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Steady-State Analysis of the Adaptive Successive
Interference Canceler for DS/CDMA Signals
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Abstract—The adaptive successive interference canceler (ASIC)
is a multistage receiver that sequentially detects and removes
cochannel users from the received signal impinging on a single
antenna element. Each stage of the ASIC consists of a conventional
matched filter (MF) detector and an adaptive interference can-
celer (AIC) that employs the least-mean-square (LMS) algorithm
to recursively estimate the received amplitude of the detected
signal. In this paper, we investigate the performance of the ASIC
using a Wiener model of convergence for the LMS algorithm,
deriving expressions for the asymptotic mean and variance of
the amplitude estimate and the steady-state bit error rate (BER).
The analyses and computer simulations demonstrate that the
performance of the ASIC exceeds that of the conventional SIC
(CSIC), which utilizes the MF output as the received amplitude
estimate.

Index Terms—Adaptive signal detection, cochannel interference,
code division multiple access, communication systems, land mobile
radio cellular systems, least mean square methods.

I. INTRODUCTION

D IRECT-SEQUENCE code-division multiple-access (DS/
CDMA) techniques [1] have been receiving considerable

attention in cellular mobile radio and personal communications
services (PCS) because of their ability to mitigate multipath
interference and the potential increase in the capacity of the
communication system. However, multiple access interference
(MAI) arising from the nonorthogonality between the spreading
sequences is a significant limiting factor in the performance of
such systems. It is well known that the conventional matched
filter (MF) detector [2] suffers from the near–far problem;
the detection of weaker users is severely degraded by the
large MAI caused by stronger users. The optimum multiuser
detector based on maximum-likelihood sequence detection was
proposed in [3]. It has been shown that a huge performance
gain can be achieved over the MF detector, and the near–far
problem can be alleviated by exploiting the structure of the
MAI to jointly estimate the user data. However, since the
computational complexity of the optimum multiuser detector
is prohibitively high for use in practical situations, research
efforts have focused on suboptimum multiuser detectors (e.g.,
see [4] for a review of several linear and nonlinear techniques).
The suboptimum approaches can achieve superior performance
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compared with the MF detector with a reasonable level of
computational complexity.

Among the many multiuser detectors, interference cancel-
lation (IC) techniques are relatively computationally efficient
and can be used in systems utilizing aperiodic spreading se-
quences (i.e., spreading sequences with periods longer than the
symbol interval) without incurring additional complexity. Basi-
cally, there are two IC architectures, both of which have a mul-
tistage structure: the parallel interference canceler (PIC) (e.g.,
see [5]) and the successive interference canceler (SIC) (e.g., see
[6] and [7]). In each stage, the PICsimultaneouslyregenerates
and cancels from each user the MAI due to other users based
on the detected symbols in the preceding stage. The SICse-
quentially removes the MAI due to the stronger users before
detecting the weaker ones (i.e., only one user is detected and
canceled in a stage); as a result, the near–far problem is less
pronounced in the SIC than in the conventional MF detector. It
was demonstrated via computer simulations that the SIC outper-
forms one- and two-stage PICs (all using linear cancellation) in
fading channels [8].

In order to regenerate and cancel the MAI, accurate parameter
estimation is necessary. The conventional SIC (CSIC) (which
is also referred to as the linear SIC) [7] employs the magni-
tude of the output of the MF bank as the received amplitude
estimate. An adaptive multiuser decorrelator, which minimizes
a least-squares cost function of the received signal and its es-
timate, in combination with an IC structure, was proposed in
[9] to jointly estimate BPSK-modulated data and the user am-
plitudes. However, this method cannot be applied in a straight-
forward manner to systems with higher dimensional modula-
tion formats in fading channels. An SIC structure with a min-
imum mean-square-error (MMSE) receiver and a linear interfer-
ence canceler embedded in each stage was introduced in [10].
Analyses of the bit error rate (BER) and the asymptotic multi-
user efficiency (AME) based on a Gaussian approximation were
presented for additive white Gaussian noise (AWGN) and flat-
fading channels. More recently, decision-driven amplitude esti-
mates have been used in conjunction with the PIC architecture.
For example, in [11], each of the active users is associated
with a -coefficient adaptive interference canceler (AIC)
that attempts to remove the MAI from the other users without
prior knowledge of their amplitudes. Using tentative decisions
of the interfering users (thus, it is “decision-driven”), the AIC is
updated at the symbol rate using a gradient algorithm to mini-
mize the output power. A combination of this structure (but with
canceler weights updated by a bootstrap algorithm) and a blind
technique that suppresses unknown interference (e.g., intercell
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interference) was described in [12]. Another adaptive PIC struc-
ture was proposed in [13], where a single-coefficient AIC is
adapted at the chip rate by the least-mean-square (LMS) algo-
rithm [14] to jointly estimate the received amplitudes of the ac-
tive users (i.e., each coefficient serves as the amplitude estimate
for one user).

