Exercise 8 (State transition matrix of an LTV system). Consider the system
\[
\dot{x} = \begin{bmatrix} 0 & t \\ 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ t \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x, \quad x \in \mathbb{R}^2, \ u, y \in \mathbb{R}.
\]
(a) Compute its state transition matrix.
(b) Compute the system’s output to the constant input \(u(t) = 1, \ \forall t \geq 0 \), for an arbitrary initial condition \(x(0) = [x_1(0) \ x_2(0)]^T \).

Exercise 9 (Matrix powers and exponential). Compute \(A^t \) and \(e^{At} \) for the following matrices
\[
A_1 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 3 \end{bmatrix}.
\]

Exercise 10 (Jordan normal forms). Compute the Jordan normal form of the \(A \) matrix for the system represented by the block diagram in Figure 2.