
IMPLEMENTATION OF A DRONE-BASED INFORMATION
GATHERING SYSTEM

Tianrui Hu, Yifan Pan, Anshuman Dash, Matthew Tran,
Zhiwen Wu, Phil Tokumaru and Yogananda Isukapalli

University of California, Santa Barbara
Santa Barbara, CA 93106

ABSTRACT

This paper demonstrates the implementation of the Personal Information Gathering System
(PIGS) for information gathering. This system is intended for several specially-designed drones,
a mobile phone, a base station, and a router. Traditionally in combat situations, humans must
risk themselves to gain information and identify potential threats. The PIGS system ensures users
gain comprehensive information autonomously, while safe from threats. The operator can use the
mobile device to remotely command the drones to obtain information, explore different regions,
and perform other information-gathering-related tasks. With 802.11ac Wi-Fi and a lightweight
computer vision model, PIGS allows the operator to interface with the drones through high-level
commands and receive visual information with optional computer vision analysis. The proposed
system offers a safer and more efficient way to gather information in dangerous environments.

INTRODUCTION

Navigating through intricate landscapes such as hills or cities often poses a challenge for hu-
mans when it comes to gathering relevant data and spotting potential hazards. Traditionally, in-
formation gathering would involve finding a high vantage point to obtain information, but this
approach has its limitations. The introduction of portable drones has made information gathering
easier, given their ability to be remotely operated by the user and capture visual data through on-
board cameras. Drones can function in many environments, unaffected by restrictions of terrain
or elevation. However, managing a drone typically necessitates the use of a specially designed
controller and other hardware, which causes difficulty for the user. Moreover, a single drone may
not be reliable in complex conditions, where strong winds or obstacles could cause interference or
even destroy the drone. Consequently, a system that incorporates multiple drones and is controlled
through abstract high-level commands holds significant potential in addressing these challenges.

To address this, our group proposes PIGS: a personal information gathering system. Through
a network of two or more drones, a user is able to command them through various modes to scan
the surrounding area, explore different areas, or perform other information-gathering-related tasks.
Our group aims to provide a proof of concept for this tool, with a ground operator who interfaces
with the drones through a mobile app, while the drones autonomously stream video back to the

1



operator. User control is abstracted to high-level commands, while the drones are intelligently
dispatched to tasks and maneuver accordingly. We also provide manual control for finer control
for more specific flights.

PROJECT OVERVIEW

The P.I.G.S system encompasses hardware design, communication networking, and drone con-
trol logic, with careful consideration given to the selection of hardware and networking compo-
nents that can effectively optimize system performance. The user can remotely control the drones
using high-level commands, enabling the drones to operate in various modes, which can do tasks
like orbit the user, explore a target location, and track and relay detected objects.

As presented in Fig.1, the hardware configuration comprises two drones equipped with several
different components. Each drone utilizes a Cube Orange with RTK GPS capability which is con-
nected to a Raspberry Pi as a communication proxy. The other devices consist of a phone running
the P.I.G.S application, a laptop equipped with an RTK base station serving as the centralized pro-
cessing for the drones and the phone, and a router that supports 2.4 GHz Wi-Fi. A communication
of drone-laptop-phone is built into this network, where the user can operate the network of drones
through their phone.

The network operates within a 2.4 GHz Wi-Fi environment, facilitating communication among
drones, laptops, and phones through various protocols. These protocols include HTTPS, UDP,
TCP, and a file-sharing system. Lightweight protocols like UDP are employed for drone com-
munication to ensure fast communication and streaming for low-power devices. High-reliability
protocols such as TCP are utilized for important messages such as high-level commands from the
phone. The network forwards commands and user locations from phone to drone and vice versa.

To enable high-level abstract control of the two drone systems, multiple algorithms have been
implemented. Internally, the drones utilize a state machine that facilitates transitions between
different modes. Each state within the state machine corresponds to one or multiple modes. Various
flight control and routing algorithms are implemented within these states to ensure the drones
exhibit the desired behaviors safely and consistently.

2



Figure 1: Hardware Block Diagram

DRONE DESIGN

Overview

Shown in Fig.2, the foundation of our drone relies on the robust S500 Quadcopter Drone Frame
2, a decision influenced by our need for a more substantial and steady platform to facilitate high-
quality video capture. In order to ensure sufficient propulsion for flight, our drone is equipped with
ReadyToSky 40A Electronic Speed Controllers (ESCs) which meticulously regulate the drone’s
motor speed. The motors are FlashHobby D3530 units with a 1100KV rating, providing a perfect
balance of power, efficiency, and responsiveness. This system is further complemented by Master
Airscrew 11x4.5 propellers, recognized for their efficiency and reduced noise output. A 6500mAh
4S Lithium Polymer (LiPo) battery is powering this sophisticated array of components. This choice
of battery, renowned for its high energy density and lightweight characteristics, ensures that the
drone can sustain approximately 15 minutes of uninterrupted flight time. This endurance allows
our drone to execute various tasks reliably and consistently over a reasonable distance and time
frame.

