
Convergence Properties and Stationary Points 
of a Perceptron Learning Algorithm 

The Perceptron i s  an adaptive linear combiner that has its output 
quantized to one o f  two possible discrete values, and i t  is the basic 
component of multilayer, feedforward neural networks. The least- 
mean-square (LMS) adaptive algorithm adjusts the internal weights 
to train the network to perform some desired function, such as 
pattern recognition. In this paper, we present an analysis o f  the 
stationary points o f  a single-layer Perceptron that is based on the 
momentum LMS algorithm, and we illustrate some o f  its conver- 
gence properties. When the input of the perceptron is  a Gaussian 
random vector, the stationary po/nts o f  the algorithm are not 
unique and the behavior o f  the algorithm near convergence 
depends on the step size p and the momentum constant a. 

I. INTRODUCTION 

A single-layer Perceptron [I], or adaptive linear neuron 
(ADALINE) [2], consists of one summing node and N adap- 
tive weights { w k ( n ) }  as shown in Fig. 1. It is the simplest 
feedforward neural network structure, and it corresponds 
to a single "neuron" element. This basic component may 
be combined in parallel with many similar components to 
produce a multilayer Perceptron that has greater learning 
and computing capabilities [3 ] .  The output y(n) of the sum- 
mer is  filtered by a hard limiter' to produce a binary output 
y,(n) (denoted by + I  and -1). This output i s  compared to 
another binary signal, which corresponds to some desired 
response d,(n), and an error signal e(n) is generated. An 
adaptive learning algorithm [4] then uses this error to make 
adjustments to the Perceptron weights so as to match y,(n) 
and d,(n) in a statistically meaningful way. The input signals 
{ x k ( n ) }  can bebinaryvalued(k 1)ortheycan bedrawnfrorn 
a continuous distribution. In our analysis, we assume that 
they form a Gaussian random vector whose components 
may or may not be correlated. 

The Perceptron in Fig. 1 can be used as a pattern classifier 
whereby the N-dimensional vector space represented by 

Manuscript received September 6,1989; revised March 25,1990. 
This work was supported by Rockwell, Inc., with matching support 
from the Universityof California MICRO Program, and by the Uni- 
versity of Pennsylvania. 

j. J. Shynk is with the Center for Information Processing 
Research, Department of Electrical and Computer Engineering, 
University of California, Santa Barbara, CA 93106, USA. 

S. Roy i s  with the Department of Electrical Engineering, Uni- 
versity of Pennsylvania, Philadelphia, PA 19104, USA. 

'In some cases, the hard limiter is replaced by a smooth non- 
linearity such as the sigmoid function [I]. 

IEEE Log Number 9039178. 

Bias b 

I Nonlinearity I :  / 

I Desired 
Response 

dJn) 

Fig. 1 .  Single-layer Perceptron with hard limiter. 

the input signals is partitioned into two subspaces, cor- 
respondingtothetwoclasses(denoted byAand B). It iswell 
known, however, that the partition in this case is a hyper- 
plane [2]; more complex partitions can be achieved only by 
adding "hidden" layers to the Perceptron [I]. Figure2 shows 

W 

Region B (-1) 

Fig. 2. Perceptron decision regions for two weights. 

0018-921919011000-1599$01 .OO 0 1990 IEEE 

PROCEEDINGS OF THE IEEE,  VOL. 78, NO. IO, OCTOBER 1990 1599 

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 14,2010 at 20:45:24 UTC from IEEE Xplore.  Restrictions apply. 



an example of the partition for the case of two input signals 
(N = 2); observe that the decision boundary is defined by 
the line x2 = -(w1/w2)x1 - (b/w2), where b represents a bias 
factor. The perceptron can be trained to identify this deci- 
sion boundary so that for a given input, it will correctly 
decide to which class the sample pair belongs. 

