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Adaptive IIR Filtering Using Parallel-Form
Realizations

JOHN J. SHYNK, MEMBER, IEEE

Abstract—The parallel form in adaptive IIR filtering is an efficient
realization that provides robust stability monitoring with less complex-
ity than that of the direct form. Several parallel-form adaptive IIR
filters are presented in this paper, including a frequency-domain im-
plementation based on the discrete Fourier transform, and a recursive
frequency-sampling structure. The performance of the frequency-do-
main adaptive IIR filter is investigated in a system identification ap-
plication, which includes an analysis of its modeling capabilities and a
discussion of the MSE performance surface. Computer simulation re-
sults are presented to illustrate the robust convergence properties of
the adaptive algorithm, and to demonstrate the stability of the filter.

I. INTRODUCTION

VER the last decade, adaptive infinite-impulse-re-
sponse (IIR) filtering has been an active area of re-
search [1], [2]. Most adaptive IIR filters discussed in the
literature have been direct-form realizations [3]-[9]. Al-
though the direct form is a convenient and simple struc-
ture, it is often difficult to ensure stability of the adaptive
filter when using, for example, the Gauss-Newton (GN)
algorithm [10]. Instability can occur if a particular appli-
cation requires that the poles be located close to the unit
circle. If the GN algorithm adapts too rapidly, one or more
poles could accidently move outside the unit circle be-
cause of the noisy gradient estimate, leading to a poten-
tially unstable filter. Some method of stability checking,
therefore, is necessary to prevent the poles from updating
outside the unit circle.' Although several methods have
been suggested, they are either computationally expen-
sive or nonrobust [1]. To resolve this problem, several
alternative implementations including the cascade, par-
allel, and lattice forms have been considered [5], [11]-
[13]. These structures offer simple stability monitoring
without the large complexity required by the direct form.
In this paper, we describe several parallel-form adap-
tive IIR filters that overcome the stability complexity
problem and appear to be quite robust. They are com-
prised of first-order sections that facilitate monitoring of
the filter poles during adaptation to ensure stability. Be-
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't should be noted that not ali adaptive algorithms for IIR filtering re-
quire stability monitoring, such as those based on pseudolinear regression
methods [10). However, these algorithms generally require that a strictly
positive real (SPR) condition be satisfied, which is not always possible in
practice. This paper is concerned only with the Gauss-Newton algorithm
for which the SPR condition is not necessary.

cause of the parallel structure, they are also less sensitive
to coefficient quantization than direct-form realizations
and they are well suited for modular hardware implemen-
tation (e.g., VLSI). Section II describes the basic paral-
lel-form adaptive IR filter [5], [13] and demonstrates that
the GN algorithm can have convergence problems if the
coefficients of each section are identically initialized. This
provides the motivation for alternative parallel configu-
rations that are less sensitive to this initialization and have
improved convergence properties.

Section III discusses a parallel-form realization imple-
mented in the frequency domain that uses a discrete Fou-
rier transform (DFT) to preprocess the input signal. Three
different forms of the adaptive algorithm are presented,
and a frequency-sampling realization that offers a reduc-
tion in complexity is described. The analyses in Section
IV illustrate several performance characteristics of the
frequency-domain adaptive IIR filter (FDAF) in a system
identification application. It is demonstrated that the
adaptive filter can model any rational system with distinct
poles. (It will become clear that parallel-form realiza-
tions, in general, cannot exactly model a system with
multiple repeated poles.) Some properties of the mean-
square-error surface are examined, and a discussion of the
asymptotic variance of the coefficient estimates, deter-
mined by the Cramer-Rao lower bound, is presented.
Several computer simulations illustrate the robust conver-
gence properties of the FDAF. Conclusions are then out-
lined in Section V.

II. PARALLEL-FORM REALIZATION

A. Filter Description

Consider the parallel-form adaptive IIR filter shown in
Fig. 1 that is comprised of N first-order sections, each
having a single feedforward coefficient b (n) and a single
feedback coefficient a, (n). The output y, (n) of each sec-
tion is given by

w(n) = <%>x() (1)

where x(n) is the common input, the superscript * de-
notes complex conjugate, and ¢~' is the delay operator
li.e., ¢ 'x(n) = x(n — 1)]. (If x(n) is strictly real, this
configuration should be comprised of second-order sec-
tions as in [5]; this will permit complex poles. ) The over-
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Fig. 1. Parallel-form adaptive IR filter.

all output y(n) of the filter is
N-1
y(m) = 2 yln) = 0"y s(n)  (2)
where the superscript H denotes complex conjugate trans-
pose. The coefficient vector #(n) and the signal vector
¢ (n) each have length 2N and are defined as follows:

8(n) = (ao(n) - - - ay_i(n) bo(n) - -+ by ()" (3a)

6(n) = (yoln = 1) =+ yyoa(n = 1) x(n) <=+ x(n))".
(3b)

Finally, the output error e(n) is formed as the difference
between the desired response d(n) (which depends on the
application of the adaptive filter [14]) and y(n).

The adaptive algorithm that adjusts the coefficients
{ay(n), by(n)} to minimize the mean-square error (MSE)
is a specific form of the (complex) recursive Gauss—-New-
ton (GN) method [15]. It is given by

R(n + 1) = \R(n) + ay(n) ¢"(n)
0(n + 1) = 6(n) + aR™'(n + 1) Y(n)e*(n)

(4a)
(4b)

where R(n) is the (estimated) Hessian matrix, « is the
convergence step size, N = 1 — «, and Y(n) is the so-
called information vector defined as

Y(n) = (¥h(n = 1) - yh_i(n = 1) xi(n)
-‘xj,:,_l(n))T. (5)

The components x’,:(n) and y{(n — 1) are computed by
filtering the input x (n) and the intermediate output y,(n
— 1), respectively, with the denominator polynomial of
the corresponding first-order section as follows:

xi(n) = <TT,’}‘1(n—)F>x(")

1
Yi(n — 1) = <W>ﬂ(” —1). (6b)

(6a)

Notice that each xﬁ.(n) depends on the same (and only)
input x(n), whereas each y{(n — 1) depends on the in-
termediate output y,(n — 1) of the subfilter in (1).