In this paper, we analyze the performance of an adaptive SIC
(ASIC) structure that utilizes a single-tap AIC (similar to that in
[13]) in each stage to recursively estimate and cancel the MAI of
the detected users. We focus on the asymptotic mean and vari-
ance of the AIC weight (amplitude estimate) and the steady-
state BER of the ASIC and compare the results with those of the
CSIC via analysis and computer simulations. Although we con-
sider a DS/CDMA system using periodic spreading sequences
and BPSK modulation in an AWGN channel, the ASIC struc-
ture can be easily applied, with slight modifications, to practical
systems with aperiodic spreading sequences and more compli-
cated modulation formats in fading multipath channels. Specifi-
cally, multiple-tap AICs can be used to track multipath channels
and to regenerate/cancel the MAI and interchip interference.
See [15] and [16], where variants of the basic ASIC structure
considered in this paper are used to demodulate the uplink and
downlink data, respectively, of an Interim Standard 95 (IS-95)
system [17]. The receiver structure analyzed here differs from
that in [10] in two basic components: the amplitude estimator
(decision-driven versus linear interference cancellation) and the
receiver front end. It is interesting to note that exact expressions
of the BER and the AME, as well as the mean and variance of
the amplitude estimate used in [10], can be derived (without re-
sorting to a Gaussian approximation) using the matrix approach
in [18] and the results in Section V of this paper.

The rest of this paper is organized as follows. Section II intro-
duces the signal model used in the analyses. The ASIC structure
is described in Section III, and its steady-state properties are ex-
amined in Section IV. The corresponding properties of the CSIC
are provided in Section V for comparison. Numerical examples
and computer simulations of the ASIC and CSIC are presented
in Section VI to illustrate their performance. Finally, conclu-
sions are outlined in Section VII.

II. SIGNAL MODEL

Consider a DS/CDMA system with active users that
transmit their information asynchronously over a common
AWGN channel. The received signal at the base station can be
modeled as

(1)

where
received amplitude of theth user;
transmitted binary symbol ( ) of the th user for

;
signature waveform of theth user;
symbol (bit) interval;
time delay of the th user;

AWGN with zero mean and two-sided power spectral
density of W/Hz.

The following additional properties are assumed. The signature
waveforms are time limited in , and each has unit energy,
i.e., for and . A
signature waveform can be represented by

(2)

where is the processing gain (number of chips per symbol),
is the normalized spreading sequence (with

values ) assigned to theth user, and

otherwise
(3)

is the rectangular chip waveform of duration(note that
). The transmitted data are independent and iden-

tically distributed (i.i.d.) ; they take on the values with
equal probability. Without loss of generality, the users are la-
beled according to their signal strength, i.e.,

.
In order to keep the illustration simple, we restrict our atten-

tion to a synchronous system (i.e., ); how-
ever, it is straightforward to extend the ASIC described below
to an asynchronous system. Using a chip MF and sampling at
the chip rate, the continuous-time received signal in (1) during
the th symbol interval can be converted to
the following discrete-time -vector

(4)

where

and

It can be shown that is a zero-mean Gaussian random vari-
able with variance and that for
or . The noise component at the output of theth user’s
(symbol) MF is defined as . It is straightfor-
ward to show that is a zero-mean Gaussian random vari-
able with variance and that , where

is the cross-correlation between the spreading se-
quences of usersand .
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Fig. 1. Stagem of the ASIC consisting of a conventional MF detector and an adaptive interference canceler (AIC).

III. A DAPTIVE SUCCESSIVEINTERFERENCECANCELER (ASIC)

The ASIC detector is a multistage structure that sequentially
recovers several users: one user in each stage. This system is
reminiscent of the multistage constant modulus (CM) array [19],
except that it employs a single antenna element (instead of an
array/beamformer), and the CM criterion is not used for the SIC.
Each stage of the ASIC consists of a conventional MF detector
followed by an AIC that is adjusted by the LMS algorithm. An
adaptive algorithm is employed so that the canceler weight can
track time-varying channel variations in the wireless communi-
cation environment.

A block diagram of the th stage of the ASIC is shown in
Fig. 1. The conventional detector is essentially a MF bank fol-
lowed by a hard decision device that detects only the strongest
of the users remaining at that stage. This can be determined by
choosing the user with the largest magnitude at the output of
the MF bank. Without loss of generality, we assume that the

th user is detected in theth stage. The conventional detector
output of the th stage in theth symbol interval is given by

sgn (5)

where
sgn signum function;

th user’s spreading sequence;
input signal vector of the th stage [note that

for the first stage].
Specifically, , where

and are the symbol and chip indexes, respectively, which
satisfy . The AIC respreads the detected data symbol

using the spreading sequenceand the received ampli-
tude estimate and then subtracts the respread signal from
the input of that stage. The difference signal, which is given by

(6)

becomes the input to stage , where is
the corresponding chip in the th user’s spreading sequence

[the subscript denotes modulo ]. If the detected data
symbol and the received amplitude estimate are both correct,
then the next stage is free from the MAI caused by the detected
user.

The LMS algorithm adapts the canceler weight as follows:

(7)

where is the step-size parameter. It should be noted
that the subtraction in (6) and the canceler weight update in
(7) are performed at the chip rate, which allows the canceler
weight to track fast channel variations (fading). However, in a
slow-fading environment, block adaptation (using, for example,
a block LMS algorithm [20]) with a block size less than the
channel coherence time [1] can be used to reduce the update
rate and complexity of the AIC.

