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nstant Modulus Array for Cochanne 
e nal Copy and Direction Finding 

John J. Shy&, Senior Member, IEEE, and Richard P. Gooch, Member, IEEE 

Abstract-The constant modulus (CM) array is a blind adaptive 
beamformer capable of recovering a narrowband signal among 
several cochannel sources without using a pilot or training signal. 
It is a conventional weight-and-sum adaptive beamformer whose 
weights are updated by the constant modulus algorithm. An 
adaptive signal canceller follows the beamformer to remove 
the captured signal from the array input and to provide an 
estimate of its direction vector. Based on a Wiener model, we 
investigate the steady-state properties of the CM array and the 
signal canceller. For mutually uncorrelated sources and noise, 
it is shown that the signal canceller exactly removes the source 
captured by the array. Thus, identical stages of the CM array and 
signal canceller may be used in a multistage system to recover 
several cochannel sources. Computer simulations are presented 
to verify the analytical results and to illustrate the transient 
behavior of the system. 

I. INTRODUCTION 
N CELLULAR radio systems, spectral crowding and 
cochannel interference are becoming increasingly important 

issues as the number of subscribers grows. Cochannel 
interference results from frequency reusage, whereby multiple 
cells operate on the same carrier frequency [l]. Depending 
on geographic considerations and environmental conditions, 
cochannel interference can be the dominant channel impair- 
ment. It would be desirable to incorporate “smaa” directional 
antennas into the cellular system that are capable of reducing 
the effects of cochannel interference and in turn allow greater 
frequency reusage. These antennas should be capable of 
simultaneously estimating the angles of arrival (AOA’s) of 
several cochannel sources, as well as demodulating the signals 
themselves (referred to as signal copy). 

In recent years, there has been much interest in blind 
cochannel signal copy algorithms for antenna arrays. For 
example, a class of blind adaptive algorithms was developed in 
[2] that extracts and separates multiple signals-of-interest on 
the basis of their differing spectral self-coherence strengths. 
Spectral self-coherence refers to the property of a communi- 
cation signal whereby it is correlated with a frequency-shifted 
version of itself. Another approach is the two-step procedure 
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described in [3] and [4] that incorporates a high-resolution 
direction-finding algorithm followed by a maximum-likelihood 
scheme to estimate the sources. A signal subspace method, 
such as the MUSIC (multiple signal classification) algorithm 
[5], is employed to estimate the AOA’s. More recently, 
a decision-feedback approach was presented in [6] for the 
demodulation of digital signals. Symbol decisions based on 
preliminary signal estimates are used to regenerate the signal 
waveforms from which improved estimates are derived. 

The CM array is an adaptive beamformer designed to 
blindly recover a cochannel signal [7]. It has a conventional 
weight-and-sum beamformer configuration [8] and its weights 
are adapted by the constant modulus algorithm (CMA) [9]. 
The CM array has fast convergence properties and low com- 
putational complexity. Moreover, its signal copy performance 
is insensitive to array imperfections. The multistage CM array 
consists of a cascade of individual CM array stages [10]-[12]. 
An adaptive signal canceller is included in each stage to 
remove a captured source from the input before subsequent 
processing by the follow-on stages. 

In this paper, we analyze the steady-state properties of the 
CM n a y  and the signal canceller corresponding to one stage 
of a multistage system. A steady-state analysis of the other 
stages, which is an extension of the work presented here, is 
given in [13]. We examine the case of uncorrelated sources 
in additive white Gaussian noise; the behavior of the cascade 
system for correlated sources (e.g., due to multipath in an 
urban environment) is briefly discussed. The case of correlated 
sources is more fully investigated in [14]-[16], which also 
describe parallel implementations of the multistage CM array. 