Instead of computing the inverse of the Hessian as in
4b), P(n) = R \(n) is generally updated directly using
the matrix-inversion lemma [10]. A simpler algorithm can
be derived if the update for the Hessian in (4a) is not per-
formed and R™'(n + 1) in (4b) is replaced by the identity
matrix. The resulting algorithm corresponds to a steepest-
descent (SD) method [14] which has less complexity than
the GN algorithm. It is well known, however, that an SD
algorithm generally converges more slowly than a GN al-
gorithm, so that there is a tradeoff between the computa-
tional complexity and the rate of convergence.

The primary advantage of the parallel configuration is
that stability monitoring is trival. In the event that a pole
attempts to move outside the unit circle, the update for
that first-order section is simply ignored [i.e., a,(n + 1)
= a,(n)]. All stable poles are updated, however, so that
the adaptive filter changes state and the algorithm is less
likely to lock up [1]; furthermore, all unstable poles can
be easily projected back inside the unit circle to some ap-
propriate location. As a consequence, stability monitoring
in this configuration is robust and it does not increase the
complexity of the algorithm. (If x(n) is real and second-
order sections are used in Fig. 1, stability checking in this
case is again trivial. ) It should be noted that the parallel
form does not solve the problem of where to project the
unstable poles [10], it only facilitates the process of iden-
tifying them.

B. Nonconvergence of the GN Algorithm

Although the parallel form has several advantages, there
is a potential drawback with the structure in Fig. 1. If the
subfilters are identically initialized, then it is possible that
the GN algorithm will not converge. To guarantee con-
vergence, it is necessary that the Hessian matrix in (4) be
nonsingular (positive definite) for all n. In the direct form,
R(n) will generally be positive definite if the input signal
x(n) has persistent excitation {10]. Although this is a nec-
essary condition for R(n) to be positive definite in the
parallel configuration, it is not always sufficient. Consider
the update expression for the Hessian matrix which can
be written in the following nonrecursive form:

R(n + 1)
— )\71+IR(0) + « kgo xk‘l/(f’l - k) ‘//H(n bl k)
= )\"+161 + «a k§0 )\k\[/(n - k) ¢H(n - k)’ (7)

where § is the initial estimate of the signal power and I is
the identity matrix. Because N < 1, (7) can be approxi-
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mated for large n by
R(n+1) = « EO Ny(n — k) y"(n — k). (8)

If the subfilters in (1) are identical, each x{,(n) in (5) will
also be identical as will each y3(n ~ 1); the matrix ¢ (n
— k) ¥"(n — k), therefore, will have a block structure
where each block is comprised of identical elements. As
aresult, R(n) in (7) will eventually become singular even
though the initial matrix R(0) = 5/ is nonsingular.

Recent analysis of the MSE performance surface of the
parallel form [16], [17] demonstrates that the manifold of
equivalent subfilters lies along a gradient line until it
reaches a saddle point. This indicates that any numerical
differences between the subfilters (including that caused
by noise) should lead to satisfactory convergence of a gra-
dient-based algorithm, a result that has been demonstrated
in computer simulations [17], [18]. By an appropriate in-
itialization of the algorithm, it may be possible to avoid
the singularity problem described above, although there
appears to be no guarantee. The simulations in Section IV
and [18] illustrate that convergence of the GN algorithm
is significantly slower whenever the poles lie close to this
manifold, suggesting that the Hessian matrix is ill con-
ditioned. The above result demonstrates that such a man-
ifold can lead to a singular Hessian matrix and cause
problems with convergence.

C. Preprocessing of the Input Signal

Consider the configuration in Fig. 2 where the input
signal x(n) is preprocessed to generate N different signals
in parallel. The signal vector in (3b) becomes

d(n) = (yoln = 1) =+ + yyi(n = 1) xo(n)

e xy(n) 9)
and x(n) in (6a) is replaced by x,(n). By filtering x(n),
the subfilter inputs can be modified so that the GN algo-
rithm is less sensitive to the condition of identical subfil-
ters, as demonstrated in computer simulations (see Sec-
tion IV). Unlike the information vector associated with
Fig. 1, the transfer functions from x(n) to {x{((n)}, and
from x(n) to {y{(n) }, can now be different for any set
of subfilter coefficients within the stable region. It should
be noted that preprocessing of the input does not guar-
antee convergence (as this depends on the spectral nature
of x(n) [10]), but it appears that certain types of prepro-
cessing can improve the convergence properties of the GN
algorithm.

There are several issues concerning the effect of the
preprocessing on the properties of the adaptive filter. For
example, consider an application in system identification
where the adaptive filter models the transfer function of
some unknown system. It is important for the preprocess-
ing to be “‘transparent’’ in the sense that the adaptive filter
be capable of exactly modeling an arbitrary rational sys-
tem; i.e., if the order of the adaptive filter is chosen large
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Fig. 2. Parallel-form adaptive IIR filter with preprocessing of the input
signal.

enough, the output error can be driven to zero (in the
noise-free case).

It would also be advantageous for {x.(n)} to be ap-
proximately uncorrelated so that the Hessian matrix is
nearly diagonal. The GN adaptive algorithm could be
simplified considerably using a diagonal matrix as an es-
timate for the Hessian, thereby uncoupling the update for
each subfilter without significantly degrading the conver-
gence rate.

III. FREQUENCY-DOMAIN REALIZATION
A. Filter Description

One method of preprocessing that satisfies the above-
mentioned properties is the DFT; the resulting frequency-
domain adaptive IIR filter (FDAF) [19], [20] is shown in
Fig. 3. A tapped delay line (TDL) stores a vector of N
values of the input {x(n) *-- x(n — N + 1)} and at
each instant of time, a DFT of the TDL is computed to
separate the input signal x(n) into N parallel signals
{x,(n)}. The form of the DFT is

=
- ki
x(n) N E:o x(n =)Wy (10)
where Wy = ¢*"/V. Each x,(n) is independently filtered
by Hi(n, z) to generate the intermediate output signals

wln) = <”k*(”) tdln)g >xk(n) (1n)

I = af(n)q™

where {a,(n). by(n), c,(n)} are the adjustable coeffi-
cients. These are then summed to generate the overall fil-
ter output y(n). It will be evident in Section III and from
(18), which corresponds to the transfer function of (10),
that this form of preprocessing ensures that each compo-
nent of the information vector is derived from a different
transfer function for any set of coefficients in the stable
region.

Frequency-domain realizations for adaptive finite-im-
pulse-response (FIR) filtering have been widely studied
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Fig. 3. Frequency-domain adaptive IIR filter.