In order to motivate the canceler structure, we define the
output power of the th stage for a fixed as

(8)

which is the output power averaged over one symbol interval
( chips). It is clear that if the decisions up to and including the

th stage are correct [i.e., and ],
then minimization of yields (the actual received
amplitude of the detected user) because the are mutually
uncorrelated. Based on this observation, the canceler weight of
the th stage is chosen to minimize the output power of that
stage, i.e.,

(9)

where the subscript denotes the global minimum. Although,
in general, the decision on is not always correct, it will be
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demonstrated in the next section that the canceler weight thus
obtained [i.e., the Wiener solution in (9)] is close to the actual
received amplitude, provided the decisions on the data symbols
are sufficiently reliable. Stochastic gradient algorithms such as
the LMS algorithm in (7) can be used to approximate the solu-
tion in (9).

We should also mention that the ASIC reduces to the cascaded
conventional MF detector when and to the
CSIC structure in [7] when the magnitude of the MF output is
used as the canceler weight [i.e., ]. In ad-
dition, the conventional MF detector embedded in each stage
can be replaced with other receivers, such as a decorrelator [21]
or an MMSE receiver [22], to improve the performance (for
symbol and decision-driven amplitude estimates) at the expense
of an increase in the computational complexity (and limited ap-
plicability to systems using aperiodic spreading sequences). In
the next section, we focus on systems that use a MF in the front
end.1

IV. STEADY-STATE PROPERTIES OF THEASIC

As discussed previously, the AIC weight is an estimate of the
received amplitude; its accuracy influences the performance of
the ASIC. In this section, we examine the steady-state perfor-
mance of the ASIC in terms of the asymptotic mean and variance
of the canceler weight and the output power at convergence [23].
Using a Wiener model, if the step-size parameter is bounded by

[14], the AIC weight in
the th stage converges in the mean to

(10)

which is obtained by solving (9) using (8). The corresponding
steady-state BER performance is also analyzed [24]. For nota-
tional convenience, the symbol indexis suppressed in the fol-
lowing derivations.

A. Asymptotic Mean of the AIC Weight for

In Appendix A, it is shown that the converged weight for the
first stage is

1The analyses of a receiver front end using an arbitrary length-N linear filter
seems to be too complicated to gain much insight (e.g., for the first stagem =

1, it involves integrals of two-dimensional (2-D) Gaussian probability density
functions).

(11)

where

(12)

is the error probability of the first stage (MF stage), and
[1].

From this result, we conclude the following.

1) When no errors occur [i.e., or, equivalently,
and ], the second and third

terms in (11) are zero because is uncorrelated
with and . In this case,

, and the AIC weight converges in the mean
to the actual received amplitude (i.e., it is an unbiased
estimate).

2) When and , is correlated
with and , which implies that will not be
completely removed by the AIC. Furthermore,
will undergo partial cancellation in the first stage. In
this case, is a linear combination of
and the noise term. Thus, the AIC weight is, in gen-
eral, a biased estimate of the received amplitude (i.e.,

), resulting in an am-
plitude mismatch. The effect of this amplitude mis-
match on the BER performance will be studied in Sec-
tion IV-D.

3) When the noise power is small and ,
i.e., user 1 is sufficiently strong [see the paragraph fol-
lowing (A.7) in Appendix A for the establishment of the
latter condition], the second and third terms in (11) are
negligible. In this case, the converged AIC weight can be
approximated by

(13)

Fig. 2 shows numerical examples illustrating the asymptotic
mean of the AIC weight (i.e., converged canceler weight) in the
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Fig. 2. Converged AIC weight in the first stage (A = 1). (a) SNR = 20 dB. (b) SNR = 15 dB. (c) SNR = 10 dB. (d) SNR = 5 dB.

first stage versus the actual received amplitude for the case of
and such that (11) reduces to

(14)

where . To illustrate the near–far effect, the received
amplitude of the stronger user is normalized to (recall
that we have assumed ); the power of the weaker user
is varied from 0 to 20 dB with respect to that of user 1, i.e.,
from to . The background noise level
was set to achieve a specific SNR at the
MF output. Since (14) is an even function of, is plotted
only for .

Observe that is very close to the actual received ampli-
tude for SNR dB; even for the worst case of
and , the percentage amplitude mismatch

% is less than 5%. As the ratio increases
and becomes smaller, becomes closer to the actual re-
ceived amplitude. For low SNRs (e.g., SNR dB), the am-
plitude mismatch is less than 8%, provided . Only for
extreme conditions with very large MAI (e.g., and

) and a high background noise level does the amplitude
estimate degrade severely.

B. Asymptotic Mean of the AIC Weight for

Substituting

(15)

into (10), the asymptotic mean of the AIC weight in theth
stage can be written as

(16)

As in the first stage, the AIC weight of theth ( ) stage is
biased unless the decisions in the current and preceding stages
are always correct. Although it is possible to obtain an exact
expression for (16), it involves multidimensional integrals of a
multivariate Gaussian probability density function (pdf) since

is, in general, correlated not only with and but
also with previous decisions .

In order to gain more insight into the steady-state properties
of the ASIC, we make the following “normal-operating” as-
sumptions [25], i.e., the ASIC is operating in an environment
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with a substantially high signal-to-interference-plus-noise ratio
(SINR) such that the decisions in each stage are sufficiently re-
liable.

i) for .
ii) for .
iii) .

