suboptimal codes can indeed be de-
signed via this approach.

Let Ppax and Py, be the maximum and minimum probabil-
ities underP, and define

d (G) =1+ maximum degree off.

If G can be colored with(G) colors, we show that this coloring
can be translated into a Ul code f@#, P) of rate£ such that

y L-Z(G, P) < 2+ 1og {«(@)d (G) Poax} (@)
111 and
0 " L - L(G, P) < 3.4427 + log {¢(G)d (G) Prnax}
110 +log{l —log Puin}. (5)
0 To minimize these bounds, we suggest use of the approximate
() graph-coloring algorithm of Halldérsson [15] which has the best

currently known worst case performance guarantee. (It may be
noted that the algorithm of [15] colors an arbitrary graplon
|V| nodes with fewer tha (X710 g VD) colors.)

In practice, worst case performance guarantees may be pes-
simistic, since worst cases occur infrequently. Motivated by this

IsLi(G, P) < L? observation, we use a standard random graph model to analyze
a simple coding algorithm, which is based on greedy coloring,

Aisin NP since, given a code fdiGG;, P), it is easy to check and show that it produces, on average, a Ul code ofZatth
if it is a valid Rl code, and if the rate of this code<4aL. Ex- o ,
ploiting the connections between RI coding and graph coloring, L—L(G, P) <2+log == (6)
we reduce, in polynomial time, the well-know¥iP-complete mm
problem of grapts-colorability [13] to A. Thus, problemd is, _ _
in fact, N P-complete and, correspondingly, optimal Rl code de£ — L(G, P) < 3.4427 + log P +log {1 —log Puin}.
sign is N P-hard. o )

For the design of binary Ul codes, we are able to prove a ) _
stronger hardness-of-approximability resufiG, P) cannot In'Fhe second ap_progch to the deS|gn_0f supopnmal codes, we
be approximated to withii/3 bits unless” = N P. More pre- consider the following inequality established in [1]:

cisely, we show that the following problem A P-hard: H(P)-H (G, P) <L(G, P) < L(G, P)

Fig. 1. The node labels in (a) indicate probabilities witkt 1/4. In (b) they
indicate optimal codewords.

Consider the following coding problen:

Find a binary Ul code of rat€ with where H(G, P) is the graph entropy ofi. We show that
L - L(G, P) < 1/3 — e bits, for fixede > 0. the lower boundH (P) — H(G, P) may be interpreted as a
rate-distortion function [4], and thus may be calculated using
A similar lower bound on polynomial-time approximability carthe Blahut—Arimoto (BA) algorithm [5]. Since exact calculation
also be proved fok-ary Ul coding wheré: > 2. of this quantity may be computationally intensive, we propose
In practice, optimal codes may be desirable if the underlyirggclass of approximating algorithms of increasing complexity.
graph has a small vertex set, design is off-line, and complexifye then show that suboptimal RI codes may be designed as
is not a significant constraint. On the other hand, fast approxiy-products of these algorithms.
mate (i.e., suboptimal) algorithms are needed for the design of
codes for large graphs. This motivates the consideration of both V. MINIMUM ASYMPTOTIC RATE AND THE
optimal and approximate coding algorithms. COMPLEMENTARY GRAPH ENTROPY
We develop optimal RI and Ul coding algorithms via struc-
are based on effcent recurave search or optmal code of [UEreC = (V2 E)). H,(G. P), was defined in (] I s a
P unction defined ovelV/, thenc(X) is a random variable with
duced subgraphs ¢f7, P). Further, we show that these algo-entropy
rithms can be implemented to design the optifary RI/UI )
code in worst case tim@((k + 1)IV1). Hic(X)) = Ple=1 ()11
Turning then to the development of fast design algorithms, (X)) 7;:‘,) [ (]es Ple=(7)]
we pursue two distinct approaches. In the first approach, we L )
consider approximately coloring the given graph, then Huffmakherec™ " is the inverse of, and for C V/
coding the colors. The example in Fig. 1 shows that this separa- PU) = Z P(x).

The chromatic entropy of a probabilistic graglks, P)

tion is not justified in the case of optimal code design. But, by el
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Definition 1: The chromatic entropy diG, P) is the lowest Assume that some pairs of elements of the alphabet are distin-
entropy of any coloring of7 guishable, while some others are not, andiddie the graph on
. o . V where connectedness means distinguishability (note that this
Hy(G, P) = min{H(c(X)): cis a coloring 0fG}. graph is different from the characteristic graph defined earlier).
We want to encode the-length source vectak™ in two steps.
In the first step, an encoding functighon V™ is used, and it
is required that, on the basis §fX"), the decoder be able to
determine a sequendg that is, with high probability, indis-
Lemma 1: tinguishable fromX™ in every coordinate. Call an encodgr
n hn N o ) achieving this goal ¢-faithful.” In the second step, we want to
H,(G", P")=log {Hy(G", P") +1} ~log e < R, encodeX™ by an encoding functiog such that the following
R, < H(G", P") + 1. (8) holds: the encoded sourgéX™), together with ararbitrary
Proof: Let ¢: V™ — {0, 1}* be a code forG, P). If Q—_falthful encoding _ofX", determmegX_" with high pro_ba-
distinctz”, =™ € V™ are confusable and, further,¢{z") = bility. It was shown in [19] that the minimum asymptotic rate