This paper is organized as follows. Section I1 defines the 
array and signal models. In Section 111, we give details 
about the CM arrayhignal canceller and the corresponding 
adaptive algorithms. The steady-state properties of the system 
are derived in Section IV, and computer simulation examples 
are presented in Section V. Although this paper focuses on 
the steady-state properties of the CM array (Le., for stationary 
sources), we also include simulations to illustrate the tracking 
behavior of the system when one of the sources experiences 
Rayleigh fading. Finally, conclusions of this work are outlined 
in Section VI. 

a. ARRAY AND SIGNAL MODELS 
A block diagram of the system is shown in Fig. 1. We 

assume that the antenna elements are uniformly spaced and 
omnidirectional such that we can write the array input signals 
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matrices C, and E,, respectively. Furthermore, we assume 
the sensor noise powers are identical so that C, = a:I and 
(4) becomes 

R, = AC,AH + v ~ I .  (5 )  

The ith diagonal component of C, is a:% = E [ l ~ ; ( k ) 1 ~ ] ,  
corresponding to the power of the ith source. It is well known 
that the rank of AC,AH is L (the number of sources with 
different AOA's) so that N - L eigenvalues of R, are equal 
to U;. 

111. CM ARRAY AND ADAPTIVE SIGNAL CANCELLER 

The CM array estimates one component, s;(k) ,  of s ( k )  
from z(k) in an on-line adaptive manner without directly 
estimating R,. It also provides an estimate of the source 
direction vector a; and, thus, the angle of arrival 8,. Observe in 
Fig. 1 that the input vector z ( k )  is processed by a weight-and 
sum beamformer, yielding the output 

Y(k) = W H ( W W  (6) 
A where w(k) = [w1(k),--., wlv(k)lT are the adaptive weights 

adjusted by the constant modulus algorithm 

(1) ~ ( k  + 1) = ~ ( k )  + 2pcmaz(k)c:(k) (7) 
where { s l ( t ) }  are the L (baseband) sources and {n,(t)} 
are additive white Gaussian noise processes. Because the 

with 

sources are narrowband, 41 = 2 r ( d / X )  sin(&) where d is the 4 k )  = Y(k)/lY(k)l - Y(k)* (8) 
interelement spacing, X is the wavelength of the sources, and 
{e l}  are their angles of arrival. By collecting the signals into 
vectors and assuming that the {xm( t ) }  are sampled, we can 
rewrite (1) as 

~ ( k )  = As(k) + n(k) (2) 
A where z ( k )  = [XI ( k ) ,  . . . , x ~ ( k ) ] ~ ,  s (k)  2 [sl ( k ) ,  e e , sL ( k ) ] :  

n(k) e [n~(k),...,n~(k)]*, and 
r i  . . .  1 1  

The columns {a,}  of A are known as direction vectors because 
they indicate the response of the array to a narrowband signal 
emanating from a particular direction. Note that although one 
is often interested in a uniform linear array as specified by (3), 
the signal copy performance of the CM array is independent 
of the array configuration [7]. Our analysis applies to a more 
general matrix A. We should also mention that L 5 N for the 
CM array, unlike most direction-finding algorithms (e.g., the 
MUSIC algorithm) where we must have L < N .  

The correlation matrix of the data, defined as 
R, = E [ z ( k ) z H ( k ) ] ,  is given by A 

R, = A R , A ~  + R, (4) 

where R, = E[s(k)sH(k)]  and R, = E[n(k)nN(k)] .  We 
assume that s( k )  and n( k )  are mutually uncorrelated with zero 
mean. Thus, R, and R, can be represented by the diagonal 

A A 

The step size pcma > 0 controls the convergence rate of (7), 
and the superscript * denotes complex conjugate. This update 
is identical to that of the complex least-mean-square (LMS) 
algorithm [8], except that the desired signal is replaced by 

It has been shown for constant modulus signals that the 
capture behavior of the CM array depends on the initial weight 
vector w(0) and the relative signal powers at the array output. 
Specifically, for L = N = 2 sources (and a different version 
of C M A ) ,  it was demonstrated that the CM array will lock 
onto the source with the greatest power at the output of the 
array while nulling the other source [7]. It has been shown that 
the CM array will also capture nonconstant modulus sources 
provided the source kurtosis is <2 [17]. Since the array output 
primarily contains the captured source, a signal canceller may 
be used to remove s i ( k )  from z ( k ) ,  generating a modified 
input vector that can be processed by a follow-on CM array 
stage in a multistage system [lo], [13]. 