Thus, (16) can be approximated by

(17)

where the last equality follows from the derivation in Ap-
pendix A [and was given in (13) for ]. The accuracy of
this approximation is verified by the computer simulations in
Section VI. It was pointed out in [26] that is
the (optimal) canceler weight that minimizes the power of the
cancellation error . As a result,
the ASIC can be considered as an approximate implementation,
in high SINR conditions, of this error criterion.

C. Output Power and Asymptotic Variance of the AIC Weight

The output power of stage at convergence can be written
as

(18)

where we have used at convergence
and substituted (10). Note that

(19)

Using (13) and (17) for high SINR conditions, we can write

(20)

Recognizing that is equivalent to the minimum MSE
achieved by the Wiener solution, the asymptotic variance of the
AIC weight in stage is given by [20]

(21)

The asymptotic variance is controlled by the step-size param-
eter (as expected) and decreases across the stages sinceis
decreasing with increasing according to (18).

D. BER Analysis

Next, we derive the steady-state BER of the ASIC that incor-
porates amplitude mismatch when the AIC has converged to a
biased estimate of the actual amplitude. We employ an approach
similar to that described in [5], where the BER of a one-stage
PIC was analyzed using perfect knowledge of the received am-
plitudes. The approach outlined here is easier to formulate be-
cause the error probability is obtained by conditioning on the
transmitted user data and not on the noise realization as in [5].
Note that the first stage, which is simply a matched filter, does
not suffer from the effects of amplitude mismatch; its BER is
given by (12).

In order to investigate the steady-state BER of the ASIC, it is
assumed that is sufficiently small such that the AIC weight at
convergence is fixed at the Wiener weight, i.e., ,
yielding a known amplitude mismatch given , , and

. Using (15), the decision variable in theth stage ( ) is
given by

(22)

where , and sgn . Since the
users are detected in order, the BER of user is af-
fected by the amplitude mismatch in previous stages, i.e.,

. The BER conditioned on
is

(23)

where can take on one

of possible values, and can take
on one of possible values. Note that the second and third
summations in (23) are performed over all possible values of

and , respectively. Using Bayes’ rule such that

(24)
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(23) can be rewritten as

(25)

where we have used the assumption that the are i.i.d.
random variables taking on the values with equal proba-
bility. Observe that

(26)

where is the joint Gaussian pdf of the noise. In
order to remove the conditioning in the first equality of (26),
we have used the assumption that the are independent of
the user data and . The regions are defined as
follows. For

(27)

which represents the set of that produces an erroneous de-
cision given , , , and . For

(28)

which denotes the set of that produces a specific decision
( or ) given , , , and . Inserting (26) into (25)

yields

(29)

which requires -dimensional integrations. Note that
(29) is the steady-state BER of the ASIC since represents
the amplitude mismatch of the converged AIC weights. For a
random amplitude mismatch , the overall BER can be ob-
tained by averaging , i.e.,

(30)

where is the joint pdf of the amplitude mismatch.

V. STEADY-STATE PROPERTIES OF THECSIC

For comparison purposes, we also investigate the corre-
sponding properties of the CSIC based on the matrix approach
developed in [18], where the convergence properties of the
BER of an iterative linear SIC (i.e., using the magnitude of the
MF output as the user amplitude estimate) was studied. The
CSIC examined in this paper can be viewed as the first iterative
stage of such a structure. As in the previous analyses of the
ASIC, we assume that user is detected in stage .

First, consider the amplitude estimate of the CSIC. We can
write the magnitude of the MF output of stageas

(31)

where and sgn are the input and detected bit,
respectively, of the th stage of the CSIC, and we have used

sgn to arrive at the second equality in (31). The tilde
notation is used to denote the various quantities/signals of the
CSIC (to distinguish them from those of the ASIC).

A. Review of the Matrix Approach

Using this approach, we can express as a linear matrix
filtering operation on the chip MF output. Setting

in Fig. 1 (which reduces to the CSIC in this case), the input
signal vector of stage can be written as

(32)

where we have substituted [sim-
ilar to (31)], and is the identity matrix of size . Note that

is a projection matrix onto the orthogonal com-
plement of . Iterating on in the same manner gives

(33)

where we have defined the signal transfer matrix
, which accounts for the composite

effect of the previous stages of cancellation. It is clear
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that . Using (4) and (33), the decision variable at stage
can be expressed as

(34)

where is the “effective” correlation of the
spreading sequences of userand after the preceding
cancellations, and is the noise component at
the output of the symbol MF. It is straightforward to show that

is a zero-mean Gaussian random variable with variance
. Note that has the same form as

the decision variable of the th branch of the conventional
MF detector, i.e., . Hence, we
may also view the symbol MF operation of stagein (34) as a
despreading of the received signal vectorwith the “modified”
spreading sequence . Based on this analogy, the BER of
stage of the CSIC is given by [18]

(35)

which has a form similar to that of the MF detector in (12).