[21]-[26]. The use of adaptive poles in the frequency do-
main was apparently first investigated by Bershad and
Feintuch [27]. To simplify the convergence analysis of an
adaptive IR line enhancer, they examined an equivalent
frequency-domain representation. This representation was
not considered to be an implementation of the filter, how-
ever, and it was developed for a specific application. The
FDAF in Fig. 3 has general application and is an exten-
sion of the frequency-domain adaptive FIR filter intro-
duced by Narayan [23]. Notice that three coeflicients are
used in cach first-order subfilter instead of two as in Figs.
| and 2: this additional coefficient enables the FDAF to
model an Nth-order system with distinct poles (as shown
in Section IV).

If x(n) is real, then xy and xy/2 (for N even) are also
real signals, and the centers of the corresponding DFT
frequency bins? are at wy = 0 and wy/, = 7, respectively.
Because the adaptive algorithm used to update a subfilter
will not generate complex coefficients if the subfilter input
is real [20], the FDAF will require a DFT with an order
> N to exactly model an Nth-order system that has no real
poles. It is possible to resolve this problem with a gen-
eralized DFT (GDFT) rather than the standard DFT. In
this case, the inputs to the subfilters are

| N
=— 2 x(n — )W

xi(n) N 5o

(12)
where —1/2 < k, < 1/2. This expression corresponds
to a DFT where the frequency index has been shifted by
the noninteger-valued k,,. This form is more desirable be-
cause the bin centers can be shifted arbitrarily around the

Frequency bin k refers to the band of frequencies centered at w, =
WY with a bandwidth of approximately 27 /N.

unit circle, and k, can be chosen such that no bin centers
lie on the real axis; instead, they will be at w, =
Wik %) Typically, k, should equal one-half.

B. Frequency-Domain Adaptive Algorithm

The adaptive algorithm is a special case of the GN al-
gorithm in (4); it employs the following 3N-vectors:

6(n) = (63(n) -+ 65 \(m)) (13a)
o(n) = (65(n) -~ dh(m))"  (13b)
v(n) = (¥(n) - V() (13c)

where
6,(n) = (ax(n), bu(n), a(n))’ (14a)
ou(n) = (we(n — 1) x(n), xe(n = 1)) (14b)
d(n) = (i(n = 1), x4, xh(n = 1) (14e)

The filtered variables {x{(n)} and { yi(n — 1)} are de-
rived from (6) [ where x (n) in (6a) is replaced by the DFT
output x;(n)]. The complete algorithm is summarized in
Table I where the inverse P(n) of the Hessian is updated
directly using the matrix-inversion lemma. A generalized
fast Fourier transform (GFFT) based on (12) produces the
DFT signals {x,(n)}.

It is possible to reduce the complexity of the FDAF
algorithm from order N? to order N because the DFT sig-
nals {x,(n)} are approximately orthogonal [28]. If we
assume they are exactly orthogonal, the Hessian matrix
will have the following block-diagonal form:

Ry(n) 0

R(n) = (15)

0 . Ry-i(n)

where each R, (n) has rank 3. As a result, the update for
the Hessian matrix in (4a) becomes N separate updates as

Ri(n + 1) = ARi(n) + ayy(n) yi(n), (16)
and the corresponding update for 6;(n) is

6(n + 1) = 6, (n) + aR;'(n + 1) Y(n) e*(n),
(17)

which uses the common error e(n) for each value of k.
Table II summarizes this simplified adaptive algorithm
where the Hessian matrices are updated directly because
the matrix-inversion lemma does not reduce the compu-
tational complexity for such matrices of small rank. The
block-diagonal Hessian will generally result in a slower
convergence rate because the {x;(n)} are only approxi-
mately uncorrelated. Simulation studies indicate, how-
ever, that the performance is not severely degraded (see
Section IV).

Further simplification of the adaptive algorithm can be
achieved by forcing each Ry (n) in (15) to be diagonal. In
this case, all coefficients of the adaptive filter are uncou-
pled and updated independently. The overall complexity
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TABLE I
FREQUENCY-DOMAIN ADAPTIVE IIR ALGORITHM
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TABLE 11
SIMPLIFIED FREQUENCY-DOMAIN ADAPTIVE IIR ALGORITHM

INITIALIZATION:

be(0) = ¢, (0 =0, |a,©0)] < 1

wED = x[(-1) = y[1) =0

x (=1)

PO = &1

VECTOR DEFINITIONS:

6,.(n) = [ay(n), b(n), cp(n) 17
8(n) = [8§(n), ..., 00 (1"
0c(n) = [ % (r=1), x(n) , % (n-1) 1"
o) = [6§(n), ..., 00 () )T
Vi(n) = [yf(n-1), x{(n) , x{(n-1) )T
v = [wdn), .. whm) 17

FOREACHNEW INPUT x(n),d(n);n 20:
x(n) = GFFT [x(n) s, X (m=N+1) ]
FI*:ORIC =0,1,...,N-1:

x{(n) = x.(n) + ai(n) x[(n-1)

Y(n) = 8f(n) ¢, (n)
yl(n) = yi(n) + af(n) yf(n-1)
N-1
e(n) = dn)= Y y(n)
k=0
1 P )yt (n)P (n)
== |P@n)-
Foeh =5 [ O X et v P vy
B(n+1) = B(n)+ o P(n+1) y(n) e*(n)

is still of order N, but there are no matrix operations. Un-
fortunately, simulations demonstrate that this additional
reduction in complexity occurs at the expense of a se-
verely degraded convergence rate (see Section IV).

The adaptive algorithm requires proper initialization of
both {R,(n)} and {6,(n)}. For satisfactory conver-
gence, each R, (0) must be positive definite and, for sta-
bility, each a,(0) must have a magnitude < 1. Generally,
it is sufficient to initialize as R, (0) = &/ and 0,(0) =0
where the real scalar § is an estimate of the power of x;(n)
and 0 is a column vector of 0’s. Alternatively, it may be
advantageous in some applications to initialize the pole
coefficients to different nonzero values. It has been shown
in [29] that the manifold of equivalent subfilters can lead
to slower convergence of the FDAF, and that initializa-

INITIALIZATION:

b(0) = ¢,(0) = 0, [gq0)] < 1

4D =y = x{-1) = y/¢-1) = 0

R, =81
VECTOR DEFINITIONS:
0, (n) = [ap(n), by(n), cp(n) 1’
() = [y(n-1), x5 (n), x(n-1) 17
Ve(n) = [y[(n-1), x[(n) , x[(n=1) |7
’—FOR EACH NEW INPUT x(n) ,d(n);n 20:
x(n) = GFFT [x(n) ,,,,, x(n=N+1) ]
FORk =10,1,..., N-1:

xf(n) = x(n) +aj(n) x{(n-1)
() = 8fl(n) ¢ (n)
yl(n) = y(n) + af(n) yf(n-1)
N-1
e(n) = dn)~ ¥ y(n)
k=0

FORk =0,1,...,N-1:

Re(n+1) = AR (n) + a yi(n) yii(n)

Be(n+1) = 8,(n) + R (n+1) yy(n) e (n)

tion of the subfilters away from this manifold may im-
prove the convergence properties.