Observe in the figure that the signal canceller processes 
the array output via u(k) = [ u l ( k ) ,  . . . , u ~ ( k ) ] ~  and then 
subtracts the result from the array input to yield an error vector 

(9) 

Y(k)/lY(k)l. 

A 

e ( k )  = z ( k )  - u ( k ) y ( k ) .  

The canceller weights may be updated by a gradient-descent 
algorithm using 

~ ( k  + 1) = ~ ( k )  + 2pims~*(k)e(k). (10) 

This recursion implements a set of N independent single- 
weight LMS algorithm updates. It is straightforward to show 
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that for convergence in the mean, the step size is bounded 
by 0 < plms < 1/o," where oi = E[/y(k)I2] is the variance of 
the CM array output (this variance is actually the-varying 
because the CM array weights are continually updated by 
(7)). Thus, the convergence properties of the canceller weights 
depend on those of the CM array, whereas the CM array 
weights are independent of the adaptive canceller. All canceller 
weights converge with the same time constant (because of the 
single input y(k)) given approximately by 7 M 1/(2plmsoi). 

Substituting (6) into (9) yields a compact expression for the 
error vector 

e ( k )  = T(k)z(k) (1 1) 

where we have defined the signal transfer matrix 

T(k)  2 I - u(k)wH(k). (12) 

In a cascade multistage implementation, (1 1) corresponds to 
the input of the second stage. Thus, we are interested in the 
properties of T(k)  at convergence, i.e., when the CM array 
has captured a cochannel source. 

IV. STEADY-STATE PROPERTIES 

A. CM Array Wiener Weights 

Assuming that the array captures the zth source, near con- 
vergence we may model the estimation error E ,  ( k )  as E, ( k )  = 
s , (k )  - y(k) [12]. At convergence, this error is orthogonal to 
the data, i.e., E[z(k)~:(k)] = 0, such that 

(13) E[z( k ) z H  ( k)]wo = E[z( k)s: (k)]. 

This result follows by minimizing, with respect to w,, the 
following (conditional) mean-square error (MSE): 

(14) 

The converged weight vector is given by w, = RL'p, 
where R, is the data autocorrelation matrix in (5)  and p ,  = 
E[z (  k ) s :  ( k ) ]  is the cross-correlation vector associated with 
the captured source. Substituting z ( k )  from (2) yields p, = 

E = E[lsz(k) - Y(k)l2lWo1. 

a, and, thus, the following convergence point: 

w, = o,2tR,1a, (15) 

where a, is the ith column of the array matrix A. The CM 
array output power oio = w ~ R , w ,  is given by 

(16) oyo = cS,az Ri 'a ,  = p ,  Ri 'p ,  

where (15) has been substituted for w,. Observe that since the 
minimum MSE is 

2 4 H  H 

E" = - P:R,'P, 2 0 (17) 

we must have p,HR,'p, 5 and, thus, from (16) 

(18) 2 2 
oy,., 5 

The output power of the CM array at convergence is bounded 
above by the power of the captured source. 

The convergence point in (15) is based on the assumption 
that the CM array captures s, ( k ) .  Alternatively, we may view 
it as the desired result (and the optimal solution) if, in fact, 
we did have access to the ith source. Because CMA is a 
blind algorithm, the Wiener solution in (15) approximates the 
actual convergence point. However, simulations indicate that 
the above result is accurate for moderate-to-high signal-to- 
noise ratio (SNR) conditions (see the examples in Section V). 
We should also point out that since the CMA cost function 
is insensitive to phase variations, the algorithm in (7) will 
converge approximately to a scaled version of (15). This 
is discussed further in Section V in connection with the 
performance measures employed in the computer simulations. 

B. Signal Canceller Wiener Weights 

To investigate the steady-state properties of the signal 
canceller, assume the CMA weights are fixed (converged) at 
w,. Taking the expected value of (10) and setting E[u(k + 
l ) ]  = E[u(k)] = U, yields 

E[Y*(kb(k)l = E[lY/(k)121.uo. (19) 

Solving for a,, we obtain the following convergence point for 
the canceller LMS algorithm: 

U, = R , W , / ~ ~ ~ .  (20) 

In the terminology used to describe the Wiener solution in 
(15), l/oio corresponds to the inverse autocorrelation (which 
is a scalar here because of the single input), and R,w, is the 
cross-correlation vector (analogous to p ,  above). 