B. Properties of and

It will be useful to examine the properties of and for
( is trivial since ). First, note that

is symmetric and idempotent if and only if the
are mutually orthogonal. (The trivial case where are
collinear is not considered here because the users’ spreading
sequences cannot be collinear in practice.) Therefore,is
generally not an orthogonal projection matrix, even though it
is a product of orthogonal projection matrices . In
addition, note that is positive semi-definite (PSD),
which can easily be shown by expanding and
applying the Cauchy–Schwarz inequality. Consequently,is
PSD since it is a product of PSD matrices [27]. Second,

because . As a result, so that stage
( ) is free of the MAI due to user 1 (i.e., user 1 is com-

pletely removed in the first stage). However, the other users are
not completely removed (i.e., residual cancellation error exists)
since is generally nonzero for . Third,
if and only if the are mutually orthogonal; otherwise,

. The following is a sketch of the proof. The
non-negativity of follows immediately be-
cause is PSD. To see that is upper-bounded by unity,
observe that , i.e., the length of the
vector after projection is no greater than that before projection.
Equality is achieved if and only if the are mutually or-
thogonal. From the Cauchy–Schwarz inequality, we have that

(36)

The second equality holds if and only if and are
collinear (or, equivalently, the are mutually orthog-
onal, which is the same condition needed to achieve the last
equality). Note that the partial signal cancellation effects (i.e.,
portions of user ’s signal are canceled prior to stage) result
in . We will demonstrate that the accumulation of par-
tial signal cancellation effects and residual cancellation errors
causes relatively large biases in the amplitude estimates of the
CSIC.

C. Mean, Variance, and Output Power

From (31) and (34), the mean of the amplitude estimate
can be written as

(37)

Recognizing that (37) has the same form as the first equality in
(11), a closed-form expression for can be obtained by
directly applying the results in Appendix A, yielding

(38)

where is the error probability of the th stage of the CSIC
given in (35).

The second moment and variance of , which are derived
in Appendix B, are given by

(39)

and

var (40)
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Fig. 3. Amplitude estimates of the ASIC and CSIC forK = 5 and power profile[20; 15; 10; 5; 0] dB. (a) Percentage amplitude mismatch of the ASIC.
(b) Percentage amplitude mismatch of the CSIC. (c) Relative error of approximating the converged AIC weightÂ byA (1� 2P ). (d) Relative error of
approximatingE[ ~A ] by A ~� (1 � 2 ~P ).

respectively. Using and (31), the output
power of the th stage of the CSIC can be written as

(41)

with .
Using arguments similar to those leading to (13), we see that if

the noise power is small and (this in-
equality corresponds to the open-eye condition), then the second
and third terms in (38) are negligible. In this case, we have

(42)

Thus, (40) can be approximated by

var

(43)

From these results, we draw the following conclusions.

1) It can easily be seen from (37) and (38) that
when no errors occur [i.e., or, equiv-

alently, and ] since
is uncorrelated with and . Even in

this ideal case, unless orthogonal spreading sequences are
employed, the amplitude estimates of the CSIC for
are still biased because is less than unity. As will be
illustrated using numerical examples in the next section,
this bias can be relatively large in near–far situations and
could cause a serious loss in performance for the CSIC.

In contrast, the asymptotic mean of an ASIC stage is un-
biased if the decisions up to and including that stage are
always correct.

2) For , the mean of the amplitude estimate is
identical to the asymptotic mean of the ASIC amplitude
estimate, i.e., .
However, these two amplitude estimates differ
for . This can be seen from the asymp-
totic results: , whereas

if the open-eye condi-
tion is met. The variances of the two amplitude estimates
also differ quite significantly, as will be shown via the
computer simulations in the next section.

VI. COMPUTERSIMULATIONS

A. Amplitude Estimation

1) Mean of the Converged Canceler Weight:In the fol-
lowing example, we compare the bias of the converged AIC
weight with that of the amplitude estimate computed for the
CSIC. Fig. 3(a) and (b) shows the percentage amplitude mis-
match of the ASIC and CSIC, respectively, for a user
system. This percentage is defined as %,
where for the ASIC, and for the CSIC.
Note that is approximated by an ensemble average of
the converged AIC weight for symbols using Monte Carlo
simulations with , whereas is obtained by
numericallyevaluating(38).Thesystemhasfourstrongusersand
oneweakuser:users1,2,3,and4are20,15,10,and5dBstronger
than user 5, respectively (i.e., power profile
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Fig. 4. Amplitude estimates of the ASIC, D-ASIC, M-ASIC, and CSIC forK = 5 and power profile[5; 5; 3; 0; 0] dB. (a) Percentage amplitude mismatch of
the ASIC. (b) Percentage amplitude mismatch of the CSIC. (c) Relative error of approximating the converged AIC weightÂ byA (1�2P ). (d) Relative
error of approximatingE[ ~A ] byA ~� (1�2 ~P ). (e) Percentage amplitude mismatch of the D-ASIC. (f) Percentage amplitude mismatch of the M-ASIC.

dB). The amplitude of user 5 is fixed at ; the noise power
is varied to achieve a specific SNR (this rep-
resents the SNR per bit, i.e., the SNR after despreading). The
processing gain of the system is , and the correlations
between the spreading sequences are

(44)

where .
Observe that the amplitude mismatch of the CSIC is quite

large for users 3, 4, and 5. In this example, ,
, , and [recall from

(38) that the amount of mismatch is dependent on ]. The
biases in stages 3, 4, and 5 do not vanish as the noise power

decreases. On the other hand, the amplitude mismatch of the
ASIC is very small for moderate-to-high SNRand quickly ap-
proaches zero as SNRincreases. Fig. 3(c) demonstrates the ac-
curacy when approximating by . It indi-
cates that for SNR dB, the converged AIC weights closely
approximate the (optimal) canceler weights that minimize the
power of the cancellation error. Similarly, Fig. 3(d) illustrates
that (42) is an accurate approximation of the mean of the CSIC
canceler weight for users 1–4 for SNR dB. Note, in this
example, that user 5 does not satisfy the open-eye condition

; thus, (42) is not valid. This could
happen to weaker users in the presence of several very strong
users, as in this example.