Because the poles appear explicitly in the subfilters, it
is not only possible to easily initialize them to any value,
but it is also straightforward to constrain their adaptation
to any subregion of the z-plane. In system identification,
for example, if it is known a priori that the system poles
lie in the right half of the z-plane, the FDAF poles could
be constrained to update only in that region. This could
increase the convergence rate since the poles would not
temporarily ‘‘wander’’ in the left-half plane. Although
constrained adaptation would not be useful in all appli-
cations, it is still another advantage of a parallel imple-
mentation but not for the direct form (when N > 2).

C. Frequency-Sampling Realization

Itis possible to obtain {x,(n)} using a frequency-sam-
pling (FS) implementation [24], [30] of the DFT instead
of the FFT that would reduce the computational complex-
ity of computing the filter output from order N log N to
only order N. This implementation corresponds to the
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transfer function from x(n) to x;(n), derived from (10)
[or (12)], and is expressed as
Xk(Z) _ l 1 -z
X(z) N1 — Wy

N

(18)

where X(z) and X, (z) are the z-transforms of x(n) and
x;(n), respectively. The numerator consists of N zeros
equally spaced around the unit circle according to z =
wh,1=0,--+,N— 1. Apoleatz= W1, cancels
exactly one of these zeros so that (18) actually represents
an all-zero filter, as is evident from the nonrecursive na-
ture of (10).

Although this recursive structure is an equivalent rep-
resentation of the DFT, it is not a practical implementa-
tion because the poles at z = W are only marginally sta-
ble. To realize the FS structure, the poles (and zeros) must
be placed just inside the unit circle by substituting =
Bz~ ! in the right-hand side of (18), where {3 is a real scalar
(0 < B < 1) chosen arbitrarily close to 1. In this case,
x;(n) is computed according to

1(1-p8%"

x(n) =5 <1——ffWZT>X(n)
where the filter has N zeros equally spaced around a circle
with a radius of 8; apoleatz = 8 Wf\, exactly cancels one
of these zeros. Fig. 4 is a diagram of this implementation
of the FDAF where, for convenience, § = 1. It can be
seen in (19) that the comb filter (1 — BNz"N)/N is com-
mon to each x,(n), and its output can be calculated as
follows:

(19)

w(n) = % [x(n) — B%(n = N)]. (20a)
Each x,(n) is then obtained from w(n) as
x(n) = w(n) + BWyx,(n — 1). (20b)

These expressions are an efficient method of computing
the DFT that is recursive but stable. The corresponding
adaptive algorithm is derived from Table I or II by sub-
stituting (20) for the FFT. (An FS implementation of the
GDFT in (12) is obtained in a similar way.)

When implementating (19), one cannot expect perfect
pole-zero cancellation (because of coefficient quantiza-
tion) so that the impulse response is actually infinite. This
could be undesirable because a significantly long impulse
response may adversely affect the convergence rate of the
adaptive algorithm. If 8 in the numerator of (19) is re-
placed by 8 + € where € represents the pole-zero mis-
match, then the impulse response of the kth frequency-
sampling filter becomes

filn) = (ﬂX;N—) [u(n) '<1 n %) u(n — N):t

(21)

where u (n) is the unit step function. If we assume that e
<< 1, then (1 + (e/B))N ~ | + N(e/B) and the mag-

nitude of (21) can be approximated by
Bn

.fk(n)l =N [u(n) —u(n = N)] + 8" 'u(n = N).

(22)

The first term has finite duration and corresponds to the
impulse response of (19) if exact pole-zero cancellation
were possible. The second term has infinite duration and
is introduced by the pole-zero mismatch; however, it is
proportional to . Because € is generally << 1, little effect
from imperfect pole-zero cancellation is expected, except
possibly for large N and for 8 very close to 1. It may be
desirable, therefore, to choose 3 somewhat less than 1
(e.g., B = 0.9). The time constant 7 for the decay of the
infinite part of the impulse response is approximately 7 =
1/(1 — B). Choosing 8 = 0.9 results in 7 = 10 iterations
compared to 7 = 1000 iterations for 8 = 0.999.

D. Additional Realizations

From the FS implementation, the TDL/DFT can be
viewed as a means of converting a wide-band adaptive
filter into several narrow-band adaptive filters. The DFT
operates as a bank of bandpass filters with approximately
nonoverlapping spectra. As such, other types of bandpass
filters (or other orthogonal transformations [28]) might be
used so that the FDAF can be generalized to a class of
parallel-form adaptive IIR filters [31] as shown in Fig. 5.

For example, bandpass filters with smaller overlap
could result in less correlated signals {x;(n)} and cause
the adaptive algorithm in Table II to converge more rap-
idly. These filters would undoubtedly require greater
complexity, resulting in a tradeoff between the conver-
gence rate of the algorithm and the complexity of the
bandpass filters. A modeling issue may also become a
consideration; the bandpass filters should enable the adap-
tive filter to model an arbitrary rational system. This prop-
erty is satisfied only by certain types of bandpass filters.

A Lagrange filter [30] is a generalization of the FS filter
in (18) that satisfies the system-modeling property. Its
transfer function is

N-1
(1 —zz™")

15
X(z) N (1-pz7")

where {z,} are N arbitrarily placed zeros and p; is a pole
that exactly cancels one of these zeros. This structure
would be useful, for example, if it is known a priori that
the spectrum of d(n) is concentrated in some region of
w. Here, it would be more efficient to use bandpass filters
based on the Lagrange filter instead of the FS filter.