3



Figure 2: Image of the drone.

Cube Orange

Cube Orange is the central module for the control of the drone. It contains an STM32H753
processor and an STM32F103 failsafe co-processor which gathers and processes data from internal
and external sensors. For the internal sensors, it has two vibration-isolated IMUs and an ICM
20649 integrated accelerometer to estimate the flying state. It also has an MS5611 barometer for
altitude estimation. The Cube Orange also has various interfaces that are used to connect to the
radio, GNSS, and Raspberry Pi 3A+. All of this data is processed on the Cube Orange using the
ArduPilot autopilot software.

Here3 GNSS and Here+ RTK Base

Here3 GNSS is an accurate global navigation satellite system (GNSS) designed to optimize
the positional accuracy of the drone. It integrates the STM32F302 processor and ICM20948 IMU
sensor to measure the drone’s specific force, angular rate, and orientation. It is capable of connect-
ing to various satellite constellations such as GPS L1C/A, GLONASS L1OF, and BeiDou B1l to
provide the latitude and longitude of the drone. Compatible with Here3 GNSS, the Here+ RTK
GPS is a crucial element of the drone’s positioning system designed to provide real-time kinematic
corrections[1]. These corrections are sent to the drone through the drone’s connection to the base
station and increase the accuracy of the drone’s position estimate.

Raspberry Pi 3 A+

The Raspberry Pi 3 Model A+ is the computer on the drone that is responsible for sending
telemetry data to the ground station. It is a single-board computer that brings high-performance
computing capability into a compact model. It contains a Cortex-A53 64-bit processor and 512MB
LPDDR2 SDRAM, which provides reliable computational power when running multiple tasks

4



simultaneously. The board also contains 802.11 b/g/n/ac wireless LAN which supports 2.4GHz
and 5GHz WiFi connections.

Raspberry Pi Camera Module 2

We opted for the Raspberry Pi Camera Module 2 as our camera of choice, primarily because
of its compatibility with the Raspberry Pi. The module features a Sony IMX219 sensor, which
is capable of recording video at 1080p30 and 720p60. With its 8-megapixel sensor, this camera
enabled us to capture high-quality video that was utilized for object identification through machine-
learning techniques.

COMMANDS AND ALGORITHMS

The objective of this project was to develop a drone system that incorporates user-friendly con-
trol capabilities. Our approach enables users to issue high-level commands to the drone system
directly from their smartphones, without the need to specify commands for each individual drone.
These commands would then be received by a laptop, where they would be parsed into correspond-
ing instructions for each drone. In order to facilitate various flying modes, smooth transitions, and
the execution of the failsafe command at any given time, we designed a hierarchical state machine
for the drone system as shown in Fig. 3

A. Command and Telemetry Flow

To ensure efficient data transmission, we divided the process into two stages: phone-to-laptop
and laptop-to-drones. When the user interacts with the application on their phone, the phone trans-
mits command data to the laptop including the command type, the current GPS location of the
phone, and the target position. Subsequently, the laptop utilizes this information to update the state
machines for both drones. The laptop then sends appropriate commands to the drones, accompa-
nied by timestamps. These commands contain actions such as altering Ardupilot modes, initiating
takeoff, directing the drones to specific locations, and modifying yaw speed. Not receiving a new
timestamp for a given time, a failsafe mechanism prompts the drone to initiate an autonomous
landing.

By implementing the state machine on the laptop, we effectively address the coordination of
both drones during orbiting. This is achieved by ensuring that the target positions are situated at
antipodal points along the trajectory, thereby minimizing the risk of collisions. Furthermore, this
approach eliminates the need for one drone to have knowledge of the other drone’s status, resulting
in enhanced convenience and reduced communication latency.

At each clock cycle, the drone transmits its telemetry data, which includes latitude, longitude,
yaw, altitude, and the current timestamp, to the laptop. If the incoming timestamp is determined
to be outdated, the state machine will change the state of both drones to disconnected state
to prevent incoming commands. Additionally, the laptop relays the received telemetry data, along
with the corresponding drone identifier, to the phone. This information is then displayed on the

5



land state

disconnected

guided state

CMD == 4

cmd == 1

diff < THLD 

CMD == 3

CMD == 3

CONNECTED

explore_orbit

wait_orbit two_orbit

start_orbit

radar
cmd == 3

CMD == 0

CMD == 5

CMD == 3

CMD == 2 & target == null

(CMD == 2 | CMD == 6) & target == null

cmd == 6
diff < THLD 

time == true

connected wait_mov

one_orbit

arr_rotate

CMD == 3

table of CMD

1 land

2 explore mode

3 orbit mode

4 both drones ready

5 radar mode

6 bird-eye mode

ACK == false

Figure 3: The hierarchical state machine for the drone system implemented in the laptop. CMD represents
the high-level command sent from the phone.

phone’s map interface, providing real-time updates on the drone’s position.