#(z'™), then the decoder cannot distinguish betweeandz” needed for such a “complementary encoding” in the second step

and¢ is not uniquely decodable. In other wordspifs uniquely is H(G, _P)- _ o
decodableg(z") = ¢(2'™) for distinctz™, /" implies thatz” We will also need the following generalization of the zero-

andz’™ are not connected ™. Thus,$ may be written as the error capacity [24_1] tg probab.illistic graphs. This quantity was
composition of a coloring ofi” and a one-to-one encoding ofiNtroduced by Csiszar and Komer in [9] to study the capacity
the colors. Equation (8) now follows from the upper and lowd} an arbitrarily varying channel with maximum probability of
bounds established in [2] on the rates of one-to-one codes. €O’

Identical bounds as in (8) were proved in [1] for the restricted Definiti_onnB:_ Let 7" (P, ¢) be the set of (‘P./ne)-typic_al” Se-
class of instantaneous codes, and were then used to calculatdHfnces i™, €., the set of sequences < V" for which the
minimum asymptotic rate of such codes. We can, therefore, piRAuencyr (ilz") of each element € V' satisfies

Let R,, be the minimum rate of aniquely decodablé.e., not
necessarily instantaneous) code (6", P™). The following
lemma bounds,, in terms of H, (G", P™).

allel these calculations, to determine the minimum asymptotic |r(i|z™) — P(i)| < e.
rate for uniquely decodable codes. Let G™(P, €) be the subgraph a#” induced byZ (P, ¢).
Lemma 2: Definition 4: The capacity of the grapf¥ relative toP is
R*(G, P)= 1 B _ li LNCAE ) 9 1
(@, P) = noe | meeo n ) C(G, P) = }g% lim sup - loga(G™(P, €)). (11)

Proof: The proof is identical to that of [1, Lemma 6] -
Since the same asymptotic rate as in (9) is achievable wi We will need the following relation betweeli (G, P) and

instantaneous codes, Lemma 2 shows that the possibly lar g’ P) estabﬂshed by Marton in [22]

class of uniquely decodable codes offersasgmptoticadvan- H(G, P)+C(G, P)=H(P). (12)

tage. While this situation is identical to that obtained in reg- consider a fixed-length encoding function

ular lossless source coding, we are unable to answer whether N R

uniquely decodable codes also offer no advantage in the case of Fvr—=AqL2,..., 2"}

finite block lengths. for G*=(V™, E,,) of which we require the following property:
We will now derive an alternate characterization of the limif {z", 2/} € E,, then, with high probability/ (z™) # f(z'™).

in (9). To do so, we consider the complementary graph entropyfollows from (10) that the minimum rate requiredi§ G, P).

which is an information-theoretic functional on probabilistié¢n the following theorem, we show thaf (G, P) is also the

graphs defined in [19]. minimum rate required iff is allowed to be a variable-length

; H noon ) r(In
Definition 2: The complementary graph entropy (@, P) Sncoding function, bufz™, 2™} € En = f(a") # f(=™),

is the normalized logarithm of the “essential chromatic numbglrways'
of G™ with respect taP,” i.e., the number Theorem 1:
_ 1 _
H(G, P) = lim i —1 i G"(A R*(G,P)=H(G, P 13
(G, P) = lim lmsup = log | min  x(G"(4)) (G, P) = H(G, P) (3)

(10) whereR*(G, P) is defined as in (9).
Proof: We will show that

M = H(G, P).

whereG"(A) is the subgraph induced &™ by A C V™.

Thus,G™ has a high-probability induced subgraph which can nli_{go -
be colored with approximatelg™(¢: ) colors. Kérner and _ _ _ o
Longo used this fact in [19] to show that the complementalye claim thatH (G, P) is not smaller than the limit on the
graph entropy is the rate required for the following two-stel§ft-hand side. Fix > 0. Let
source coding problem: Consider a memoryless source emitti o 1 . n
symbols from a finite alphabéf according to a distributio. %g‘(G’ P)= h,rflsip n log AQV”,IIB}?A)Zl—e (@A)
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Then, for any fixedd > 0, for eachn > n(6) there is a subset  Substituting (16) and (17) in (15)
A C V™ with P*"(A) > 1—¢, and a coloring: of G™ satisfyin n pn
<V ) 2 1 ng VNG ey (V)
(14) - 4ne?

|C(Gn(A))| < Zn{ﬁ((G, P)+6}. n
Forz™ € V™, define the functiord: V" — {0, 1} as -{H(P) 1 log a(G"™(P, €)) + €|V log e} .
1, if 2" € A L "
O(z") = { Taking limits
0, else.
Thus, @ is the indicator function ofd. Estimating the entropy lim w > H(P)—C.(G, P)+¢€|V]loge

of the coloringe

H(c(X™)) < H(®)+H (c(X")[®) )
<H(®)+H(c(X")|X"€A)+eH(c(X™)| X" ¢ A) C.(G, P) = limsup - log a(G™ (P, €)).
<1+n {H.(G, P)+6+¢log [V _ . - .
- +n{ (G, P)+é+elog | |} Since this is true for every, the result follows by letting — 0

where we used (14) in the last step. But, by the definition of thgd using (12). O
chromatic entropy

whereC,(G, P) is defined as (cf. (11))

