Distributed Coordination with Deaf Neighbors: Efficient Medium Access for 60 GHz Mesh Networks

Sumit Singh*, Raghu Mudumbai^ and Upamanyu Madhow*

*Department of ECE, University of California, Santa Barbara, CA
^Department of ECE, The University of Iowa, Iowa City, IA

IEEE INFOCOM 2010
March 17th, 2010
The 60 GHz millimeter (mm) wave band

• Unlicensed short range transmissions
• Oxygen absorption band (~ 16dB/Km)
• Low-cost mm wave transceivers feasible

A lot going on in industry

WiGig Alliance, WirelessHD, IEEE 802.15.3c, IEEE 802.11ad, ECMA
60 GHz outdoor mesh networks
Mm wave communication is fundamentally different!

- Omnidirectional links are not an option
 - Path loss, power, transceiver complexity

\[
\frac{P_r}{P_t} \propto \frac{1}{f^2}
\]
Mm wave communication is fundamentally different!

• Omnidirectional links are not an option
 – Path loss, power, transceiver complexity

• Directional transmission and reception essential
 – Highly directional circuit board antenna arrays are feasible

\[
\frac{P_r}{P_t} \propto f^2 \frac{1}{f^2} = f^2
\]
Mm wave communication is fundamentally different!

- Omnidirectional links are not an option
 - Path loss, power, transceiver complexity

- Directional transmission and reception essential
 - Highly directional circuit board antenna arrays are feasible

\[\frac{P_r}{P_t} \propto \frac{1}{f^2} \]

Mm wave links are inherently directional

=> new challenges in system design!
Link budget

- 2 Gbps (QPSK)
- 100 m
- Tx power: 10dBm
- Bandwidth: 1.5 GHz
- SNR: 15 dB
- Oxygen absorption: 15 dB/Km
- Noise figure: 6 dB
- Link margin: 10 dB
“Omni-steerable” directional mesh nodes

- 2.4 GHz Wi-Fi antenna
 - D = 5dBi
 - ~15cm

- Circular array antenna for a 60 GHz mesh network
 - D = 30dBi
 - ~15cm
 - <10°

Reconfigurable circular array
- Total 10 angular slots; 5 slots installed
What about medium access control?

• No *omnidirectional* mode
What about medium access control?

• No *omnidirectional* mode

• Can no longer rely on carrier sensing (*deafness*)
What about medium access control?

• No omnidirectional mode

• Can no longer rely on carrier sensing (*deafness*)

• What about interference?

 – *wire-like* characteristics [1]

What about medium access control?

• No omnidirectional mode

• Can no longer rely on carrier sensing (*deafness*)

• What about interference?

 – *wire-like* characteristics [1]

MAC challenge: transmit-receive coordination in a deaf network

Memory-guided Directional MAC (MDMAC)

- Implicit coordination via *persistence* on successful Tx/Rx slots
 - Unsuccessful slots on a *per-neighbor blacklist*
Memory-guided Directional MAC (MDMAC)

• Implicit coordination via *persistence* on successful Tx/Rx slots
 – Unsuccessful slots on a *per-neighbor blacklist*

• Tx-Rx history => feedback for implicit coordination
Memory-guided Directional MAC (MDMAC)

- Implicit coordination via *persistence* on successful Tx/Rx slots
 - Unsuccessful slots on a *per-neighbor blacklist*
- Tx-Rx history => feedback for implicit coordination
- No attempt at proactive interference avoidance
MDMAC – key idea

• Implicit coordination via *persistence* on successful Tx/Rx slots
 – Unsuccessful slots on a *per-neighbor blacklist*

• Tx-Rx history => feedback for implicit coordination

• No attempt at proactive interference avoidance
MDMAC – key idea

• Implicit coordination via *persistence* on successful Tx/Rx slots
 – Unsuccessful slots on a *per-neighbor blacklist*
• Tx-Rx history => feedback for implicit coordination
• No attempt at proactive interference avoidance

Frame 1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Tx(B)</td>
<td>Tx(B)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Tx(C)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>Tx(A)</td>
</tr>
</tbody>
</table>

Failed transmission
Successful tx/rx
Blacklisted slot
MDMAC – key idea

- Implicit coordination via *persistence* on successful Tx/Rx slots
 - Unsuccessful slots on a *per-neighbor blacklist*
- Tx-Rx history => feedback for implicit coordination
- No attempt at proactive interference avoidance

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Tx(B)</td>
<td>Tx(B)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Tx(C)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Tx(A)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>Tx(B)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Tx(C)</td>
<td>Rx(A)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Rx(B)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MDMAC – key idea

• Implicit coordination via persistence on successful Tx/Rx slots
 – Unsuccessful slots on a per-neighbor blacklist
• Tx-Rx history => feedback for implicit coordination
• No attempt at proactive interference avoidance

Overall schedule evolution
A naive approach
A naive approach
A naive approach

SUCCESS!