In this paper, we present an analysis of the stationary 
(convergence) points of an adaptive algorithm that adjusts 
the perceptron weights [5]. This algorithm is  identical in 
form to the least-mean-square (LMS) algorithm [41, except 
that a hard limiter i s  incorporated at the output of the sum- 
mer as shown in Fig. 1. We include a momentum term in 
the weight update [3]; this modified algorithm is  similar to 
the momentum L M S  ( M L M S )  algorithm [6], [q, except again 
it contains theoutput nonlinearity. Section II describes the 
perceptron algorithm in detail, and it presentsasimple two- 
input example that will be used for illustration purposes 
throughout the paper. The stationary points of the algo- 
rithm are then presented in Section I l l ,  and the properties 
of the adaptive weight vector near convergence are dis- 
cussed. Computer simulations that verify the analysis are 
given in Section IV, and conclusions are outlined in Section 
V. A related analysis of this algorithm, which i s  also often 
called the delta learning rule, i s  presented in [8]. 

I I .  PERCEPTRON LEARNING ALGORITHM 

A. Algorithm Description 

lowing weight updating mechanism: 
The perceptron algorithm considered here has the fol- 

W(n + 1) = W(n) + 2pe(n)X(n) + cy[W(n) - W(n - I) ]  

(1 1 
where W(n) and X(n) are the N-dimensional weight and sig- 
nal vectors, respectively: 

W(n) = [wdn), . . . , wN(n)lT (24 

X(n) = [xdn), . . . , xN(n)lT. (2b) 

The superscript T is vector transpose, and n denotes the 
present sample time. Equation (1) i s  a second-order algo- 
rithm that requires storage of the present and previous 
weight vectors before the new weight vector can be com- 
puted. The step size p and the momentum constant a, where 
p > 0 and 1 cy 1 < 1, determine the convergence rate and 
steady-state performance of the algorithm. The component 
given by cy[W(n) - W(n - I)] is the so-called momentum 
term [3]. Intuitively, if the previous weight change is  large, 
then adding a fraction of this amount to the current weight 
update will accelerate the descent process toward the algo- 
rithm convergence point. However, it can be shown that 
the misadjustment [4] of the MLMS algorithm i s  increased 
in direct proportion to cy [6], [q. 

Theoutputerrore(n) isderived as thedifference between 
the (binary-valued) desired response d,(n) and the quan- 
tized filter output y,(n): 

e(n) = d,(n) - y,(n) = d,(n) - sgn (y(n)) (3) 

and 

where sgn (g) is the sign function defined as 

+I, g 2 0 

[-I, g < 0. 
sgn (g) = 

1600 

(4) 

Observe in Fig. 1 that there are N input signals which are 
weighted and then summed to produce the unquantized 
output y(n); this part of the perceptron is simply a linear 
combiner. The intermediate output y(n) i s  thus given by the 
following inner product: 

(5) 

Note that y(n) i s  always quantized to produce yq(n). The 
desired response d,(n) is also constrained to be fl, so we 
can view it as being a quantized version of some underlying 
process d(n), that i s  

d,(n) = sgn (d(n)). (6) 

In general, d(n) will be correlated with X(n), and it can often 
be represented as a function (possibly nonlinear) of the ele- 
ments of X(n). One interesting case that will be examined 
later i s  when d(n) i s  a linear function of X(n) according to 

(7) 

where F(n) is an unknown weight vector defined in a man- 
ner similar to W(n). In our analysis, we assume that F(n)  i s  
constant such that F(n) = F. 

d(n) = FT(n)X(n) = XT(n)F(n) 

B. Two- Weight Example 

For illustration purposes, we consider a simple example 
for N = 2, corresponding to a special case of the decision 
regions shown in Fig. 2. Assume that the bias term is  zero 
(b = 0) so that the boundary passes through the origin, and 
let the data be generated such that the boundary lies at a 
45O angle with respect to the signal axes. Region A (above 
and on the line) i s  denoted by +I, and region B (below the 
line) i s  denoted by -1. 