Fig. 4 shows a second example, illustrating a moderate
near–far condition in which the scenario is the same as that
of Fig. 3, except that users 1, 2, 3, and 4 are 5, 5, 3, and
0 dB, respectively, stronger than user 5 (i.e., power profile
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Fig. 5. Amplitude estimates for an AWGN channel. (a) First stage of ASIC (user 1). (b) First stage of CSIC (user 1). (c) Second stage of ASIC (user 2). (d) Second
stage of CSIC (user 2).

dB). Again, it can be seen that the amplitude
mismatch of the ASIC is smaller than that of the CSIC,
especially for weaker users. Fig. 4(c) and (d) shows the
regions where (17) and (42) accurately predict the mean of
the amplitude estimates for the ASIC and CSIC, respectively.
Fig. 4(e) and (f) plots the percentage amplitude mismatch when
the conventional MF detectors in the ASIC are replaced by
decorrelators and MMSE receivers, which are referred to as the
D-ASIC and M-ASIC, respectively. In stage, the decorre-
lator is designed to completely null users ;2 the
MMSE receiver in each stage is trained using 1000 symbols.
As expected, the latter two detectors yield improved deci-
sion-driven amplitude estimates because the symbol estimates
are more accurate but at the cost of an increased complexity.

2) Variance, Convergence, and Tracking of the Canceler
Weight: Next, we compare the variances of the amplitude
estimates. Consider a near–far scenario for a DS/CDMA
system with users and a processing gain of .
The received amplitudes are , , and ,
the spreading sequence correlations are , ,
and , and the noise power is . The AIC
weight is initialized to zero, and for the first two
stages. The weight trajectory in the first stage for a single run of
the ASIC is shown in Fig. 5(a), along with the actual received
amplitude (which is ). The simulation results show that

2From the zero-forcing property of the decorrelator, it can be seen that if the
decorrelator front end of stagem is designed to null users1; . . . ; m�1; m+
1; . . . ; K, then the resulting structure has essentially the same performance
as that without interference cancellation in [21]. In other words, interference
cancellation is redundant in such a design.

the converged weight (after sample 600) is very close to the
received amplitude of user 1.

For comparison purposes, the received amplitude estimate in
the first stage of the CSIC for the same signal conditions is
shown in Fig. 5(b). Since the received amplitude estimate of the
CSIC is obtained from the magnitude of the MF output, it is held
constant for consecutive chips. This suggests that the
amplitude estimate should have a smaller variance in the ASIC
than in the CSIC, as verified in the plots. Fig. 5(c) and (d) show
the weight trajectories for the second stage of the ASIC and the
CSIC, respectively. Again, the received amplitude estimate of
the ASIC has a smaller variance than that of the CSIC.

Finally, we illustrate the convergence and tracking perfor-
mance of the AIC for a single-path Rayleigh fading channel with
a normalized Doppler3 of . The scenario is the same
as that in Fig. 5, except that , , , and

. In this scenario, the received signal in (1) is modified
as follows:

(45)

where is the Rayleigh fading process of user. The fading
coefficients are generated using the
model in [28]. For convenience, we set and refer
to as the received amplitude of user. Fig. 6(a) and

3The normalized Doppler, which characterizes the fading rate, is defined as
the product of the Doppler shift(v=c)f and the symbol (bit) intervalT , where
v is the velocity of the mobile,c is the velocity of light, andf is the carrier
frequency.
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Fig. 6. Received amplitude estimates for a single-path Rayleigh fading channel with a normalized Doppler of1:7 � 10 . (a) First stage of ASIC (user 1).
(b) First stage of CSIC (user 1). (c) Second stage of ASIC (user 2). (d) Second stage of CSIC (user 2).

(c) show the weight trajectories in the first and second stages,
respectively, for a single run of the ASIC along with the corre-
sponding received amplitudes. Observe that the convergence of
the AIC weight is quite fast and that it tracks the received am-
plitude better than the CSIC in Fig. 6(b) and (d).

B. BER Performance

1) Verification of the BER Analysis:We first verify the ac-
curacy of the steady-state BER analysis using Monte Carlo sim-
ulations. Consider a two-user DS/CDMA system with a pro-
cessing gain of . The amplitude of the stronger user
(user 1) is fixed at with a signal-to-noise ratio of
SNR , whereas the power of user 2 is varied
from 0 to dB with respect to user 1. Fig. 7 shows the ASIC
BER curves, along with the corresponding simulation results for

, obtained by numerically evaluating (29) (via Math-
ematica) with the following amplitude mismatch [see (14)]:

(46)

for and four values of SNR. It is clear that the analysis
closely matches the simulation results.