In this case, the expressions in (20) for the FS imple-
mentation are replaced by the following similar equa-
tions:

X(z) 1

(23)

w(n) = % 1§0 six(n —1) (24a)

xe(n) = w(n) + pex(n — 1) (24b)
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Fig. 5. Parallel-form adaptive IIR filter using bandpass filters.

where {s,} are the coefficients of the polynomial corre-
sponding to the numerator in (23). Assuming perfect pole-
zero cancellation, (24) represents an FIR filter. (The pre-
vious discussion concerning imperfect pole-zero cancel-
lation also applies here.)

IV. PERFORMANCE IN SYSTEM IDENTIFICATION

System identification and parameter estimation [10],
[32] are fundamental to many applications in automatic
control, communications, and signal processing. This
section investigates several performance characteristics of
the FDAF in a system identification configuration. An un-
derstanding of coefficient convergence here can be useful
in predicting the FDAF performance in applications where
there is no underlying parametric system or where the sig-
nals are nonstationary.

In adaptive filtering applications of system identifica-
tion, the desired response d(n) and adaptive filter input

x(n) are often assumed to be generated as

d(n) = G(q') x(n) + v(n) (25)

where x(n) and v(n) are zero-mean mutually uncorre-
lated signals, and G (z) is the system to be identified. The
additive signal v (n) is usually attributed to measurement
noise.

A. System Modeling

Consider an arbitrary system G(z) with denominator
order P and numerator order M that has the following
transfer function:

1 (1 —dz™)
G(z) = K375 (26)
I 0
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where K is a constant, the poles {a,} and zeros {d, } are
distinct, and

dk,d1¢W%
k=0 --,P—1, 1=0, "
m=0,-+-,N—-1

(27)
M- 1,

Based on the frequency-sampling (FS) structure in (19),
(26) can be rewritten as

M-1
(1-2" NE 11— dizh)
N P—1
(1=2™) I (1 = az™)

G(z) =

(28)

where, without loss of generality, it is assumed that 8 =
1. For M < 2N, this can be expanded as a partial fraction

expansion (PFE)

(1 - Z_N) = Ay

Gry=L"2 )y A
(2) N i=01 — apz”!

N-1 B
+ N 29
k=0 1 — W',i,z") (29)
where A, and B, are the PFE residues and
N-1
1-z7V= kHO (1 — Wizt (30)

has been substituted. Condition (27) is necessary to pre-
vent pole-zero cancellation in (28). The poles must be dis-
tinct so that the PFE results in the form given by (29).
When P = N, the order of the FDAF [represented by
the FS structure contained in (28)] matches the denomi-
nator order of G (z); this case will be referred to as exact
modeling. By appropriate choice of {b;} and {¢,}, (29)
becomes equivalent to
1

(1 =z . by + a7
Gz) = N k=0 (1 —axz " )(1 — Whz™")
(1-2Y' H(2)

N K=o 1 — Whz™V

(31)

which is the transfer function from x(n) to y(n) of the
FDAF. (The time index n emphasizing the adaptive na-
ture of the filter has been suppressed. ) For the equiva-
lence between (29) and (31) to hold, all three coefficients
{ay, by, ¢, } generally must be nonzero. It should be noted
that (29) follows from (28) when M < 2N instead of the
more restrictive M < N. As a result, (31) can represent
an improper system with a numerator order of nearly twice
that of the denominator. This is possible because each
H, (z) has three coefficients instead of the two required by
the parallel implementation in Fig. 1.

When the above conditions are satisfied, it is clear that
(29) is an equivalent expression for (26) and the residues

{A;, B:} are unique. The transition from (29) to (31) is
not unique, however, because there are N! pairings of the
adaptive filter poles at z = a; with those of the DFT (FS
structure) at z = W4 which will produce different values
of {b;, ¢, }. Equation (31), therefore, is not a unique rep-
resentation for (26). Because of this, the MSE surface is
multimodal—having N! minima with zero MSE and, de-
pending on the initial conditions, it is possible for the
adaptive algorithm to converge to any one of them. This
should not be a problem, however, since each minimum
has the same MSE and does not correspond to a local min-
imum. If the algorithm converges to one of these optimal
solutions, the overall transfer function in (31) will be
equivalent to G (z).

The overmodeling (N > P), undermodeling (N < P),
and multiple-pole cases are described in the Appendix.

B. Performance Surface—MSE
Consider the second-order system

) = 1
YT 01 027

G( (32)
which has poles at z = 0.5 and z = —0.4. The interme-
diate output signals of the FDAF for N = 2 are derived
from (11) as follows:

yoln) = <ﬁ%;’—><> (330)
nin) = <"1f7;’>() (330)

where the (fixed) coeflicients are real in this case, and
from (12) with k, = 0 (or from (19) with 8 = 1)

xo(n) =3(1 + q7") x(n) (34a)

xi(n) =41 = g7") x(n). (34b)

From the PFE in (29), the residues are A, = —0.37, By
= 1.43, A, = —0.17, and B, = 1.11. Because N = 2,
two sets of {b;, ¢;} yield a zero MSE. If the adaptive
filter pole at z = 0.5 is paired with the DFT pole at z =
—1 (i.e., gy = —0.4, a; = 0.5), the following coefhi-
cients are obtained: by, = 0.74, ¢, = —0.93, b, = 1.26,
and ¢, = 0.74. Using these coefficients, the FDAF poles
ay and a, were then varied and the MSE was computed.
The results are shown in Fig. 6. (Similar results can be
shown if the adaptive filter pole at z = 0.5 is instead paired
with the DFT pole atz = 1.)

It can be seen in Fig. 6(a) that the MSE increases to-
ward infinity as ¢y — | and @, = —1; on the other hand,
the MSE remains finite as ap > —1 and a; — 1. This
behavior is unlike that of the direct-form adaptive IIR fil-
ter where the MSE generally increases toward infinity if
the magnitude of any pole approaches 1. The FDAF dif-
fers because the DFT has zeros on the unit circle that may
cancel {a;}. From (33) and (34), we see that the DFT
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Fig. 6. Performance surface. (a) MSE. (b) Negative of the MSE truncated
at —1.

zero at z = —1 cancels a pole when gy, = —1; similarly,
the DFT zero at z = 1 cancels the other pole when a, =
1. The MSE surface, therefore, does not have an infinite
slope at all points along the edge of the stability region.

Fig. 6(b) shows the MSE surface of Fig. 6(a) turned
upside down (corresponding to the negative of the MSE)
where all values of MSE greater than 1 have been trun-
cated to 1. This enables viewing small values of MSE,
particularly such minima as the global minimum at ay =
—0.4 and a; = 0.5. Additional properties of the MSE
surface are described in [29].