The network i s  trained as follows. The input signals xl(n) 
and x2(n) are independently assigned values from a zero- 
mean, Gaussian distribution having a variance of 1. If the 
corresponding point on the plane lies in region A, [that is, 
x,(n) 2 x,(n)], dq(n) will be set equal to +I; otherwise, d,(n) 
= -1. The input samples and the associated desired sample 
will be presented to the network, and the perceptron algo- 
rithm will adjust the weights according to the update in (1). 
Clearly, a stationary point should be of the form wl(n) = 
-w,(n), since this is the way the data were generated. 

Forthis simpleexample, it i s  straightforward to model the 
underlying desired process as the following linear com- 
bination of the input signals: d(n) = x,(n) - xl(n). As such, 
the vector Fin (7) is2 F = [ - I  1Ir. Since the input samples 
are assumed to form a Gaussian vector, then d(n) i s  nec- 
essarily a Gaussian process. This property will lead to some 
convenient analytical expressions for the stationary points, 
as discussed in the next section. 

Ill. STATIONARY POINTS OF THE ALGORITHM 

A. Mean Weight Vector 

In order to determine the stationary points of the Per- 
ceptron algorithm, we examine the expected value of (1): 

E [ W(n + 111 = E [ W(n)l + 2p€[e(n)X(n)l + cy(€[ W(n)l 

- E [ W(n - I)]). (8) 

2As another example, if the boundarywas chosen to lie along the 
x2 axis, then F = [-I 01'. 

PROCEEDINGS OF THE IEEE, VOL. 78, NO. IO, OCTOBER 1990 

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 14,2010 at 20:45:24 UTC from IEEE Xplore.  Restrictions apply. 



At convergence, assuming that p has been chosen "suffi- 
ciently small," we have E[ W(n + I ) ]  = E[ W(n)] = E[  W(n - 
I ) ]  = W,, where bV* represents a stationary point. Alter- 
natively, we may view (1) as a gradient-descent algorithm, 
and we are interested in finding weight values such that the 
gradient i s  zero. As a result, (8) reduces to the following 
orthogonality condition [4]: 

E[e,(n)X(n)l = 0. (9) 

The subscript * indicates that the error i s  generated when 
theweights are at the stationary point W,. Equation (9) states 
that the error and the input signal are statistically orthog- 
onal at convergence. This result is  identical to that of the 
standard (linear) LMS algorithm, and it can be used to flnd 
W,. If we substitute (3), then (9) can be rearranged as 

(1 0) E[X(n)d,(n)l = E[X(n) sgn (y,(n))l 

where y,(n) is  the unquantized output at convetgence. 
Define the cross-correlation between X(n) and d,(n) as P, 
= f[X(n)dq(n)]. Note that the actual form of this vector 
depends on the statistics of the underlying process d(n); 
later we consider the linear example described previously 
for d(n), but for now we leave P, in this more general form. 
Assuming that X(n) is a zero-mean, Gaussian vector with 
correlation matrix R = E[X(n)X7(n)], then the right-hand side 
of ( I O )  becomes [9] 

(11) E[X(n) sgn (y,(n))l = - E[X(n)y,(n)l 

where theconstant c = m a n d  U;.  i s  the variance of y,(n), 

given by 

1 

COY. 

u t .  = E[y2*(n)] = E[W:X(n)X'(n)W,] = WLRW,. (12) 

Equation (5)was used toderive(12)and, because W ,  i s  fixed, 
we have brought it outside the expectation. The expecta- 
tion on the right-hand side of (11) can be expanded in a sim- 
ilar way, as follows: 

E[X(n)y,(n)l = RW,. (1 3) 

Substituting (11) and (13) into ( IO) ,  we have the following 
equivalent expression for (9): 

W, = cu,.R-'Pq (14) 

which, after substituting (121, becomes 

w, = c K - ' P q .  (1 5 )  

The square root i s  well defined because the variance in (12) 
is always nonnegative, and we assume that R i s  positive def- 
inite so that the inverse exists. This expression defines the 
stationary points of the perceptron algorithm. Observe that 
it i s  a nonlinear function of W,; because of this form, there 
may be infinitely many solutions. However, if for fixed val- 
ues of p and a the convergence point U&, of a&(n) = E[y2(n)] 
i s  unique, then the weight vector W, will also be unique 
according to (14). Note that the output variance u$n) i s  non- 
stationary and dependent on n because the perceptron 
weights are time-varying. 