B. Hierarchical State Machine in Laptop

All the drone starts with the disconnected state on the ground in Ardupilot land mode.
Once receiving a new timestamp from the drone, the connection to the Raspberry Pi is established,
and it will change flying mode to Ardupilot-guided mode for future state transition commands. If
one drone fails in pre-arm checks, it reverts to the disconnected state as a safety precaution.

In the guided state, we implemented different flying modes for the drone system. Once re-
ceiving the takeoff command, both drones will ascend to a preset height and enter a loiter mode,
maintaining a given altitude. Then, the laptop will utilize the current location of the phone as the
center point to generate a series of circular trajectories. Both drones will be dispatched to two an-
tipodal points on the circular trajectory by issuing the orbit command. When the distance between
the current position of a drone and its target position is smaller than a predefined threshold, the
drone will transition into the wait_orbit state and awaits the arrival of the other drone.

After both drones enter the wait_orbit state, they will automatically transition to the two_orbit
state, where the laptop will keep sending commands to direct the drones to the next point on
the trajectory. If the user is moving, target locations will adjust to orbit around the user. From
two_orbit state, the drone system can handle bird-eye, explore, and radar commands. Upon
receiving an explore command, the laptop directs one drone closer to the destination while in-
structing the other drone to one_orbit state to keep orbiting. If an orbit command is received,
the laptop guides both drones back to the antipodal points with the shortest distance, thereby going
back to two_orbit state.

At any given time during the guided state, the user has the option to send a land command
to both drones, prompting them to transition back to the disconnected state. This command
serves as a failsafe, interrupting the current command and initiating a controlled landing. Which
ensures safety in the event of emergencies.

6



COMMUNICATION PROTOCOL

As depicted in Fig.4, the selection of communication protocols is pivotal in the project’s net-
working architecture, where the reliability of communication is paramount. Ensuring the secure
delivery of commands is vital for drone safety, while also maintaining network efficiency and scal-
ability. Given these prerequisites, several protocols have been adopted for communication between
drones, laptops, and phones.

For communication between the drone and the laptop, the UDP protocol is employed. Through-
out the flight, each drone onboard Raspberry Pi consistently transmits video footage and drone-
related information to the laptop. Simultaneously, the laptop dispatches commands containing
location data to the drone, also utilizing UDP. The protocol’s resource efficiency and simplicity
make it suitable for a low-energy Raspberry Pi. Moreover, in complex environments where the
connection to distant drones may not be stable, the UDP protocol’s capacity to endure package
loss helps preserve essential communication[2].

In addition to the UDP protocol, a file-sharing system serves as an auxiliary communication
method between the drone and the laptop. This system operates by continuously writing com-
mands in a file located within the drone, allowing the drone to receive instructions from this file.
While not as efficient as UDP, it does not necessitate an independent communication thread, mak-
ing it a practical low-power solution for drone communication. This method proves beneficial in
situations with low power availability or in unstable environments.

For communication between the phone and the laptop, which are usually in proximity to the
user, the TCP protocol is utilized. As this protocol guarantees data packet delivery in the same
sequence they were sent and includes error detection and correction mechanisms, it ensures data
accuracy and precise location calculations.

Furthermore, for laptop-to-phone communication, an HTTPS server is employed. The laptop
sets up a webpage containing the feed from each drone camera. The phone accesses this feed by
visiting the web page’s URL, thereby allowing the laptop to stream multiple feeds simultaneously
and ensuring system scalability. This method also enables efficiency as the phone only communi-
cates with relevant video feeds. The security of this protocol can be enhanced by implementing an
access token for the HTTPS server.

USER INTERFACE

Mobile Phone Application

Users can interact with the drones through the mobile phone application called PIGSDrone.
The application is designed for Android devices running on Android API Level 26 (Android 8.0),
which is compatible with 93.44% of Android devices as of January 2023 [3]. However, in theory,
this application design can also be implemented on other platforms that support touchscreen inter-

7



Figure 4: Block diagram for the communication and protocols we used in the network.

faces, such as iOS and Linux mobile.