Substituting the optimal CM array weights from (15) into 
(20) yields 

(21) 2 2  
U,, = (os,/oy,)az. 

Note that the correlation matrix R, in (20) has been cancelled 
by its inverse in (15). Thus, we see that the converged canceller 
weight vector is proportional to the ith direction vector of the 
array matrix A. A calibrated look-up table could be used to 
obtain the corresponding AOA. Note that the direction-vector 
estimate is not biased by the additive noise (assuming the 
S N R  is sufficiently large so that the model is valid and s , (k)  
is captured) since a scalar gain change in (21) modifies all 
components of the direction vector equally (the noise power 
o: influences U, via .io). 
C. Canceller Error Vector 

Next, we investigate the effect of the previous results on the 
canceller error e (k ) .  At convergence, the error vector is 

where the converged signal transfer matrix is given by 
To = I - a , w z  and we have defined the effective array 
matrix A, = T,A. 

A 

A 
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Consider the form of A, and its influence on the source 
vector s(k). Substituting (15) and (21) yields 

A, = [I - u , u ~ R ~ ~ / ( u ~ R ~ ' ~ , ) ] A  
(23) 

where for convenience we have defined Q,,~ = U," Rilaj .  
Observe that A may be partitioned into its columns so that 

H -1  = A  - (l/a,,,)a,a, R, A 
A 

A, = A  - (1/a,,z)az[%,l, . . . > a,,,,. . . , a41 
= A - 0% [P,,l, + . > 1, . . . , Pt,LI (24) 

where ,L?,,j = ~ , , ~ / a , , , .  Thus, the ith column of A, is zero 
and all other columns are shifted, as in the following: 

A 

Ae = [a1 -P,,~u~,...,~,...,~L-P~,Lu,]. (25) 

As a result, the ith source is completely cancelled (regardless 
of the additive noise power a:). The effective direction vectors 
are the original direction vectors minus scaled versions of a,. 
However, it is shown in the next section that p,,, M 0 when 
the sources are not closely spaced (i.e., when the angles of 
arrival (0,) are not very similar). 

0 

D. Shift Factors { P i , j }  

Appendix A that 
We refer to the {,&} as "shift factors." It is shown in 

where G A H A  is an L x L matrix with columns 
(9%) and components gi,, = a,"aJ. The diagonal matrix 
E,,, = (l/a:)& has components {o:,/a:}, which corre- 
spond to the source SNRs. Thus the shift factors {P;,j} are 
influenced directly by the AOA's of the various sources and, 
to a lesser degree, by their SNR's. This is easily seen from 
the closed-form expression below for the case of two sources 
(obtained by evaluating (26) for L = 2) 

A 

A 

where 

Fig. 2 shows an example of IP1,2I2 (log scale) versus 81 

for the case of L = 2 sources, N = 3 elements, d = X/2, 
and an SNR of 20 dB (i.e., ai1 = ai, = 1 and a: = 0.01). 
The angles are measured normal to the linear array, and the 
direction of the second source is fixed at 02 = 45'. Observe 
that the shift factor becomes significant only when the sources 
are closely spaced; otherwise, it is essentially zero. 

It can be shown [18] that 

Q 

M 
0 

- 
2 

;3 -40 

-60 
- 100 -50 0 50 100 

O1 (degrees) 

Fig. 2. Shift factor Ip1,2l2 versus $1.  N = 3 , L  = 2,a:, = a:, = 1, 
r7; = 0.01,$2 = 45". 

is the beampattem of the array weight vector. From this, we 
see that a shift factor is the ratio of the array gain at a null to 
that in the direction of the captured source. As a result, /?,,j is 
also a measure of the resolution of the CM array. Fig. 3 shows 
two beampattems associated with the IP1,2I2 plot in Fig. 2. The 
plots are normalized by the gain in the "look direction" O1 (of 
the captured source); the dotted lines correspond to the array 
gains at the source AOA's. When the two sources are 45, 
apart, the nulled source is suppressed about 72 dB relative to 
the captured source. When the two sources are 5' apart, this 
difference is about 20 dB. These results are consistent with 
the IP1,2I2 plot in Fig. 2 and the relationship in (29). 