B C

SUCCESS!
A naive approach
A naive approach

Node A gets locked out!
Starvation with a naive approach

How to avoid locking into undesirable schedules?
Probabilistic state reset
Probabilistic state reset
Probabilistic state reset

- Randomization of persistence and blacklist lifetimes

Probabilistic state reset avoids locking into undesirable schedules
Explicit state reset

Total committed slots > T% => state reset for neighbor with highest share of resources
Explicit state reset
Explicit state reset

- Randomization of persistence and blacklist lifetimes
- Leave *enough room* in the schedules

Explicit state reset facilitates quick adaptation to changing demands
Effect of parameter choices

- Markov chain fixed point analysis for an outgoing link
- Understand the effect of persistence and blocked slot lifetimes, listening probability p_I
Effect of parameter choices

- Markov chain fixed point analysis for an outgoing link
- Understand the effect of persistence and blocked slot lifetimes, listening probability p_l

State diagram for an outgoing link

$$P = F(P)$$

- Iterative algorithm to find steady state probabilities
Effect of parameter choices

- **2-node case**

<table>
<thead>
<tr>
<th></th>
<th>P(Transmit)</th>
<th>P(Unavailable)</th>
<th>P(Idle)</th>
<th>P(Blocked)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Model</td>
<td>0.489</td>
<td>0.489</td>
<td>0.015</td>
<td>0.007</td>
</tr>
<tr>
<td>Protocol Simulation</td>
<td>0.492</td>
<td>0.492</td>
<td>0.013</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Effect of parameter choices

• 2-node case

<table>
<thead>
<tr>
<th></th>
<th>P(Transmit)</th>
<th>P(Unavailable)</th>
<th>P(Idle)</th>
<th>P(Blocked)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Model</td>
<td>0.489</td>
<td>0.489</td>
<td>0.015</td>
<td>0.007</td>
</tr>
<tr>
<td>Protocol Simulation</td>
<td>0.492</td>
<td>0.492</td>
<td>0.013</td>
<td>0.002</td>
</tr>
</tbody>
</table>

• 4 neighbors per node

Average state lifetimes: throughput loss from churn versus dynamic schedule adaptability
Listening probability: performance relatively insensitive within a range
MDMAC performance: saturated traffic

Aggregate network throughput

MDMAC: higher throughput than Directional Slotted Aloha, comparable to Greedy Maximal Scheduling
Missed transmit opportunities

MDMAC schedules within 7% of the corresponding largest cardinality maximal matchings
Mesh network multihop traffic model

MDMAC: higher throughput, lower delay and jitter than DSA
Adapting to changes in traffic

MDMAC facilitates quick adaptation to changing traffic demands
Summary

• 60 GHz mesh networks: need for a novel design approach
 – Pseudo-wired link abstraction
 – MAC focus on coordination rather than interference management

• Memory-guided Directional MAC
 – TDM-like schedules in a deaf network by using memory
 – Random *churn* for quick schedule adaptation
 – Exploits interference reduction, deals with deafness

• A lot more to do!
 – Lightweight protocols for synchronization, network discovery
 – Omni coverage yet highly directional nodes: hardware challenges
 – Channel modeling: effect of reflections and obstacles
 – Routing, congestion control, ...
Thank you

For further information

Visit: http://www.ece.ucsb.edu/wcsl/mmwcsresearch/

Sumit Singh
sumit@ece.ucsb.edu
Related publications:

MAC level fairness

<table>
<thead>
<tr>
<th></th>
<th>25 node topologies</th>
<th>50 node topologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMS</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>MDMAC</td>
<td>0.91</td>
<td>0.88</td>
</tr>
<tr>
<td>DSA</td>
<td>0.39</td>
<td>0.20</td>
</tr>
</tbody>
</table>

MAC fairness index

MDMAC has good MAC level fairness properties