C. Asymprotic Variance—CRLB

A useful measure of the asymptotic variance of param-
eter estimates in system identification is the Cramer-Rao
lower bound (CRLB) [10], [33]. Based on certain as-
sumptions [10],

cov [6(n) - 6,] = Ni.l_I (35)

TABLE 11
PER-SAMPLE CRAMER-RAO LOWER BOUND OF A SECOND-ORDER
FREQUENCY-DOMAIN ADAPTIVE IIR FILTER

System Poles +p Per-Sample CRLB
+0.01 2.65 x 1013
+0.10 2.52 x 107
+0.25 1.73 x 104
10.50 7.03 x 10!
+0.75 1.82
+0.90 1.24 x 107!
10.99 8.33 x 1074

where cov denotes covariance and J is the Fisher infor-
mation matrix

J = E[¥(n, 6,) y"(n,6,)]. (36)

The scalar N, is the number of data samples and 6, rep-
resents the actual system parameters. Note that the ex-
pectation must be evaluated at 6,; this expression, there-
fore, is contingent on the assumption that 6 (n) converges
to 6, [10].

The CRLB for the coefficients of the FDAF can be de-
termined from (35) using the information vector in (13¢).
Table IIT summarizes the per-sample (N, = 1) bound for
the variance of a,, which corresponds to a diagonal ele-
ment of J ™!, for the following second-order system:

1
(1 =pz™)(1 +pz7')’
The FDAF coefficients { b;, c; } were computed from (29)
and (31) (exact modeling) where N = 2 (8 = 1 and k, =
0). Because the magnitudes of the system poles are iden-
tical, the CRLB is the same for the FDAF poles aq, and
a.

Observe from the table that the bound increases signif-
icantly as the poles move closer to the origin. Intuitively,
this occurs because the time constant of the system im-
pulse response (approximately 7 = 1/(1 ~ [p|) for a
first-order system with a pole at 7 = | p|) becomes smaller
as the poles move toward the origin; for example, 7 =
1.01 for [p| = 0.01 compared to 7 = 100 for p| =
0.99. As a result, the system is characteristically similar
to an FIR filter and can be modeled reasonably well by an
adaptive FIR filter of similar complexity. The large per-
sample variance indicates that it is difficult to identify
poles close to the origin—a result that has been observed
in computer simulations [20].

For poles close to the unit circle, the effective impulse
response can be so long that an adaptive FIR filter cannot
model the system adequately except with a very large
number of coefficients. Here, the adaptive poles must be
close to the true values for a significant reduction in the

G(z) = (37)
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MSE. The small per-sample variance indicates that poles
close to the unit circle are more easily identified.

D. Simulation Results

The configuration described by (25) was used in all
simulations, and x(n) was a white random process with
a uniform distribution and unit variance; in the simula-
tions with additive noise, v (n) was also a white (uniform)
random process uncorrelated with x (n) and with variance
o’. The frequency-domain adaptive algorithm in Table I
with a full Hessian matrix was used except where noted;
the shift parameter k, = 0.5. The FDAF step size «, ini-
tial variance &, and order N are shown in the figures of
the convergence plots. All coefficients {a(n), b (n),
c,(n)} were initialized to zero. An estimate of the MSE
at each instant of time was obtained by averaging |e(n) |
over 25 independent computer runs. The coefficients were
similarly averaged to have smooth trajectories.

1) Exact Modeling: In this case, G(z) was a fourth-
order system with distinct poles located well inside the
unit circle. Its transfer function was

G(z)

_x (1 —0.9z7")(1 + 0.81z7%)
T (1 - 071z "+ 0.2527)(1 + 0.7527" + 0.56277)

(38)

which has poles at p,, = 0.5/+45°, p3, =
0.75/+120°, and zeros at 7, , = 0.9/+90°, z; = 0.9, z,
= 0. The gain K was chosen such that G((fl ) x(n) had
unit power, and was similarly chosen for the other simu-
lations. Fig. 7 shows the MSE learning curve and the pole
trajectories of the FDAF. Observe that only two poles are
shown because the other two are the complex conjugates
of them.

Because N = 4, the FDAF has sufficient order to ex-
actly model G (z). We see that the FDAF poles converge
to the true poles of G (z) (indicated by the dots) and that
the MSE converges essentially to zero. Two points on
each pole trajectory and the corresponding points on the
MSE learning curve have been labeled. Observe that the
poles have very different rates of convergence; a, con-
verges rapidly, approximately by iteration 2000, and a,
requires twice as many iterations, converging by iteration
4000. These results (and that of other simulations) sug-
gest that poles closest to the unit circle have faster rates
of convergence. Notice that a, first “‘wanders’’ over to
frequency bin k = 2, corresponding to the reduced MSE
convergence rate between iterations 1000 and 2000, and
then converges in bin k = 1. It may converge faster if
constrained adaptation is applied to control the pole tra-
jectories; however, this would require a priori knowledge
of the pole locations of G(z).

It is possible to calculate from (31) the values of the
numerator coefficients { b;, ¢, } corresponding to the con-
verged poles in Fig. 7(b); the results are listed in Table
IV. From the trajectories in Fig. 8, we see that the FDAF

30 b

60

MSE (dB)

90 + N=4
o =.01
§=.25
-120 L L
0 1000 2000 3000 4000
ITERATION
(a)
Z-PLANE

UNIT CIRCLE

(b)

Fig. 7. Exact-modeling simulation. (a) MSE learing curve. (b) Pole tra-

jectories.
TABLE IV
PARTIAL FRACTION EXPANSION FOR THE EXACT-MODELING SIMULATION
Filter Coefficients
Index &
a; by Ci

0 0.354 + 0.354) 0.375 - 0.362j -0.134 - 0.076;
1 0.354 - 0.354; 0.375 + 0.362j -0.134 + 0.076/
2 -0.375 + 0.650/ 0.840 + 0.640;j 0.496 - 0.341;
3 -0.375 - 0.650j 0.840 - 0.640/ 0.496 + 0.341;

numerator coefficients converge to the values given in the
table. These results confirm the exact-modeling theory and
demonstrate that the FDAF can model a system of the
same denominator order with distinct poles.