E. SINRo,t and SNR,,, 
The output signal-to-interference-plus-noise ratio SINROut) 

is directly influenced by the (,&,,}. It is shown in Appendix 
B that 

j # i  

The corresponding expression for the input SINR is 

SINR;, = 
+ d. 

j#, 

Fig. 4 shows a plot of SINROut versus 01 for the conditions 
used in Fig. 2. Comparing these two figures, we see that 
the SINROut decreases with increasing I,f31,2I2, i.e., when the 
sources become closely spaced. By removing the cochannel 
interference term in (31), the output SNR is 

A where SNR;, = ai,/a: is the input SNR of the ith source. 
An example of SNROut is also shown in Fig. 4. It is straight- 
forward to show that SINR,,, 5 SNR,,, < N . SNR;, (see 
Appendix B). 

From the previous results, we may conclude the following. 
(i) SINR,,, = SNR,,t when the sources are not closely 

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 13,2010 at 21:33:58 UTC from IEEE Xplore.  Restrictions apply. 



656 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 3, MARCH 1996 

n 

-100 -50 0 50 100 
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Angle of Arrival (degrees) 

(b) 

Fig. 3. 
tions as in Fig 2. (a) 01 = 0' (b) 81 = 40' 

Beampattems based on the CM array Wiener weights. Same condi 

spaced; i.e., the array at convergence nulls much of the 
interfering signal, and the noise dominates (ii) When 
6, + 03 ,  I&, l 2  i 1 and the signal canceller becomes less 
effective at removing the interfering source s j  ( k ) .  The noise 
is enhanced and s3 ( k )  begins to dominate SINROut. (iii) When 
0, = 8,, two columns of the may matrix A are identical and 
its rank becomes L - 1. Although SINROut M SINR;,, the 
noise is no longer enhanced ( SNROut increases) because the 
two sources appear to be a single source. 

F. Properties of To 

The steady-state signal transfer matrix is 

is needed regarding that source. Of course, a follow-on stage 
would recover a different source and necessarily converge to 
a different signal transfer matrix. (ii) The eigenvalues of To 
are (0,1,. . . ,1); thus, T o  is a singular matrix. Because the 
error correlation matrix R, = E[e(k )eH(k) ]  has the form 
Re = T,l&Tf, this property demonstrates that R, is a 
singular matrix (unlike Rz). It is shown in [13] that this 
singularity does not adversely affect the steady-state properties 
of the other stages in a cascade multistage implementation. 
(iii) The eigenvector associated with the zero eigenvalue is a,; 
i.e., a, lies in the null space of T o .  From this, it immediately 
follows that the ith column of A, = T,A must be zero. This 
confirms the result in (25). 

A 

G. Correlated Sources 

Finally, we briefly consider the case of correlated sources 
and their effect on the canceller Wiener weight vector. Al- 
though the cascade CM array performs well in many signal 
environments (refer to the real-time implementation described 
in [19]), its performance will be diminished when the sources 
are highly correlated. This may occur, for example, in an 
urban area where there is significant multipath. A complete 
discussion of the results for correlated sources is beyond the 
scope of this paper; instead, we refer the reader to [14]-[16] 
for further details. 

Consider the case of L = 2 sources with correlation 
coefficient ,012. Also, for convenience assume that N = 2 
so that 

(35) 

uta," R, For this case, it is easy to show that the optimal CM array 
(34) weights are T o = I -  = I -  - 

U," R,  'a, b,HG 

where we have defined bz = A Ri'a,. From the form of this w o  = RL1Ars,% (36) 

(37) 

Note that aio has the previous form o;o = wfRzwo, except 
that we substitute (36) for w, . 