While no formula is currently known fofl (G, P), upper
H,(G", P") < H(c(X™)). and lower bounds were studied in [19], [10], and [22]. We shalll

Normalizing byn and taking limits, the claim follows. consider here the bounds in terms of the graph entropy in some

Now consider the reversed inequality. We Iower-boungjeta”'
H,(G™, P") in terms of the maximum size of an independent Definition 5: The graph entropy ofG, P) is the number
set induced by " (P, €) in G™. But this size is related to the )
capacityC(G, P), and the inequality will then follow from H (G, P) = min{I(X; 5): X ~ P, X € § € 5(G)}. (18)
(12). Let us fill in the details. Fix > 0. Let the coloring

functionc on G™ achieve, (G", P™), so that .H.ereS(_G) is the collection of indgpendent sets Gf The
Lo . minimum is taken over all random paif’, S) such thatX has
H\(G", P") = H(c(X")). distributionP, S takes values i (@), and the random verteX

To lower-boundH (¢(X™)), we use the following e|emem(m,belongs to the random sg&twith probability 1. In [18], Kérner

lower bound for the entropy function: @ is a probability dis- provided an alternate definition &f (G, P) interms of normal-
tribution over the se®, andS C O, then ized chromatic numbers of co-normal powerggfanalogous

to the definition of H (G, P) in (10). We will not need this in-

. . terpretation off (G, P) here.
H(Q) 2 - {Z Q(J)} log gy Q)- Korner and Longo showed in [19] that
jes
H(G, P)>H(G, P)>H(P)—H (G, P).  (19)

Thus, we have the following estimate f&F, (G", P™):
H((X™) > —P"(T"(P, ))log  max_ P"(c(z")) We shall give a different proof of the lower bound to bring out

aneTn(P,e) ' its simple side-information coding interpretation.
(15) _
But the set of P, ¢)-typical sequence®™ (P, ¢) captures most ~ -€mma 3:
of the probability [11, p. 34] H(G,P)>H(P)-H (57 p) _ (20)
P"(T"(P,€) >1— 4|V|2, (16) Proof: Let X ~ P, and letS be jointly distributed with
ne ral

) ) ’ o X such thatX € S € S(G). Thenitis clear that the character-
single-colored subset af" (P, ) cannot exceed(G" (P, €)),  of G. Consider now independent drawings of the random pair
the size of the largest independent set induced@ ByP, ¢) in (X, S). Suppose first that the decoder knai/s, while the en-

G". Thus, coder knowsX ™, and the conditional distribution ¢f given X'.
max  P*(c(z™))<a(G*(P, €)) max P"(z") If an eventually vanishing nonzero probability of error is per-
zm €T (P, e) zn €T (P,e) mitted, Slepian and Wolf showed in [26] that the encoder must
< a(G™(P, ¢))2 il H(P'HD(PIP)}  transmit at a minimum rate df (X |.S) to conveyX ™ to the de-
< a(G™(P, 6))2—n{H(P)+e\V| log €} coder. Suppose next that the encoder knows only that the condi-

tional distribution ofS givenX satisfiesX € S € S(G). Then,
(17) maximizing over all possible choices 6f the encoder needs to

where the minimization is over the set of probability distributransmit at a rate of not less than

tions{P’: |P'(i) — P(i)| < e Vi € V'}. We use a well-known —

formu{la fo|r th(e)probéb)ihity of a typicgl sequence [11, p. 32] in max {H(X|S): X~ P, X € §€5(G)}

the second inequality, and the uniform continuity of entropy [11f,a vanishingly small probability of error is permitted. But, from

p. 33] in the third. (18), this is the same d¢(P) — H(G, P). Now, if zero error is
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required, by Theorem 1, the encoder needs to transmit at a reaene N P-complete problem can be transformed to it in poly-
of no more thanf (G, P) and the lemma follows. 0 nomial time. AnN P-hard problem is “at least as hard” as the
N P-complete problems, since it cannot be solved in polyno-
mial time unless” = NP.

Fix & > 2. We consider the complexity of the following
%(_)ding problems.

In aremarkable paper [10], Csis&iral. proved that equality
holds in both the inequalities of (19) for all distributiofsif
G is perfect. Thus, perfectness @fis sufficient to guarantee
equality in (20). The necessary conditions for equality are u

known at present. (A) INSTANCE: GraphG = (V, E), distributionP onV,
We now provide an example of a probabilistic gragh P) and a positive real numbdr.
for which neither bound of (19) is tight. QUESTION: Is there &-ary RI code for(G, P) of
rate< L?