2) BER Versus Power Ratio:Fig. 8(a) compares the BER
versus interferer power of the ASIC with that of the CSIC, the

Fig. 7. Steady-state BER for the ASIC. Analysis versus computer simulations
for K = 2, N = 10, � = 0:4, and� = 0:005.

decorrelator, and the conventional MF detector. The system con-
sists of four equally strong users and one weak user:

. The power ratio (PR), which is defined
by for , varies from 0 to 20 dB;

is fixed at unity with SNR dB.
The processing gain of the system is , and the corre-
lations between the spreading sequences are specified in (44).
In each symbol interval, the user to be canceled in a stage of
the ASIC and CSIC is determined by selecting the one with the
largest magnitude at the MF output in that stage. Since we are
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Fig. 8. BER versus power ratio of the ASIC, CSIC, decorrelator, and MF
detector. (a) SNR= 10 dB. (b) SNR = 5 dB.

primarily interested in near–far scenarios, only the BER curves
of the weakest user are plotted.

It can be seen that the CSIC considerably outperforms the MF
detector for PR dB. However, the performance gain be-
comes marginal as the PR increases because the variances of the
amplitude estimates increase accordingly [see (39) and (40)]. For
large PRs, even a moderate amount of amplitude mismatch from
stronger users in the preceding stages can accumulate and cause
a considerable amount of residual MAI for the weak user. For
the ASIC, the variances of the amplitude estimates also increase
with increasing PR [via the increased output power in each
stage; see (18), (19), and (21)]. However, this increase is greatly
deemphasized via the multiplication factor in (21),
where is usually small in practice, resulting in a much lower
BER compared with that of the CSIC. For PR dB, the ASIC
BER for user 5 improves as the PR increases because the symbol
decisions on users 1–4 become more reliable as the SINR of
each stage increases, leading to better cancellations. For

PR dB, the decisions on users 1–4 are very reliable

Fig. 9. BER versus SNR of the ASIC, CSIC, decorrelator, MMSE receiver, and
MF detector for an AWGN channel. (a) Equal power users. (b) Near–far situation.

(no errors occurred in symbols in our computer simulations);
this result, along with the accurate amplitude estimates provided
by the AIC, ensure that the MAI due to users 1–4 is almost com-
pletely removed. Therefore, the BER of the weakest user nearly
achieves thesingle-user (SU)bound forBPSKsignaling [1].

For PR dB, the increasing variances of the amplitude
estimates become detrimental to the weaker user, resulting in a
noticeable increase in the BER with respect to the SU bound.
A smaller step-size parameter can be employed to mitigate this
problem but at the cost of slower convergence. Observe that the
ASIC BER performance for the weaker user is superior to that
of the decorrelator for PR dB but falls short as the PR in-
creases due to the increased variance of the amplitude estimates.
Fig. 8(b) shows the BER curves for the same scenario as that
of Fig. 8(a), except that SNR dB. Note that in this case,
the noise enhancement effect on the decorrelator is more pro-
nounced in low SNR situations; the ASIC still performs better
than the decorrelator for PR dB.

3) BER Versus SNR:Fig. 9(a) and (b) shows the BER versus
SNR of the ASIC for a user system and an AWGN
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channel under ideal power control (i.e., all users have the same
power) and a near–far condition, respectively. The step-size pa-
rameter is , the processing gain is , and the
correlation matrix of the spreading sequences is given in (47),
shown at the bottom of the page. In the near–far scenario, there
are three strong users, each of which is 10 dB stronger than the
remaining users. It can be seen that the performance of the ASIC
is very close to the SU bound, and it outperforms the other re-
ceivers considered. In addition, observe that the performance of
the CSIC receiver degrades significantly for the near–far case
because of the poor amplitude estimates.

Fig. 10(a) and (b) show the BER curves of the ASIC for the
same scenario as in Fig. 9 for a single-path Rayleigh fading
channel where each user undergoes a normalized Doppler of

. The step-size parameter is and
, respectively, for Fig. 10(a) and (b). Note that although the

ASIC still significantly outperforms the CSIC and MF receivers,
the performance gap between the ASIC and the SU bound is
much larger for the fading channel than for the AWGN channel
because error-propagation effects are more severe in the former
case—especially during deep fades.

4) BER Versus System Load:Fig. 11(a) and (b) illustrate the
BER versus the system load of the ASIC, i.e., the number of ac-
tive users, for an AWGN channel under ideal power control and
for a near–far condition, respectively. In the near–far scenario,
there are two groups of users such that those in the same group
have equal power. The number of users in the first group is fixed
at two, whereas that in the second group is varied to change the
system load. Users in the first group are 10 dB stronger than those
in the second group; each user in the second group has an SNR
per bit of 10 dB. The processing gain is , and the step-size
parameter is . A user’s spreading sequence is ran-
domly generated, and it varies from symbol to symbol. It can be
seen that for a low system load, the performance of the ASIC is
close to the SU bound; however, it deteriorates rapidly when the
system load is increased because of error-propagation effects
(the MF front end performs poorly in this case). In addition,
note that the performance of the CSIC is similar to that of the
conventional MF detector for a high system load.