2 matrix, the error vector would be unchanged. <The signal a0 = Ars,z/oyo. 
transfer matrices multiply from left to right along a cascade 
multistage implementation [13].) The first stage has success- 
fully removed the captured source and no additional processing 
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Assume the first source ( i  = 1) is captured so that 

U0 = (4, /gi0) [a1 + ( g s z  /Cs1 )PT2az]. (38) 
Thus, we see that the optimal canceller weight vector is a 
linear combination of the two direction vectors; the influence 
of a2 is determined by the size of the correlation coefficient 
p12 and the relative source powers. One can show that s l (k)  
is not completely cancelled by the transformation To [14], as 
it was for the uncorrelated case (p12 = 0). Both columns of 
the effective array matrix A, are linear combinations of the 
original array response vectors 01 and a2. 

V. COMPUTER SIMULATIONS 

A. Stationary Sources 
The convergence behavior of the CM array and the signal 

canceller is illustrated by example computer simulations. There 
are L = 3 sources with the following angles of arrival: 
01 = -loo, 192 = 4 5 O ,  and 03 = 70°, with equal variances 
azl = = a;, = 1. The number of CM array weights is 
N = 3, and they were initialized to w(0) = [1,0,OlT; the 
canceller weights were all initialized to zero ~ ( 0 )  = [0, 0, OIT .  
The step sizes are pcma = 0.02 and plms = 0.01, d = X/2, and 
the noise power is n; = 0.01. The random phases { & ( k ) }  of 
each source s z ( k )  = e3$%(k) were drawn independently from 
the uniform distribution [-w, w]. 

Recall that the Wiener weight vector w, minimizes the MSE 
in (14). Because CMA is insensitive to phase variations, it 
will in general converge approximately to a scaled version 
of w,. Thus, we utilize the following metric to quantify the 
performance of the CM array 

Ecma,z(k) = ~ [ l s z ( k )  - ~z(k)~(k)I'Iw(k)I (39) 
where yz(k) is a complex scalar chosen to minimize (39). Note 
that this expression is conditioned on the CM array weight 
vector at time instant k ;  it can be plotted as a function of time 
for each value of the weight vector updated in (7). The scale 
factor y,(k) may be viewed as an adaptive weight that aligns 
the phase components of s z ( k )  and y(k). However, instead of 
adapting yz(k) by an LMS-type algorithm, we may substitute 
the corresponding Wiener weight after each CMA update. It 
is straightforward to show that the yz(k) minimizing (39) is 
given by 

% ( k )  = [.,2,/4(k)la,Hw(~) (40) 
where ai(k) = wH(k)R,w(k) is the output variance (con- 
ditioned on w(k)). Fig. 5(a) shows a trajectory of (39) for 
the captured source s1 ( k )  (the expectation was approximated 
by averaging the squared error over 100 independent computer 
runs). Observe that convergence is quite fast; SI ( k )  is captured 
after about 400 samples. Furthermore, the minimum MSE 
(given by (17) and indicated by the dotted line) is nearly 
achieved. It is possible to lower the small amount of misad- 
justment shown by decreasing the step size. The corresponding 
converged weight vector is a scaled version of the Wiener 
solution w, in (15), as follows: 

WO,% = ( r o / l r o l " ~ o  (41) 
where 7, is (40) at convergence. 

n 

9 
v 

0 200 400 600 800 1000 
Number of Samples 

(4 

0 

-10 
m a 
v 

-20 
!3 

-30 

0 200 400 600 800 1000 
Number of Samples 

(b) 

Fig. 5. MSE trajectories for the case of stationary sources. 
L = 3,u,2, = of, = ofs = 1,u; = 0.01. (a) N = 3. (b) 
N = 10,q = 0.5. 