Example 1: Let G = Cj; be the5-cycle, andP = P, be the
uniform distribution on its nodes. Since the maximum size of (B) INSTANCE: GraphG = (V, E), distributionP onV,

a setinS(Cs) is 2, H(P,) — H(Cs, P,) < log2. Choosing and a positive real numbér.
the distributiong(s|z) = 1/2 for each of the two edgesthat a QUESTION: Is there &-ary Ul code for(G, P) of
nodez belongs to, we getl (P,) — H(Cj5, P,) = log2. Since rate<L?

the maximum size of a set i§(G) is also2, H(Cs, P,) >
log 5 — log 2. Equality is achieved by settings|z) = 1/2 for
each of the two maximal independent setbelongs to. Now,
let

We will show that both problemd and B are N P-complete. It
follows, as a simple corollary, that the design of optithary
RI and Ul codes isV P-hard.
For the case ok > 2, it turns out that a simple observa-
) 1 n tion proves bottd and B to be N P-complete. After disposing
c(G) = Jim n log a(G") this case in Theorem 2, we treat the binary coding cases sepa-
rately in Theorems 3 and 4. The proof for the binary Ul coding

be the zero-error capacity of a graph[24]. It is clear that case yields a slightly stronger result, in that it brings out the
C(G, P,) < C(G). Lovasz showed in [21] thal'(C5) = N P-hardness of finding even “good” suboptimal codes. This
3 log 5. But Shannon’s construction [24], which achieves thgatement is made precise in Corollary 1. Throughout, we will
capacityC'(C;), uses each vertex the same number of timegpnsider polynomial-time reductions from andd@nd2 of the
so thatC(Cs, P,) = C(Cs). Hence H(C5, Pu,) = H(P.) —  well-known N P-complete problems of grapN-colorability,
C(Cs, P,) = 3 log5. (GNC), for N > 3 [13]:

Putting all these numbers together,
(GNQC) INSTANCE: GraphG = (V, E).

log2 = H(P,) — H (0—57 p“) QUESTION: Is@ colorable withV colors?
1 — i i i i -
< logs = H(Cs, Py) We will assume throughout this s_ect|0r_1, without loss of gener
2 ality, that the graphs under consideration do not have isolated
- ]
< log % — H(C{H Pu)- D VertlceS.

Theorem 2: ProblemsA and B are N P-complete for fixed
_ _ _(i.e., prespecifiedf > 2.
Bounds forH (G, P) have also been studied by Marton in' praof: Note that, in ak-ary (Ul or RI) code of rate

[22]. She derived upper and lower bounds in terms of a gener@gk k = 1, each codeword is composed of a single letter from

ization of the Lovasz-functional [21] to probabilistic graphs, " ...,k — 1}, and no codeword composed of more than
and showed that these bounds also coincide for all distributiofige |etter exists. This observation leads to a simple proof. Thus,
Pif G is perfect. let G = (V, E) be given as an instance 6GfNC. Consider
(G, P), where P is an arbitrary distribution oV/. Further,
V. HARDNESS OFOPTIMAL CODE DESIGN setk = N, andL = log N. If G is k-colorable, then succes-
sive color classes may be assigned codewords from among

The complexity classe® and N P are well known (for an
in-depth discussion see [13]), so we will confine ourselves
their rough, working descriptions. A problem belongs to th
classP if it can be solved in time bounded by a polynomia]

in the size of the input. It is iV P if a guessed solution can be oD .
e . graphN-colorability is N P-complete for every fixedv > 2.
verified in polynomial time. Clearly?” c N P. But proof of the The argument is identical in the case of Ul coding. O

long-standing conjecture that the inclusion is strict has not been

forthcoming; in fact, this problem remains a major challenge in Consider now the cage= 2. Note that the probler@ NC'is

computer science. equivalent to asking if binary codewords can be assigned to the
N P-complete problems are the “hardest” problemsVil?  vertices ofG, such that connected vertices get different code-

in the following sense: if any singl& P-complete problem can words, with maximum length less thdng N. On the other

be solved in polynomial time, theadl problems inNV P can so hand, problemsi and B consider expected lengths of the as-

be solved. A problem, not necessarily MP, is N P-hard if signed codewords. These quantities coincide if all the lengths

0,1, ..., k— 1} to obtain an RI code of ratieg k = log N

its. Conversely, if an Rl code f@(7, P) of ratelog k = log N

its exists, then distinct codewords can be identified as colors
0 obtain a coloring ofG with £k = N or fewer colors. But
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are1, but may not coincide otherwise. Therefore, since graphThe edge structure of the subgraph induceddy— V in
2-colorability can be easily checked in polynomial time, the preéZ’ enforces the following constraints on the codewasds),
vious proof cannot be extended to the case 2. Instead, in v € V' — V:

the following theorems, we will construct from the instartée 1) d(ia), (ja), andg(k, ) may not prefixp(iy ), #(j»), and

of GNC auxiliary probabilistic graphéG’, P) such that a bi- o(ks), respectively, foll < a # b < 4.
nary RI (Ul) code of a certain rate f@r’, P) exists iff G is 2) ¢(j.) may not prefixp(ky) for 1 < a, b < 4, andvice
N-colorable. versa
Theorem 3: ProblemA is N P-complete fork = 2. 3) ¢(ia) may not prefixp(jy) or ¢(ky) for1 < a # b < 4,
Proof: Let G = (V, E) be an instance o NC, with ~ andvice versa -