Different forms of the Hessian matrix can be employed
in the adaptive algorithm, as discussed in Section III. Fig.
9 compares the MSE learning curve in Fig. 7(a), which
corresponds to a full Hessian, with those for block-diag-
onal and diagonal Hessians. It can be seen that the slowest
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Fig. 8. Exact-modeling simulation. (a) Trajectory of b,. (b) Trajectory of
b,. (c) Trajectory of ¢,. (d) Trajectory of c,.
! Dissonal Hess Hessian and improves the performance by more than 10
1ag0! iessian . . - .
dB. Notice that the MSE is less than —30 dB by iteration
1000. In applications when there is additive noise, the
0T Block-Diagonal Hessian block-diagonal Hessian may provide satisfactory perfor-
mance.
a 2) Overmodeling: In this simulation, G(z) was the
N second-order system
2 " 1-09z"!
i,  Full Hessian G 4
z) =K — — 39
N=4 @) 1 -0.71z7" + 0.257 2 (39)
-90 - a=.01 . . L.
5=25 with distinct poles at p, , = 0.5/445° and zeros at z; =
‘ 0.9, z; = 0. Fig. 10 shows the MSE learning curve and
pole trajectories for the FDAF with N = 4; again, the
-120 . . . X A
0 1000 2000 3000 400 trajectories of only two poles are shown.

ITERATION

Fig. 9. Exact-modeling simulation. MSE learning curves for the full,
block-diagonal, and diagonal Hessian matrices.

rate of convergence is obtained with the diagonal Hes-
sian, as expected. Using the block-diagonal Hessian re-
quires only slightly more complexity than the diagonal

Observe that the poles have converged to the same value
in frequency bin k = 0, as predicted by the analysis in the
Appendix. Because the MSE has converged to zero, the
FDAF transfer function is equivalent to G(z); however,
the convergence rate is somewhat slower than that of the
simulation shown in Fig. 7. If N = 2 had been chosen
instead, the MSE convergence would be faster and the
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Fig. 10. Overmodeling simulation. (a) MSE learning curve. (b) Pole tra-
jectories.

FDAF would have converged to the exact-modeling so-
lution in (31).

3) Poles Close to the Unit Circle: The system in (38)
was also used in this simulation, except the poles were at
P12 = 0.8/+45° and p; 4 = 0.9/£120°. Observe from
Fig. 11 that the convergence rate of the MSE is fast—
converging by iteration 2000. Furthermore, the poles have
converged exactly to the system poles as expected since
N = 4.

The MSE learning curves of the direct-form adaptive
IR filter are also plotted in Fig. 11 for two values of M
(the numerator order). When M = 2N, the direct form has
the same number of coefficients (3N ) as the FDAF and
similar algorithm complexity. Observe that the direct form
converges slightly faster than the FDAF, which is not un-
expected for two reasons. First, the FDAF is clearly a
more complicated model of the system. In parameter es-
timation theory, a model with sufficient order generally
achieves the best performance, which is known as the par-
simony principle [{10]; models with too many parameters
often have degraded performance. Because the FDAF
must have 3N filter coefficients to model an Nth-order sys-
tem, it cannot be expected to always perform as well as
the direct form.

Paralle! Form

-30

MSE (dB)
3

Direct Form

M =N) N =
o= 01
90
Brgar = 25
Direct Form Bgirect = 1.0
M =2N) Sparae = 1.0
-120 . L .
0 1000 2000 3000 4000
ITERATION
(a)
Z-PLANE

UNIT CIRCLE

(b)

Fig. 11. Simulation with poles close to the unit circle. (a) MSE learning
curves. (b) Pole trajectories.

The second reason is related to the nonuniqueness of
the FDAF coefficients in (31) where there are N! sets of
{ by, ¢} that produce the same transfer function. Conse-
quently, it is possible for some of the FDAF poles to ini-
tially move in one direction and then, as other poles con-
verge, change direction to satisfy (31). An example of
this effect was illustrated in Fig. 7(b). Notice, however,
that the convergence rates of the FDAF and direct form
are very similar up to iteration 500 where the MSE is ap-
proximately —20 dB. For applications with additive noise
or nonzero minimum MSE, the difference in convergence
rates of the two filters becomes less significant.

The MSE learning curve for the parallel form without
preprocessing of the input signal (Fig. 1, using second-
order sections) is also shown in Fig. 11. Because the
subfilters were initialized to zero, observe that conver-
gence is considerably slower. This result is consistent with
the singularity condition described in Section II. The sim-
ulations in [18] show that when the subfilters are initial-
ized with different values, convergence is more rapid, ap-
proaching that of the FDAF. Proper initialization of the
parallel form can lead to satisfactory performance, al-
though it is clear that the convergence rate of the GN al-
gorithm can be severely degraded whenever the coeffi-
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cients lie on (or are near) the surface manifold. The
convergence rate of the GN algorithm for the FDAF is
also slower near this manifold, but the effect is clearly
less significant.

Additive noise with a variance of ¢> = 0.001 was in-
cluded in the next simulation where the system in (38)
was again used, except with poles at p; , = 0.95/445°
and p; 4, = 0.98/4120°. The simplified IIR FDAF algo-
rithm in Table II, which incorporates a block-diagonal
Hessian, updated the coefficients. This example with noise
and system poles very close to the unit circle was de-
signed to stress the FDAF. It can be seen in Fig. 12 that,
even in this difficult case, the convergence rate of the al-
gorithm is fast. The average number of times the poles
attempted to update outside the unit circle was approxi-
mately 75 over the 4000 iterations. As a result of stability
monitoring, the FDAF remained stable during conver-
gence. (Unstable updates were simply skipped as de-
scribed in Section I1.)

The MSE learning curve of the FIR FDAF in Fig. 12
is based on the IIR FDAF with the coefficients {ay, ¢;}
set to zero, and corresponds to the adaptive filter intro-
duced by Narayan [23]. It is apparent that the perfor-
mance of the IIR FDAF is much better even though it has
fewer coefficients; it would be necessary to increase sig-
nificantly the order of the FIR FDAF to achieve similar
MSE performance [19]. The FIR FDAF can only approx-
imately model this IIR system.

4) Frequency-Sampling Realization: In this simula-
tion, the FS implementation of the DFT in (19) was em-
ployed instead of the FFT. Because this implementation
is less complex than the FFT, it is preferred if there is no
degradation in performance. The system was as in (38),
but with poles at p,, = 0.5/+30° and p;, =
0.75/+120°. Fig. 13 displays the results for 8 = 0.9; for
comparison, the MSE learning curve of the FDAF using
the FFT is also shown. Observe that the performance of
the FS-FDAF is similar to that of the FFT-FDAF, and
the FS-FDAF poles have converged to those of G(z).
These results and those of other simulations indicate that
the FS implementation results in essentially the same per-
formance as the FFT. The imperfect pole-zero cancella-
tion discussed in Section III does not appear to adversely
affect the performance of the FDAF.