The converged weight vector of the canceller is a scaled 

(42) 

where aio ,yo is the output variance based on the scaled weight 
vector in (41). Substituting (41) yields 

(43) 

where U, is the Wiener solution in (20). Thus, the canceller 
weights are scaled by yo at convergence. We can use this result 
to plot the trajectory of the canceller weight error, as follows: 

version of the Wiener solution U, in (20), i.e. 
2 

U O > %  = Rxw*,% /%,yo 

Uo,y, = (ro/lr012)R3C~o/(~~,/IIYo12) = you, 

Elms,z(k) = ( l / N ) E [ l l ~ ( k )  - r z ( k ) ~ o I l ~ I w ( k ) , ~ ( k ) ] .  (44) 

This expression is scaled by the number of canceller weights 
so that (39) and (44) have the same relative noise power. The 
trajectory of (44) is also shown in Fig. 5(a). 

Next, simulation results for N = 10 (and L = 3) are 
shown in Fig. 5(b). Since the eigenvalue spread of R, is quite 
large (Xmax/Xmin = 1225), we can expect that the overall 
convergence rate will be quite slow. This condition would 
occur even if we had direct access to the captured source 
s 1 ( k )  and used it in place of y(k)/ly(k)l in (8). To improve 
the convergence rate of the algorithm, we may employ leakage 
in the update as follows: 

w(k + 1) = (1 - 2~crna~)w(k) + 2~cma2(k)~;(k) (45) 
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Fig. 6. Output signal power estimates for the case of a Rayleigh fading source. Same conditions as in Fig. 5(a). (a) Magnitude of the Rayleigh fading 
coefficient for two Doppler shifts; (b) trajectory for fl = 6 Hz; (c) trajectory for fi = 38 Hz. 

where 0 5 77 < l/pcm, is the leakage factor [20]. The CMA 
learning curve in the figure corresponds to 77 = 0.5 (leakage 
was not used in the canceller update). Observe that the 
convergence rate is similar to that for N = 3; furthermore, 
the algorithm nearly achieves the Wiener MSE (computed 
using (17)). The converged MSE of the canceller is essentially 
unchanged, so that the captured source is still effectively 
removed from the array input. 

E. Rayleigh Fading 
Finally, we examine the capture and tracking performance 

of the CM array for a Rayleigh fading channel with Doppler 
shift. Using the model in [21], the time-varying factors that 
multiply the sources { s m ( k ) }  are given by 

n=l 

where R, = 2 . i r f m / f s ,  f m  is the Doppler shift of the mth 
source, f s  is the symbol rate, aim) = 2.irn/M + e:,), SA", 
is uniform on [-6, S] for some small 6, and q5LmLm) is a random 
phase uniform on [-7r,n]. In our computer simulations, we 
used S = 0.005,~:~) = l/m (so that the { h m ( k ) }  have 
unit power), A4 = 14 (so as to closely approximate a Rayleigh 
fading channel [21]), and f s  = 24300 baud (from the IS-54 
standard [22]). 

Using the above model, we show simulations when one of 
the sources has a Doppler shift and the other two sources 

are stationary. The trajectory (dashed line) in Fig. 6(a) is 
the coefficient magnitude of the fading source for a Doppler 
shift of 6 Hz (corresponding to a vehicle travelling 4.8 mph 
with a transmitting frequency of 850 MHz), assuming the 
data is transmitted at 24300 baud. The Doppler shift f m  
and car velocity U, are related approximately as follows 
[23]:fm = (v,/c)fc Hz where c is the speed of light and 
fc = 850 MHz. Instead of plotting the MSE as was done in 
our previous simulations, we plot an estimate of the source 
power at the output of the array. This trajectory is shown in 
Fig. 6@). The power estimate of the ith source is computed as 

P,(k)  = IwH(k)a,kz(k)s,(k)l2. (47) 

Note that only one run is shown in the figure, i.e., we did not 
average over 100 independent runs as was done for the MSE 
trajectories. The source and system parameters are the same 
as those used in Fig. 5(a). 