N = 4. Write [V| = n. Construct the auxiliary grap’ = It is easy to check tha_, cy  [4(v)| is minimized by
(V', E') as follows: choosing
V! =V U {iy, da, is, ia}U{j1, jo, g3, jat ULk, ko, ks, ka}  B(i1) =00, §(iz) = 01, ¢(iz) = 10, ¢(ia) = 11
E' =EU {{ia, iv}, {Ja> Jo}> {ka, kp}: 1 <a #b< 4} ¢(j1) =000, ¢(j2) = 010, ¢(js) = 100, ¢(js) = 110

U {{ias G}, {ias ks): 1< a#b < 4) B(k1) =001, ¢(ks) = 011, ¢(ks) = 101 and ¢(ks) = 111.

U{{Jja, kp}: 1 <a, b < 4} Correspondingly(¢) may be calculated as

U{{ja,v}:1<a<4,veV} B . 1—¢

l =— 4-248-3
wherebyl <a#b<4wemean <a<4,1<b<4, and (¢) n§|¢(v)|+ 12 { + }
a # b. Thus, the subgraph inducedd# by 8(1—¢) ¢
o o ==+ ld(v)].
{i1, 42, i3, ia} U {J1, Jo, J3, Ja} U {k1, ko, k3, ka} 3 n =
is obtained by removing the edgés,, j.} and{i., k.}, 1 < Now consider assignment of codewords to node¥ irSince
a < 4, from the complete graph on those 12 nodes. everyv € V is connected tap(j,), the pair{¢(j.), #(v)}
Next, assign the probability distributiaR on V' such that, should be prefix free fot < a < 4 andv € V. On the other
forv e V’ hand, the pair§¢(i.), ¢(v)} and{¢(k.), ¢(v)}, 1 < a < 4,
< ifoeV v € V, do not need to be prefix free.
Pv) = { T, olse Suppose now thatsy is 4-colorable. Then the four color
12 :

classes may be assigned codewands, 011, 101, and 111,
Letg: V' — {0, 1}* be the optimal binary Rl code f¢6’, P). respectively, so that

We hope that) also minimizes) _, .y _y- |#'(v)| over all pos- _ 8(1—¢) ¢ 8+ ¢
sible binary Rl codeg’ for (G’, P). This can be guaranteed by (¢) = g todn=——
choosinge < ﬁ since for such a choice efand any bi- )
sk Conversely, suppos@ is not4-colorable. Theng(v)| > 3 for
nary Rl codey’, if
at least one node € V, so that
Z lp(v)] > Z ¢’ (v)] _ 8(1—¢€) e € S+e
VeV —V veVI—V () > +—-3n+-> :
3 n n 3
then Thus, G is 4-colorable iff there exists a binary Rl code for
1—e € (G', P) of rate &= bits. O
= > )+ > 14(v)] o . | |
eV =V [ Construction of the auxiliary graph in the previous theorem
1—¢ . is slightly involved since, in an RI code, some codewords may
- ( B Z |¢' (v)| + - Z |¢’(v)|> be proper prefixes of others. In contrast, the construction for the
eV -V veV binary Ul coding case is simpler, as shown in the proof of the
1—¢ ) following theorem.
12 ueg/:—v )l = UG‘Z,:_V )l Theorem 4: ProblemB is N P-complete fork = 2.
Proof: Let G = (V, E) be an instance o NC, with
_c ()] — N = 3. Construct’ = (V', E’) as follows:
(w3 wo)
l—ev € ' V,:VU{ilvi%iS}
=12 En((n—i_ 3 -1 E' =E U {{i1, ia}, {11, i3}, {i2, iz}}.
(in the impossible worst case whefi(v)| = n +3 Let |[V| = n. Assign the probability distributio®® on V' such
and|¢(v)| = 1forallv € V) that, forv € V'

and we have a contradiction. - else.

>0 {i, ifveV
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Letg: V! — {0, 1}* be the optimal binary Ul code f¢z’, P). from the above theorem this is not possible unlPss= NP,
We hope that) also minimizesy .y _y, |#'(v)| over all pos- we have the following corollary.

sible binary Ul codeg’ for (G, P). This can be guaranteed by Corollary 1: Let (G, P) be the input. Finding a Ul codg
choosinge < ﬁ since for such a choice efand any binary for (G, P) wit'h ratei(q;) such that '