5) Comparison of Different Receiver Front Ends:Finally,
Fig. 12 shows the BER of user 5 versus SNR of the ASIC struc-
ture with different front ends for the same scenario used in
Fig. 4. As expected, the MMSE receiver and decorrelator front
ends provide enhanced BER performance over when the con-
ventional MF detector is used. In addition, the ASIC outper-

Fig. 10. BER versus SNR of the ASIC, CSIC, decorrelator, and MF detector
for a single-path Rayleigh fading channel. (a) Users have equal transmitted
power. (b) Near–far situation.

forms the SIC structure in [10] for this example. Note that the
performance gap between M-ASIC and the SIC in [10] (both use
MMSE receiver front ends but with different amplitude estima-
tors) indicates that the AIC provides more accurate amplitude
estimates than does the linear canceler.

(47)
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Fig. 11. BER versus system load of the ASIC, CSIC, decorrelator, MMSE
receiver, and MF detector for an AWGN channel. (a) Equal power users.
(b) Near–far situation.

Fig. 12. BER performance of the ASIC with different receiver front ends for
an AWGN channel and the same conditions used in Fig. 4.

VII. CONCLUSION

Using a Wiener model, we have analyzed the steady-state
performance of the adaptive successive interference canceler
(ASIC), which employs an adaptive interference canceler (AIC)
in each stage to minimize the output power. These results indi-
cate that the converged AIC weight, and, thus, the amplitude
estimate, are generally biased away from the actual amplitude
of the received signal. However, the converged canceler weight
is very close to the actual received amplitude of the detected
user when the BER of that stage (and of previous stages) is
sufficiently small. It was shown that the variance of the am-
plitude estimate decreases across stages and is controlled by
the step-size parameter. In addition, for high SINR conditions,
the bias depends primarily on the BER in that stage. Computer
simulations demonstrate that the convergence rate is typically
fast—a few hundred chips—which is expected since there is
only a single adaptive weight in each stage. These examples also
illustrate the limitations of the ASIC, in terms of BER perfor-
mance, due to error-propagation effects (e.g., for high system
loads or during deep fades); nevertheless, the ASIC compares
favorably with several multiuser receivers (such as the decorre-
lator and the MMSE receiver) for the scenarios considered here.
The corresponding properties of the CSIC were also examined
and compared with those of the ASIC. It was shown that for
stages with , the amplitude estimate of the CSIC with
nonorthogonal spreading sequences is still biased, even when
the decisions are always correct. Furthermore, the bias and vari-
ance of the CSIC amplitude estimate (as well as the amplitude
mismatch) are larger than those of the ASIC, leading to poorer
BER performance of the weaker users (especially when many
strong users are present).

APPENDIX A
DERIVATION OF

Substituting (4) into (10) yields (recall that )

(A.1)

In the following sections, we evaluate the three expectations in
(A.1) separately.

A. Evaluation of

Since the product of and can only take on the values ,
we can write

(A.2)

where is the error probability of the first stage. Similarly,
, where is the error probability of

the th stage.
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B. Evaluation of

Consider the set :
. We can write

(A.3)

where denotes the
summations over all possible bit combinations , except for

. By the definition of conditional expectation

(A.4)

where the last equality follows from
. Ex-

panding the summations overand in (A.4), we have

(A.5)

where the four terms containing-functions are due to eval-
uating for the pairs , ,

, and , respectively. Using the identity
, (A.5) can be simplified to

(A.6)

Thus, inserting (A.6) into (A.3) yields

(A.7)

which is the expression used in (11).
To examine the asymptotic properties of as ,

it is useful to rewrite (A.7) by partially expanding over .
After exploiting the following symmetry for arbitrary and
(with all bits taking on the values )

(A.8)

and substituting , (A.7) can be
expressed as

(A.9)

Recall that is monotonically decreasing in with
and . From (A.9), we see that

as if and only if the signs of the arguments
in both -functions agree for all possible bit combi-
nations (such that the values of the-functions equal 0 or 1
simultaneously), which is equivalent to
(i.e., user 1 is sufficiently strong).

C. Evaluation of

Defining the set :
, it follows that can be written as

(A.10)
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where

(A.11)

It is straightforward to see that

otherwise

(A.12)

where the conditioning in the first equality is removed because
and are independent. Similarly

otherwise.

(A.13)

Substituting (A.12) and (A.13) into (A.11) and integrating
yields

(A.14)

which inserted into (A.10) gives .

APPENDIX B
DERIVATION OF AND var

Since var , and we have already
obtained a closed-form expression for in (38), we start
with the second moment . Let and be defined as in
Appendix A so that we can write

(B.1)

In order to evaluate , we employ the following useful
result (which can easily be shown by using a transformation of
random variables [29]): If is a Gaussian random variable with
mean and variance , then the pdf of is

.

(B.2)

Recall that

(B.3)

Note that given , is a Gaussian random
variable with mean and variance . Hence,
given , has the pdf with the form of (B.2), except

that and are replaced by and , respec-
tively. It immediately follows from that

(B.4)

Thus, inserting (B.4) into (B.1) and using
(the Kronecker delta function) yields (39), from which (40) im-
mediately follows.
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