Note that for this relatively mild case, the CM array captures 
and tracks the time-varying source. Fig. 6(c) shows the trajec- 
tory for a Doppler shift of 38 Hz (corresponding to 30.2 mph 
at a transmitting frequency of 850 MHz); the coefficient 
magnitude is shown in Fig. 6(a) (solid line). Observe that 
the CM array once again captures the time-varying source. 
However, its MSE performance is somewhat diminished; 
this is seen by the fact that the trajectory of p l ( k )  follows 
the coefficient in Fig. 6(a), whereas it should be near unity 
(because of the constant modulus property). Note, however, 
that larger step-size values may be used to compensate for 
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rapid variations in the source power. The transient properties APPENDIX B 
of the CM array are investigated further in [13] and [24]. EVALUATION OF SINRout AND SNRout 

The output of the CM array at convergence is given by 

VI. CONCLUSION y,(k) = wFx(k), which, after-substituting-w, from715) and 
x(k1 from (2) becomes 

\ ,  \ ,  

We have analyzed the steady-state properties of the con- 
stant modulus (CM) array whose output is processed by an y,(k) = o;,$R;1As(k) + o:,a$Ri'n(k). (B.l) 
adaptive signal canceller. This configuration may be used in 

signals. When the CM array converges to the optimal solution, 

Partitioning A into its columns and substituting 
",>j = u:RL1aj yields 

a multistage system for the separation of several cochannel A 

capturing one of the sources, the canceller exactly removes this 
signal. The canceller weights correspond to a scaled version 
of the direction vector of the captured source, from which 
it is possible to estimate its angle of arrival. Although the 
columns of the effective array matrix may be shifted away 
from the original direction vectors, it was shown that this bias 
is negligible if the sources are not too closely spaced and 
the SNR is adequate for the CM array to copy a source. The 
steady-state properties of a multistage system based on the CM 
array are investigated in [13] and an extension of this analysis 
to the case of correlated sources is considered in [14]-[16]. 
A real-time implementation of the multistage CM array with 
N = 4 elements is described in [19]. 

L 

Y,(k) =a:% % , J S j ( k )  + a,2gR,1n(k) 
,=1 

=~:p,,,s,(k) + 4, az,,s3(k) + a,2gR,ln(k) 
3 f a  

(B.2) 

where sc (k )  is the captured source (scaled), c ( k )  represents 
the cochannel (interfering) signals, and v(k) is a noise term, 
all at the output of the CM array. 

The output SINR is defined as 

A 
= s c ( k )  + c ( k )  + v(k) 

APPENDIX A 
EVALUATION OF @z,3 

Recall that ,&,3 = Q,,~/Q,,, where Q,,~ = 07R;~a, ,  {a,} 
are the columns of A, and R, is the correlation matrix in (5). 

where we have assumed that the sources and noise are mu- 
tually uncorrelated. Substituting the terms from (B.2) (after 

A A cancelling the common a:% term) yields 
2 2  

03.4) 
o s %  a,,, SINRout = CIN,,3 + a:api2a, * 

From the matrix inversion lemma [20] 

3 #Z 

RL1 = (l/o;)[I - A('Zl2 + AHA)-lAH] (A.l)  

where E,,, = (l/a;)E, is a &agonal matrix with components 

Dividing the numerator and denominator by a:,, and substi- 

tuting /3z,3 = Q,,~ /a,,, yields the following final result: A 

given by the SNR's of the L sources. For convenience, define 2 
SINRout = ffS% . (B.5) A 

Q , , ~  = aFa3. Observe that we can write CIA,, I2dj + (a;/4,,)a3L2a% 
~ 

= (l/a;)[g,,j - aFA(E;k + AHA)-lAHa3]. (A.2) 3 #i 

The output SNR is obtained from (B.5) by ignoring the 
If we partition A into its columns (as we did to derive (25)), cochannel interference term in the denominator, as follows: 
this expression becomes 

A where g, is the ith column of G = AHA with components 
{gz,3}. Inserting this expression into the definition of ,8,,3 
and cancelling the noise variance o: yields the final result 
as follows: 

(B .6) 

The term weighting SNR,, = o,",/o; can be written as 

( uFR; ' U , )  / ( aFRi2a,) = ( ~ $ b , ) ~  / ( bTb,) (B.7) 

where we have substituted b, = R;lu,. Because the compo- 
nents of U ,  all have unit magnitude, it is clear that 

A 

where we have substituted g+ = N ,  the number of antenna Thus, the expression in (B.7) is 5 N so that SINR,,t 5 
elements. SNR,,t 5 N . SNR;,. 
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