Ul code¢’, if
- — 1
S ope> Y 1) 9)—£(G P) <3 e
vevI=v VeV’ -v for any fixede > 0 is N P-hard.
then This section focused on the complexity of scalar coding.
One might be concerned about the complexity of block coding,
l—e € where the corresponding graph is/aD power graph, and has
)|+ — v ’
< 3 ,UG‘Z,:_V @) n 1;, 9 )|) a special structure. However, it is trivial to show that optimal
design is still N P-hard in the size of the alphabet, and the
— <1 — € Z |9’ (v)] + £ Z |¢/(v)|> complexity grows at least exponentially with the block length.
3 n
veV' =V veV
1—¢ VI. OPTIMAL CODING ALGORITHMS
— /
-3 ( Z |#()] — Z | (”)|) Optimal coding algorithms for RI codes have previously also
vevi=v vevi=v been considered by Zhao and Effros in [29]. Here, using the
€ Z 1 (v)] — Z 16(v)| language of partition trees, the problem is separated into optimal
n \ & = code design for a given partition tree, and search for the optimal

l—e¢ partition tree. The search itself is simplified by the derivation
> T n((n+3)—1) of necessary conditions for optimality of a partition tree. On
. : . _ the other hand, our approach is again graph theoretic, and is
(in the impossible worst case whsi(v)] = n + 3 apparently simpler. Unlike the algorithm in [29], our algorithms
and|¢(v)| = 1forallv € V) are amenable to complexity analysis.
>0 Let a probabilistic grapHG, P) be given, and lel¢’ =
(V', E') be the subgraph induced @by V' C V. We write

and we have a contradiction.

Suppose thaf is 3-colorable. Ther has only three distinct PG = Z P(v)
codewords, with (sayp(i1) = 0, ¢(iz) = 10, and¢(iz) = 11. vev’
Further for the total probability of the sélt”. Let the distributionPg:
B o 7 p
I(4) < 1—e¢ (1+2-2)+ € on_ £ denote the restriction aP to V’, i.e., forv € V'
. n n P (v) _ p(v)
_5+e e 1) T PEy

3 n

Conversely, suppose thét is not 3-colorable. Thenp has at
least four distinct (prefix-free) codewords. Also, crucially, th
assignment above of codewords of lengthg, 2 to iy, i, and
i3 is no longer possible. Therefore, the réig) is bounded from

We then say that the probabilistic grafif’, Pg-) isinduced in
éG, P)byV' CV.

We will illustrate the derivation of the optimal algorithms for
binary codes. The algorithms can be naturally generalized to
k-ary code desigrk > 2, and we omit the details.

below as Throughout this section, we will use the following compact
1) > 1 ; € (2-3) + % ne1 notation for the weighted codeword length of the subgr@gh
=2—¢ (22) L(G") = P(G")L(G', Pgr)

. . . . E(G/) == P(GI)Z<G/7 PG’)'
Thus, G is 3-colorable iff there exists a binary Ul code for
(G’, P) of rate not above'?% — £, 0 Consider optimal Rl code design. Let V' — {0, 1}* be the
optimal Rl code fokG, P). If iis an arbitrary intermediate (i.e.,

Note that, from (21) and (22) in the above proofis 3-col- nonleaf) node of the code tree corresponding,tave define the

orable, theri(¢) < 5/3 + €(1/3 — 1/n), and, ifG is not3-col-
orable, theri(¢) > 2 —e. The difference in rates between these

two cases is not less than ¢71(i) ={v e V' (v) = i}
6__5_. (1 3 l) _1 (ﬁ B l) bits. ¢~ (ix) ={v € V1 i is a prefix of p(v)}
3 3 n 3 3 n

. o _ ~and write (G, P;,) for the subgraph induced i, P) by
Now, suppose there exists a polynomial-time algorithm whichjs-1(;). Let i0 andi1 denote the two children of Then we
guaranteed to design a Ul code of rate withji3 — ¢’ bits of the payve

minimum rate ¢ > 0). After suitably pickinge, this algorithm
can be executed (i@7’, P) to decide ifG is 3-colorable. Since, L(Gi) = L(Giox) + L(Gi1x) + P(Gix) — P(¢p1(4)).
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Since¢ is theoptimal code, this may be recast as case complexity;’, of the algorithm is determined as follows. In
Step 3, in the worst case, an exhaustive search over all possible
{L(D) + L(Gix — ¢~ (i) — D)} smaller subgraphs would have complex@y2"). Thus,

+P(Gir) = P(¢71(1)).  (23) 3 <|V|

c=>
(The minimization is over all induced subgraph3 r=1
(Vp, Ep) of G — ¢~ 1(3). Gix — ¢~ (i) — D is the subgraph A similar recursive algorithm can be derived for the design
induced byp—1(ix) — ¢~1(i) — D in Gj.) B of optimal binary Ul codes also. The recursive relation (24) is

This suggests a recursive algorithm to fibtl7, P), and the modified in this case to

corresponding optimal Rl code. L&' = (V’, E’) be an in- N y ,
duced subgraph of, and let/ be the set of isolated nodes in L) = pear {£(D) +£L(G" = D)} + P(G")
G’. Then, as in (23), we have

min
DCGin—¢—1(4)

) 02" = oIVh.

r

since the codeword set is required to be prefix free. The termi-

L(G) = Dggp I{L(D) + L(G' — - D)} + P(G") — P(I) nating condition remains unchangeddlf = I

no_
(24) L(G") =0.