It i s  interesting to consider when d(n) i s  also a Gaussian 
process. In this case, we have from (6) that 

1 
P, = - E[X(n)d(n)] (1 6) 

where c i  i s  the variance of d(n), which i s  independent of 
n when d(n) i s  stationary. Substituting (16) into (14) and 
defining the cross-correlation between X(n) and d(n) as P 
= f [X(n)d(n)], we have 

cud 

5,. W, = - R-' P. 

If uy. = Ud, then theoptimal solution here i s  identical in form 
to the Wiener solution of the standard (linear) MLMS algo- 
rithm [6], [7], that i s  

W, = R-'P. (18) 

In general, however, uy. does not equal (7d so that a scaled 
version of (18) would be obtained, as given in (17). Finally, 
if we assume that d(n) i s  generated according to (7) for a 
fixed value of F ,  then P = RF, U: = F'RF, and 

that is, the optimal weights are directly proportional to F ,  
where the proportionality constant is  a nonnegative scalar. 
This result i s  consistent with our intuition; if W, and Fare 
related as in (191, then y(n) and d(n) will have the same sign 
for any X(n), and the error will necessarily be zero, corre- 
spondingtoa stationarypoint.Tocontinuefurther,we need 
to examine the convergence properties of the output vari- 
ance uc(n) of the linear combiner. 

B. Steady-State Output Variance 

Theoutputvarianceofthe linearcombinercan bewritten 

(20) 

where we have substituted (5). For notational clarity, we 
have added a second time argument; together these argu- 
ments correspond to those of the weight vector and the 
input signal vector, respectively, under the expectation. 
After the weights are updated, the aposteriori variance can 
be expressed as 

o2,(n + I, n) = E [ w ' ( ~  + I )x (~)x ' (~ )  ~ ( n  + I)]. (21) 

Substituting the weight recursion from (I), we have that 

as 

+I, n)  = ~[w~(n)X(n)X ' (n)  ~ ( n ) ]  

u$n + I, n)  = (I + C U ) ~ E [ W ~ ( ~ ) X ( ~ ) X ' ( ~ ) W ( ~ ) ]  

+ 4p(1 + a)E[X'(n)X(n)X'(n) W(n)e(n)] 

+ 4p2~[xT(n)  x ( ~ ) x  '(n)~(n)e~(n)l 

- 241 + OI)E[WT(n)X(n)X7(n)W(n - I ) ]  

- 4pa~ [~ ' (n )~ (n )X ' (n )  ~ ( n  - l)e(n)l 

+ a2E[WT(n - l)X(n)XT(n)W(n - I ) ]  

(22) 

which can be written more compactly as 

+ 1, n)  = (1 + a)*u;(n, n) + 4p(1 + a)a(n) + 4p2b(n) 

-241 + a)y(n, n - 1) - 4paa(n - 1) 

+ *2u;(n - 1, n) (23) 

SHYNK AND ROY: PERCEPTRON LEARNING ALGORITHM 1601 

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 14,2010 at 20:45:24 UTC from IEEE Xplore.  Restrictions apply. 



I 

where, for convenience, we have defined the following sca- 
lar quantities: 

y(n, n - 1) = E [  W'(n)X(n)X'(n)W(n - I ) ]  (24a) 

a b )  = €[X'(n)X(n)X'(n) W(n)e(n)] (24b) 

and 

b(n) = €[X'(n)X(n)X'(n)X(n)e*(n)]. (24c) 

In contrast to that in (20) and (21), the arguments of y and 
aaredefined onlyaccording tothoseof Wundertheexpec- 
tation, and the argument of b i s  determined by that of e. 
To continue, we also need a recursion for y(n + 1, n), as 
follows: 

y(n + 1, n)  = f [ W'(n + I)X(n)X'(n) W(n)] 

= (I + a)€[ w'(n)~(n)~'(n) ~ ( n ) ]  