V. CONCLUSION

Parallel-form realizations for adaptive IIR filtering have
been examined and, in particular, a frequency-domain
adaptive IIR filter (FDAF) has been presented. The FDAF
has a parallel structure of first-order sections that facili-
tates stability monitoring. It is comprised of a DFT that
operates as a bank of bandpass filters to preprocess the
input signal and transform a wide-band adaptive filter into
several narrow-band adaptive filters (Fig. 3). A Gauss—
Newton adaptive algorithm to adjust the coefficients was
detailed; two simpler versions of the algorithm that ex-
ploit orthogonality properties of the DFT were also dis-
cussed. The DFT can be implemented by a frequency-
sampling structure that has similar performance as the
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Fig. 12. Simulation with poles close to the unit circle and additive noise.
MSE learning curves.

30 |

@
=
5 60
(%2}
=
FFT
e VSN
o=.01 FS (B=09) '
8§=.25 !
-120 . .
0 1000 2000 3000 4000
ITERATION
(a)
7 T 7-PLANE
o N
// as
k=2 k=0
,/
/
/ \\
/ \\
/ UNIT CIRCLE |

@ /

(b)

Fig. 13. Frequency-sampling simulation using the full Hessian matrix. (a)
MSE learning curves. (b) FS-FDAF pole trajectories.

FFT but is less complex. It was also shown that the FDAF
can be extended to a general parallel-form adaptive IIR
filter using bandpass filters to preprocess the input signal
(Fig. 5).

Several performance characteristics of the FDAF in a
system identification application were presented. It was
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shown that the FDAF can model exactly any proper ra-
tional system with distinct poles if the order of the FDAF
(DFT) exceeds the denominator order of the system. This
modeling result is actually more general and has signifi-
cance in many other applications such as linear prediction
and channel equalization. The MSE performance surface
of a second-order FDAF was shown to be finite at certain
boundaries of the stability region. Analysis of the CRLB
illustrated the sensitivity of the FDAF to various pole lo-
cations of the unknown system. Finally, computer simu-
lations of the FDAF for several systems were presented
that demonstrate convergence of the adaptive algorithm
and confirm the system-modeling analysis (Fig. 7).

APPENDIX

This appendix describes the modeling properties of the
FDAF in system identification when the order of the
FDAF is different than that of the system being modeled.

1) Overmodeling: Assume that N > P so that the
adaptive filter has more poles than G(z). To exactly
model G (z), one solution requires that N — P feedback
coefficients {a,} be zero. From (29),

1-zM[s Ay By
= +
G2) N k§0 1 —az' 1 — Wy!

N-1

B
L S
k=P 1 — W&z™!
by + 27!

B (1 _ Z_N) P-1
B N k=0 (1 — ayz” ") (1 — Wiz™")
N-1

by
kgP (1 - W’,ﬁ,z_')>
_ =N H()
B N <k§0 (1 —whz™h

N N-1 b

k=p (1 — Whz "))
which is similar to (31) except that N — P subfilters (sec-
ond summation) each contains only one coefficient b. Al-
though this is an exact model of G (z) that will achieve
zero MSE, simulations indicate that the FDAF generally
does not converge to this solution. Another solution is
obtained when all subfilters have nonzero poles, such that

identical poles occur in some of the DFT frequency bins.
Equation (29) can then be rewritten as

(1-zM[5 G D,
=</ +
G(2) N k§0 1 —az' 1 —az!

N-1
By
+ 2 —a—

k=0 1 — W’,‘\,z"}

+

+

(A.1)

(A.2)

where C, + D, = A;. If N = 2P is assumed without loss
of generality, each W} can be paired with a pole of G(z)

so that

(1 -z = by + 27!
G(z) = N <k§0 (1 —az (1 — whkzhH

N bk + Ckz-l >

+ 2
K=p (1 — aepz™)(1 — Wiz")

1 - H,
_ x )kgol—kl’gfz’,i,)z"l' (A.3)

Note that the second summation begins at k = P so that
the corresponding { b, ¢} generally differ from those of
the first; however, for each pole in the first summation,
there is an identical pole in the second (indicated by the
subscript of a;_p). Because of the parallel configuration,
the overall filter will have only P distinct poles. Equation
(A.3) is a valid solution, therefore, and will achieve a
zero MSE (see the simulation in Fig. 10). Notice that there
is an infinite number of minima because of the infinitely
many values for {C;, D;}. Each solution is optimal,
however, with a transfer function equivalent to G (z).

2) Undermodeling: 1f G(z) has more poles than the
FDAF (N < P), the FDAF can only approximate G (z)
and it is not possible to have a zero MSE for any set of
coefficients. Analogous to (A.1),
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Because P — N poles cannot be matched with any W4 of
the FS structure, it is clear that the FDAF can only ap-
proximate G (z). This is true for any adaptive IIR filter
with insufficient order.

3) Multiple Poles: Because of the parallel structure, it
is not possible for the FDAF to model exactly a system
that has multiple poles of the same value. For example,
consider a system that has two poles at z = a. If two of
the FDAF subfilters have a;, = a, the overall transfer
function will have a single pole at z = a. Because the two
subfilters are in parallel, the numerator coefficients can be
combined over the common denominator. (Clearly, the
parallel realization in Fig. 1 also has this property.)

(A4)
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The FDAF can be modified so that double-pole systems
can be modeled if one or more H;(n, z) in (11) are re-
placed by second-order subfilters as follows:
bE(n) + cf(n)g™" + dif(n)g”’

1= af(n)g™" ~ Bf(n)g™?

Ye(n) = xi(n).

(A.5)

With this change, a subfilter can have two poles of the
same value, and it is still easy to confirm stability.

If any of the subfilters are required to have an order
>2, stability verification is no longer trivial and the
FDAF will encounter the same robustness problems as the
direct form. (A possible solution, however, may be to im-
plement the high-order subfilters in a cascade or lattice
form [5].) As a result, the FDAF of Fig. 3 and the parallel
form of Fig. 1 are restricted to applications where the
modeling of multiple poles is not important.
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