PIGSDrone consists of a single screen with one Android Activity [4]5.a. This screen serves
as a centralized hub for all information and commands, allowing for efficient interaction. The top
half of the screen displays a map utilizing the Google Map API. It shows the locations of both
the drones and the user’s phone during the flight. Users can set a targeted location for the explore
mode by pressing the desired location on the map. Additionally, buttons aligned to the left of the
map enable users to focus on specific drones or their own location.

Below the map, videos from the drones’ cameras are displayed. Each video is streamed to
an HTTPS webpage by a laptop and accessed by the PIGSDrone application through a web view
window. Only one video, corresponding to one drone’s camera, can be accessed by the applica-
tion at a time. Users have the ability to switch between the two cameras. If object detection is
activated, the application overlays bounding boxes and identifies objects in the video stream, as
shown in Fig.5.b. The location of the phone and the drones is shown beneath the video, providing
supplementary information to the map display.

At the bottom of the screen, there are ten buttons for controlling the drones. These buttons
include commands to switch the video stream, activate object detection, and control the movement
of the drones. All commands can be executed with a single click, eliminating the need for manual
controls, which are not included in the application.

Object Detection

The application of object detection through computer vision significantly enhances the func-
tionality and operational efficiency of drone scouting, granting it the capability to execute tasks
autonomously and safely. PIGSDrone employs a Tensorflow-based YOLOv5-Lite model [5], a

8



Figure 5: Screenshots of PIGSDrone Mobile Application on Pixel 6. We show the overall layout of the app,
and the video dispalyed with object detection in the radar mode(b).

lean yet powerful deep learning construct capable of performing real-time object detection across
80 classes on a mobile device. Upon activation by a user, the model identifies the object of interest
and annotates the video feed in real-time with bounding boxes.

Testing has shown that the model delivers satisfactory performance on 720p 30Hz video with-
out substantial delay when deployed on Google’s Pixel 6 with the Google Tensor platform. Even
for drone footage of lower resolution at 360p 15Hz, devices with relatively lower computational
power should be able to execute the model effectively.

Furthermore, the PIGS Drone system offers flexibility in terms of model selection. The weights
of the YOLOv5-Lite model can be replaced with those of other models as per user requirements.
Models such as the YOLOv5-small have also undergone testing. Users also have the opportunity
to implement specially designed Convolutional Neural Network (CNN) layers and custom datasets
into their models and integrate them with PIGSDrone, thereby enhancing the extensibility of the
system. See [6] for a demo video of the system.

CONCLUSION

This paper discussed the design choices of PIGS with the intention of a simple to use, and
robust system for information relay. In our approach to this problem, we utilize several different
communication protocols at various different stages of our project, along with various different

9



techniques for software flow control. Our project provides an open-source implementation of our
solution to the original motivation, along with the reasoning for our design choices, both system
and network. There is still room for improvement through potentially more processing power, to
allow for more robust and efficient communication between components of the system, to allow
for more fault tolerance and versatility.

Our solution delivers a network of drones controllable from a high level for the user, along
with various different methods of retrieving the data for the user. This is a relatively inexpensive
system, with the addition of being highly configurable and extensible for future work. This future
work can entail new modes, adding new sensors for more generalized object avoidance, along with
more telemetry measurements for task-specific implementation.

ACKNOWLEDGMENTS

We would like to thank AeroVironment for sponsoring this project and Tiziano Fiorenzani for
his guidance.

REFERENCES

[1] J. W. Yanming Feng, “Gps rtk performance characteristics and analysis,” Journal of Global
Positioning Systems, vol. 7, no. 1, pp. 1–8, 2008.

[2] “Pigs laptop backend.” https://github.com/yifanpan2023/drone_command.

[3] P. Taylor, “Mobile android operating system market share by version worldwide from january
2018 to january 2023,” 2023.

[4] “Pigs drone android application.” https://github.com/Hudayday/PIGSDrone.

[5] J. Wang, Y. Chen, Z. Dong, and M. Gao, “Improved yolov5 network for real-time multi-scale
traffic sign detection,” Neural Computing and Applications, vol. 35, no. 10, pp. 7853–7865,
2023.

[6] “Pigs project demo.” https://www.youtube.com/watch?v=dZNtxEBDu8k.

10

https://github.com/yifanpan2023/drone_command
https://github.com/Hudayday/PIGSDrone
https://www.youtube.com/watch?v=dZNtxEBDu8k

	ABSTRACT
	INTRODUCTION
	PROJECT OVERVIEW
	DRONE DESIGN
	COMMANDS AND ALGORITHMS
	Command and Telemetry Flow
	Hierarchical State Machine in Laptop

	COMMUNICATION PROTOCOL
	USER INTERFACE
	CONCLUSION
	ACKNOWLEDGMENTS