+ 2p E[x ' (n)~(n)~'(n) ~ (n )e (n ) l  

-a€[ W'(n)X(n)X'(n) W(n - I)] 

= (I + a)+, n)  + 2pa(n) - ay(n, n - I )  

(25) 

where again (1) has been substituted. 
Near convergence the weights approach W,, a stationary 

point, and we have for p that o$n + 1, n) = u$n, 
n) = ot(n - I ,  n) --* U;., y(n + I ,  n)  = y(n, n - I )  + y, a(n) 
= a(n - 1) --* a, and b(n) + b, which are all independent 
of time. Therefore, we can replace (23) and (25) by the fol- 
lowing coupled pair of deterministic equations: 

U;. = (1 + 2a + 2a2)a2y. + 4pa - 2 4 1  + a)y + 4p2b 

(264 

and 

y = (I + a).;. + 2p.a - ay. 

By eliminating the common terms from these two expres- 
sions, we have the following condition that defines the out- 
put variance near convergence: 

(1 - ala + pb 0. (27) 

Notice that this condition depends on the parameters p and 
a. By examining a near convergence, we can approximate 
it as follows: 

a = w:f[~(n)~'(n)~(n)e.(n)] = W:S (28) 

where W, is the weight vector in (14), which has been fac- 
tored from the expectation because we are assuming that 
the weight fluctuations near convergence are negligible. 
The vector S i s  given by S = E[X(n)X'(n)X(n)e,(n)]. By sub- 
stituting (14) and (28) into (27) and solving for uy*, we find 
that 

wherewe have defined the positive scalar k = -bl(P;R-'S). 
Substituting (29) into (14), the following expression i s  

'As a result, the weight fluctuations about W ,  will be negligible 
and we can ignore them. 

1602 

obtained, which represents the properties of the percep- 
tron weight vector near convergence: 

W, = k (<) 1 -  
R-'Pq. 

In general, it i s  difficult to determine closed-form expres- 
sions for P,, s, b, and thus k. However, we are not so much 
interested in evaluating (30) as we are in the asymptotic rela- 
tionship (i.e., near convergence) between the weights and 
the parameters p and a. Notice that W, i s  a linear function 
of p; i f  p i s  increased by a factor of 10, for example, then the 
weight values are also scaled by a factor of I O .  On the other 
hand, W, depends on a in a nonlinear way. Furthermore, 
it behaves differently for positive and negative values of a. 
If a > 0, then the weights increase as a -+ 1, becoming 
extremely large as a approaches 1. However, for a < 0, the 
weights decrease as a -+ -1, remaining relatively small. 

Finally, i f  we assume that d(n) is  generated according to 
(6) and (7) ,  then (30) simplifies to 

W, = k' ( L )  F 
I - a  

where (19) has been used and k' = -b/(F'S) i s  a positive 
scalar. Thus, the weights near convergence are propor- 
tional to F. 

IV. COMPUTER SIMULATIONS 

In the simulations presented here, a two-weight percep- 
tron (N = 2) was examined with b = 0, R = l (the identity 
matrix), and F = [-I I]'. As such, the boundary passes 
through the origin at an angle of 45O with respect to the 
signal axes, P = [-I I]', and U: = 2.  The perceptron was 
trained to "learn" the location of this boundary starting 
from the zero weight vector. In all simulations, the weight 
trajectories were averaged over 100 independent computer 
runs to generate relatively smooth curves. We considered 
two cases: (a) one weight was fixed and the other was 
allowed to adapt, and (b) both weights were allowed to 
adapt. 

Figure 3 shows the weight trajectories of w,(n) for four 
valuesofpwitha = Oand w,(n)fixedat -1. Sinceoneweight 

m 

s 

1 / 

0 200 400 600 800 1000 
Number of Samples 

Fig. 3. Trajectories of w,(n) with CY = 0 and w,(n) = -1. 