_ o N Clearly, the algorithm derived from these recursions again has a

with the terminating condition worst case complexity af(3/V1).
L&) =0 (25) VIl. FAST (SUBOPTIMAL) DESIGN ALGORITHMS

whenG’ = 1. A. Design Algorithms Based on Approximate Coloring

It is not necessary to search over all possible induced subi et (G, P) be given. LetP,,.. and P, denote the max-
graphs in the minimization of (24). imum and minimum node probabilities und&r In prepara-

Definition 6: A 2-partition (D, V — D) of the vertex set of tipn for the performance a_nalysis of suboptimal codjng algo-
a graphG = (V, E) is called adominating2-partition, [7], rithms, we prove the following lemma. (Recall thatG) is the

if every node inV’ — D is connected to some node In, and Size Of the largest independent setGh while d(G) = 1 +
vice versa the maximum degree @f. Clearly,a(G) < d(G).)

Lemma 4: Let ¢: V — {0, 1}* be the optimal RI code for Lemma 5: Let ¢ be a Ul code fo(G, P), of ratel(¢). Let

(G, P), and let] be the set of all isolated nodes 6f Then ¢(G) be the cardinality of the coloring, of G induced byg,
($=1(0%), ¢~ (1%)) form a dominating-partition of G — 1. anda(G) be the size of the smallest color class in this coloring.

Proof: We will show that every node in—"(0) is con- Then we have the following estimates for the suboptimality.of
nected to some node i1 (1x). The lemma will then follow 1) In terms ofa(G) anda(G)

by reversing the roles ¢f and1 in the subsequent arguments. B a(G) P
Note that an isolated node need not be assigned a codeword./(¢) — £L(G, P) <1 + log pte)] + log me”‘ (26)
Anode ing~—1(0) is not connected to any other nodesin® (0x). o i P
It should be connected to some nodepin' (1x); otherwise, it I(¢) — L(G, P) <1 +loge + log M + log —2ex
is isolated inG — I, and the rate can be reduced by moving it to a(G) Proin
I. If anode ing=1(0%) — ¢~1(0) is not connected to any node + log{1 — log Puin}- @7)
in ¢~1(1x), the rate can again be reduced by assigning it the 2) In terms ofe(G) andd(G)
codewordl. o B .
I(¢p) — L(G, P) <2+ 1og{c(G)d (G) Ppax
Thus, the minimization in (24) can be restricted to the domi- (¢) (G, P)<2+ Og{c( ) ( ) }
nating2-partitions of G’ — 1. ) B — Pinaxlog o(G) (28)
Here, we outline a possible implementation of the optimall(¢) — L(G, P) <2+ loge + log {¢(G)d (G) Puax }
binary RI coding algorithm. — Prax log ¢(G) + log{1 — log Ppin }.
Input: (G, P) (29)
1. for r=1:1|V], _
> for i=1:(IV _ Proof: We use the lower bounds fol.(G, P) and
3. calculate L(G;,») from (24) and (25), L(G, P) established in [1]
where G;, - is the ith r-node induced H,(G, P) < L(G, P) (30)
. endS“bgraph of G H (G, P) —log{H, (G, P)+1} —loge < L(G, P). (31)
5. end. Via elementary arguments, the chromatic entropy may itself be
6. Calculate L(G, P) from (24). bounded in terms of(G) as

Note that the previously calculated optimal codes for smaller

subgraphs may be used in the minimization of Step 3. The worst (32)

H\(G, P) 2 log P (G
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1) The following upper bound fof (¢, (X)) is clear: standard random graph models; see, e.g., [6].&gtdenote
1 a graph drawn from this distribution. Ther{G,,) anda(G,,)
H(cy(X)) <log PomalG)’ are, respectively, the size of the largest independent s8t,in

mhn and the smallest number of nodes @f, assigned the same
Since¢ is a prefix-free code for,(V'), we obtain (26) using color by the greedy coloring algorithm.

30) and (32):
(30) and (32) Lemma 6: The sequence of random variables(G,,)} and

1(¢p) — L(G, P) <H(cy(X))+1— H (G, P) {a(Gy)} of random variables satisfy
Pmax o G)
S 1 + log Pmin + log a(G> ' zgg:; —2asn o (33)
Equation (27) similarly follows from (31) and (32). in probability.

2) LetQ = (q1, g2, -+, gm) be & probability distribution Proof: Let T,,(G) denote the number of colors used by
with g1 > g2 > - - . The following upper bound o (Q) i the greedy coloring algorithm to cole?,,. Let A7 (G) denote

easily derived: the number of nodes assigned calgrj = 1, 2, .... The fol-
H(Q) <1+ (1—qp)logm. lowing results are proved in [14]:

Thus, we have (Gn) — 2 , asn — oo, (34)

logn log1/p’ ’
H(cy(X)) <14 {1 — Ppax}logc(G). and

1

Equations (28) and (29) now follow by using this estimate with AI"(G") ad) ,11 , asn — oo (35)