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 10, OCTOBER 1990 

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 14,2010 at 20:45:24 UTC from IEEE Xplore.  Restrictions apply. 



i s  fixed, the stationary points are unique in this case, cor- 
responding to w2(n) -+ 1 [recall that we must have w2(n) = 
- wl(n)]. Observe that w,(n) converges to 1 as expected, and 
that the rate of convergence increases asp i s  increased. The 
steady-state weight variance is  greater for larger values of 
p; this result is similar to that observed for the standard LMS 
algorithm, and it i s  a form of misadjustrnent [4]. Figure 4 

m 
D 

0 

0 

4 

.- 
E 
.- B 

2.0 

1.5 

1.0 

0.5 

0 200 400 600 BOO 1000 
Number of Samples 

Fig. 4. Trajectories of w,(n) with p = 0.01 and w,(n) = -1. 

shows similar weight trajectories, except p was kept fixed 
at 0.01 and (Y was varied for several positive and negative 
values. Observe that the rate of convergence increases as 
(Y i s  increased until it becomes unstable at a = 1. On the 
other hand, the rate of convergencedecreases asa becomes 
negative and it i s  again unstable when a = -1. These results 
suggest that negative values of a would not be used even 
though the algorithm i s  stable. 

Figures 5 and 6 show several weight trajectories of w,(n) 
for various values of p and a, where wl(n) was also adapted. 
We show only the trajectories of w2(n) because we have 
found that w,(n) = -w2(n) when we initialize them both to 
zero. In Fig. 5, observe that the weight trajectories are 

0.lbu 

o . o m  

0.- 

0 200 400 800 800 1000 
Number of Samples 

Fig. 5. Trajectories of w,(n) with a = 0. 

0.20 t"'"'"'"""'"'7 
0.15 

m 
.c 

0 
4 

P) 

E 
'Z 

0.1117 

0.10 

0.0772 

0.0696 
0.0628 0.05 

0 200 400 600 800 1000 
Number of Samples 

Fig. 6. Trajectories of wz(n) with p = 0.005. 

directly proportional to changes in the step size p,  as pre- 
dicted by the analysis in Section Ill and (31), and observe 
in Fig. 6 that they depend o n  (Y in a nonlinear way. (The 
weight value at iteration 1000 for each curve i s  shown to the 
right of the figures.) For a value of a = 0.5, wJn) should be 
scaled up by a factor of 2, and this result i s  verified by the 
simulation. On theother hand, the weights should be scaled 
down by a factor of 0.667 for cy = -0.5; this result i s  also 
verified in the simulation. A similar property i s  evident for 
a = k0.3, and we have observed the relationship predicted 
by (30) and (31) for other values of p and (Y. 

V. CONCLUSION 

The stationary points and weight trajectories near con- 
vergence of a perceptron learning algorithm with momen- 
tum updating have been examined for a Gaussian input vec- 
tor. It was demonstrated that the stationary points are not 
unique, and that the behavior of the algorithm near con- 
vergence depends on the step size p and the momentum 
factor a, as well as the statistics of the underlying process 
d(n). As p i s  increased, the weight trajectories increase in 
direct proportion to changes in p. On the other hand, the 
algorithm convergence properties depend on 01 in a non- 
linear way, and it i s  unstable for I a 1 = 1, as demonstrated 
by computer simulations. 

ACKNOWLEDGMENT 

Theauthors thank Neil Bershad for his helpful comments 
concerning the analysis of the steady-state output variance. 

REFERENCES 

[I] R. P. Lippmann, "An introduction to computing with neural 
nets," l E f E  ASSP Mag., vol. 4, pp. 4-22, Apr. 1987. 

[2] B. Widrow, R. C. Winter, and R. A. Baxter, "Layered neural nets 
for pattern recognition," / € E €  Trans. Acoust., Speech, Sig. 

[3] D. E. Rumelhart, G. E. Hinton, and R .  1. Williams, "Learning 
internal representations by error propagation," Parallel Dis- 
tributed Processing: Explorations in the Microstructure of Cog- 
nition, pp. 318-362, D. E. Rumelhart and J. L. McClelland, Eds. 
Cambridge, MA: M.I.T. Press, 1986. 

[4] B. Widrow and S. D. Stearns, Adaptive Signal Processing. 
Englewood Cliffs, NJ: Prentice-Hall, 1985. 

PrOC., VOI. 36, pp. 1109-1118, July 1988. 

SHYNK AND ROY: PERCEPTRON LEARNING ALGORITHM 1603 

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 14,2010 at 20:45:24 UTC from IEEE Xplore.  Restrictions apply. 



I 

J .  J. Shynk and S. Roy, “Analysis of a perceptron learning algo- 
rithm with momentum updating,” Proc. IEEEInt. Conf. Acoust., 
Speech, Sig. Proc., Albuquerque, NM, Apr. 1990, pp. 1377-1380. 
J. J. Shynk and S. Roy, “The LMS algorithm with momentum 
updating,” Proc. /E€€ Int. Symp. Circuits Syst., pp. 2651-2654, 
Espoo, Finland, June 1988. 
S. Roy and J. J. Shynk, “Analysis of the momentum LMS algo- 
rithm,” I€€€ Trans. Acoust., Speech, Sig. Proc., to be pub- 
I ished. 
G. 0. Stone, “An analysis of the delta rule and the learning of 
statistical associations,” Parallel Distributed Processing: Explo- 
rations in the Microstructure o f  Cognition, pp. 444-459, D. E. 
Rumelhart and J. L. McClelland, Eds. Cambridge, MA: M.I.T. 
Press, 1986. 
R. Price, “A useful theorem for nonlinear devices having 
Gaussian inputs,” IRE Trans. Inform. Theory, vol. 11-4, pp. 69- 
72, June 1958. 

tions Performance C 
where he formulate 

1604 

;r( 
:d 

john j. Shynk (Member, IEEE) was born in 
Lynn, MA, on  June 20,1956. He received the 
B.S. degree in  systems engineering from 
Boston University, Boston, MA, in  1979. He 
received the M.S. degree in  electrical engi- 
neering and in statistics and the Ph.D. 
degree in electrical engineering from Stan- 
ford University, Stanford, CA, in 1980,1985, 
and 1987, respectively. 

From 1979 to 1982, he was a Member of 
Technical Staff in the Data Communica- 

>up at AT&T Bell Laboratories, Holmdel, NJ, 
performance models for voiceband data 

communications. He was a Research Assistant from 1982 t o  1986 
in the Electrical Engineering Department at Stanford University 
where he worked on  frequency-domain implementations of adap- 
tive I IR filter algorithms. From 1985 to 1986, he was also an Instruc- 
tor at Stanford, teaching courses on  digital signal processing and 
adaptive systems. Since 1987, he has been an Assistant Professor 
in the Department of Electrical and Computer Engineering at the 
University of California, Santa Barbara. He i s  also Associate Direc- 
tor of the Center for Information Processing Research. His current 
research interests includedevelopingand analyzing efficient adap- 
tive signal processing algorithms for applications in  system iden- 
tification, communications, adaptive array processing, and neural 
networks. 

Dr. Shynk i s  an Associate Editor of the / E € €  Transactions on  
Acoustics, Speech, and Signal Processing, and a member of Tau 
Beta Pi, Sigma Xi, and INNS. 

Sumit Roy received the B. Tech. degree from 
the Indian Institute of Technology in 1983. 
He received the M.S. and Ph.D. degrees in  
electrical engineering from the University 
of California at Santa Barbara in  1985 and 
1988, respectively, as well as the M.A. 
degree in  applied probability and statistics 
in 1988. 

He is an Assistant Professor at the Moore 
School of Electrical Engineering, University 
of Pennsylvania, engaged in  research activ- 

ities spanning the general area of statisticalsignal processing, with 
a particular emphasis on  adaptive algorithms and their imple- 
mentations for data communication systems, and on sensor array 
processing for radar, sonar, and underwater acoustics. 

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 10, OCTOBER 1990 

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 14,2010 at 20:45:24 UTC from IEEE Xplore.  Restrictions apply. 