(30) and (31) respectively, and paralleling the calculations made og 1 og1/p

in proving 1). O in both cases almost surely (a.s.). Further

Consider the following generic algorithm for the design of T, logn — log1/p, asn — oo (36)

codes for(G, P).
1. ColorG using an approximate graph coloring algorithnin mean, and hence in probability.
A. By considering the effect of renumbering the nodes, itis clear
2. Find the Huffman code for the color probabilities. (Herghat, a.s.
the probability of a color is the sum of probabilities of the
nodes assigned that color.)
3. To each node assign the Huffman codeword of its colorherefore, since = Z]T;(IG) Al(@), as.
Since the codeword set is prefix free, a Ul code is produced by X
this approach. We analyze two possible choices for the algo- n < A, (G) - To(G).
rithm A in Step 1. The first choice is an algorithm proposed byt from (35) and (36)
Halldérsson in [15]. This algorithm is guaranteed to color the

graphG with fewer than
- - 2
Cmax(G) = O <|V|(10g110f% |V|2,) X(G)> in probability. Thus, thet? (G),j = 1, 2, ... are equal in prob-
(log [V']) ability, and the claim of the lemma follows on again using (34)
colors. The worst case performance guarantee of the coraed (35). O
sponding coding algorithm may be calculated by substituting
cmax(G) for ¢(G) in (28) and (29). : .
. roves the average-case performance guarantee claimed in (6)
In practice, worst case performance guarantees may be pess : . e
simistic, since worst cases occur infrequently. Thus, as a seccgjlrrfn(ii (7) for the coding algonthm consisting of greedy graph col-
y X X oring followed by Huffman coding of the colors. Note that the

choice forA, we consider an algorithm which provides good a\./c'omplexity of greedy coloring i§(|V'|), while that of Huffman

erage-case performance. The following greedy graph colorifng . ™ - . .
algorithm was analyzed by Grimmett and McDiarmid in [14]_cgd|ng 'SO(“./' log |V']). So the resultant coding algorithm only
has complexity oD (|V|log|V]).

Index the nodes off = (V, E) as{l, 2, ..., |V]}, and let
{e1, ¢, ...} be the set of allowed colors. Color notl&vith c; .
Color nodes (i > 1) with ¢; if 4 has a neighbor already col-
ored withe; forall I = 1,2, ..., j — 1, but not one withe;. We turn now to a second approach to the development of sub-
Our coding algorithm consists simply of greedily coloring theptimal design algorithms. The following lower bound for the
graph, then Huffman coding the colors. minimum coding rates in terms of the graph entropy is from [1]
.Conside'r the following .probability distripqtion on graphs H(P) - H(@G, P) < L(G, P) < Z(G, P). 37)
with n vertices: the probability that an edge joins any two given
vertices of a randomly chosen graph is a fixed numberp Note that exact calculation of the graph entropy of an arbitrary
(0 < p < 1) independently of any set of information about thgraph may be computationally expensive [25]. Instead, we pro-
presence or absence of other edges. Note that this is one ofgibse an algorithm for approximating this quantity. We then show

Al(@) < AN@),  forj=2,3,....

AT,
LN
n

1, asn — oo

The result of this lemma, combined with (26) and (27), then

B. Design Algorithms Based on Graph Entropy Approximation
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that this approximation may be used in the design of an RI cod&a graph associated with the problem. Previous studies of the
for (G, P). complementary graph entropy had been motivated by its con-
Graph entropy is defined by the following formula (se@ections to the zero-error capacity and graph entropy.

Definition 5): Slepian and Wolf showed in [26] that knowledge at the en-
. coder of decoder side information affords no advantage in terms
H(G, P) = oy I(X3 ) (38)  ofthe asymptotic rate if occasional errors are tolerated. Lemma

Xeses(@) 3 shows that this is no longer the case in general if zero er-

whereS(G) is the collection of all independent setsGh rors are required. But if the underlying graph is perfect, no loss

We convert this minimization into a rate-distortion probler® Optimality may be entailed; this is yet another instance of
[4] by introducing the distortion function the striking information-theoretic properties of perfect graphs.

While perfectness of the graph is sufficient, it may be of interest

d(z, 5) = { 0, if v €5 €5(G) to determine whether perfectness is also necessary for this opti-
’ 1, otherwise mality. This would also answer a question of Kérner and Longo,
. raised in a different context in [19], about necessary conditions
and rephrasing (38) as for H(G. P) + H(G. P) — H([P).] y
H(G, P) = min I(X; 9). Turning then to the design of optimal codes, we showed that

this problem isN P-hard. Further, even suboptimal design (to
within 1/3 bits) isN P-hard for a particular class of codes where
the codeword set is required to be prefix free. Investigation of
hardness of approximability for the class of all codes remains
essentially open.

X~P
E[d(X, 5)]=0

The BA algorithm [5] for a slopgg — oo may now be used.
The iterations of the BA algorithm become

<)ty eseSQ) _ _ _
p(s|z) = S§IQ(S) We de_veloped_ optimal a_nd _suboptlmal_ algorlthm§ for
. code design. While polynomial-time approximate algorithms
0, otherwise represent one line of attack, another popular approach to
q(s) = Zp(s|x)p(x) N P-hard graph-theoretic problems has been the consideration
et of restricted classes of graphs. It may be of interest to identify

classes of graphs more likely to be encountered in practical
side-information coding scenarios. The existence of polyno-
mial-time optimal coding algorithms for these graphs could
then be investigated.

and the corresponding optimality conditions are

p(x) .
Lt

zes s'dx
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the idea via an example. L&, (G) be the collection of all in-
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