Simultaneous Model Predictive Control and Moving Horizon Estimation for Blood Glucose Regulation in Type 1 Diabetes

David A. Copp¹*, Ravi Gondhalekar¹, and João P. Hespanha¹

¹University of California, Santa Barbara, CA 93106, U.S.A.

SUMMARY

A new estimation and control approach for the feedback control of an artificial pancreas to treat type 1 diabetes mellitus is proposed. In particular, we present a new output feedback predictive control approach that simultaneously solves the state estimation and control objectives by means of a single min-max optimization problem. This involves optimizing a cost function with both finite forward and backward horizons with respect to the unknown initial state, unmeasured disturbances and noise, and future control inputs, and is similar to simultaneously solving a Model Predictive Control (MPC) problem and a Moving Horizon Estimation (MHE) problem. We incorporate a novel asymmetric output cost in order to penalize dangerous low blood-glucose values more severely than less harmful high blood-glucose values. We compare this combined MPC/MHE approach to a control strategy that uses state-feedback MPC preceded by a Luenberger observer for state estimation.

In-silico results showcase several advantages of this new simultaneous MPC/MHE approach, including fewer hypoglycemic events without increasing the number of hyperglycemic events, faster insulin delivery in response to meal consumption, and shorter insulin pump suspensions, resulting in smoother blood-glucose trajectories.

1. INTRODUCTION

Type 1 Diabetes Mellitus (T1DM) is a metabolic auto-immune disease that destroys pancreatic β-cells, making it impossible for the pancreas to produce insulin, a hormone the body uses to regulate glucose levels in the blood stream and to facilitate the absorption of glucose into many types of cells. Because of this, people with T1DM require monitoring of Blood-Glucose (BG) levels and delivery of insulin from an external source. If BG levels are not regulated well, people with T1DM suffer from hyperglycemia and hypoglycemia (high and low BG levels, respectively), which can cause severe health problems. An individual who experiences hyperglycemia over long periods of time may, for example, eventually experience cardiovascular disease, kidney failure, and retinal damage, possibly after many years. Hypoglycemia, on the other hand, may have immediate consequences ranging from dizziness and unconsciousness to possibly even coma or death.

Much recent research has been devoted to the feedback control of an Artificial Pancreas (AP) in order to reduce the burden and improve the effectiveness of T1DM treatment by automating the dosing and delivery of insulin [1, 2, 3]. In the AP, it is the job of a feedback controller to determine appropriate amounts of insulin to be delivered given measurements of BG levels. This work focuses...
on control of an AP that delivers insulin using a Continuous Subcutaneous Insulin Infusion (CSII) pump and receives BG measurements based on a Continuous Glucose Monitor (CGM) [4], as is the case with AP units destined for outpatient use. Given the potentially severe consequences of excessive or insufficient insulin delivery, the algorithms for feedback control of an AP are crucial for the successful treatment of T1DM [3, 5].

One of the most popular control approaches for the delivery of insulin using an AP is Model Predictive Control (MPC) [6, 7, 8]. Given a model of the plant to be controlled and the current state of the plant, MPC involves solving an online optimization problem over a future time horizon. This yields a sequence of optimal control inputs to be applied to the plant in the future as well as predicted states of the plant based on these inputs [9, 10]. Only the first element of the computed input sequence is applied as an input to the plant, and at each sampling time, this technique is repeated. MPC has been one of the most successful advanced control methods in many industries, including the feedback control of an AP, because of its ability to explicitly handle hard state and input constraints. For a survey of MPC applications in industry, see [11].

Classic MPC is formulated assuming full-state feedback. However, this is not practical in most control problems where only noisy measurements of the state are available. Therefore, a state estimation scheme is needed to accompany the state feedback controller. Indeed, when designing a feedback controller for an AP, only measurements of a person’s BG from a CGM, which contain noise and delays, are available, so a state estimation strategy is required. Examples of algorithms for state estimation include observers, filters, and moving horizon estimation, some of which are discussed in [12]. Some of the authors’ past work has involved the use of a Luenberger observer for state estimation with an AP [13, 14, 15, 16]. The performance of this Luenberger observer was compared to that of Moving Horizon Estimation (MHE) in [17], and it was found that MHE provided better state estimates and allowed faster insulin delivery in response to meal consumption. MHE is, in some sense, the dual of MPC and characterizes an estimate of the state by solving an optimization problem in real time. The optimization problem is formulated over past measurements and inputs. The use of online optimization in MHE is attractive because constraints can be accommodated explicitly.

In this work, we utilize a novel combination of MPC with MHE recently proposed in [18, 19]. Specifically, we consider output feedback using a model that explicitly includes additive measurement noise and input disturbances, and formulate the combined MPC and MHE problem as a single min-max optimization over both control inputs (min) and the unknown initial state and input disturbances (max). In this way, we solve both the MPC and MHE objectives simultaneously, which gives us an optimal (in a certain sense) control input sequence at each sampling time for worst-case (in a certain sense) estimates of the current state, disturbances, and noise.

The BG regulation problem exhibits inherent asymmetry, which poses a challenge when designing a controller. The asymmetry stems from the fact that hypoglycemia has more immediate and dire consequences than hyperglycemia, insulin can only be delivered, not removed, and, in the single-hormone AP considered here, there is no control action available for increasing BG. Therefore, responding assertively to hyperglycemia and commanding corrective insulin, but not over-correcting and thereby inducing subsequent hypoglycemia, is a paramount and difficult challenge. Many AP controllers utilize supervisory control or additional safety logic to address this challenge. In this work, however, we propose an appropriate choice of the MPC cost function to address this challenge without the need for additional ad hoc safeguards. Specifically, we consider an asymmetric output cost that penalizes “riskier” low BG values more severely than high BG values. Asymmetric output costs have been considered by others in works such as [8, 20] but with different implementations.

Our proposed output cost function is not only asymmetric but also assigns very low cost to BG values within a safe range in order to regulate BG values to be within that range, rather than tracking a particular set-point, similar to the AP controllers deployed in clinical trials [13, 16, 21]. In this way, our output cost function enforces a small penalty for BG values within a desired range and sharply (asymmetrically) penalizes excursions outside of that range. This approach has proven useful in AP applications as there exists a set of BG values generally considered to be safe, and it is extremely
difficult to obtain accurate physiological models [22]. There is often large plant-model mismatch due to the significant variability in the physiology of a single individual over time as well as due to differences between individuals. It is also difficult to accurately model the noise and delays that are present in the BG measurements provided by a CGM. Therefore, regulating to a range of BG values is one method to prevent excessive response to changes in the measurements when the measured BG level is safely within the desired range.

To demonstrate the differences and benefits of the combined MPC/MHE strategy, in this paper the results are compared to results from a method that has performed successfully in outpatient clinical trials. The method is a state-feedback MPC strategy that utilizes asymmetric input costs and a Luenberger observer for state estimation and is described in [13]. Throughout the paper, we refer to this approach as the MPC/LO method. In [13], the MPC/LO method is augmented with feed-forward control action following user-initiated meal announcement, insulin-on-board constraints [23], diurnal zones and constraints, and other safety features required for clinical trials. One of the goals of this paper is to show that the novel MPC/MHE method has benefits over the MPC/LO control method without the additional safety features that are currently required for safe execution of an automated system in human clinical trials. Towards this goal, we compare the performance of MPC/MHE with that of the basic MPC/LO, and for neither algorithm we include the safety augmentations mentioned above. It is thus important to clarify that the simulation results presented here (for MPC/LO and for MPC/MHE) are not representative of expected results in trials, since these would require additional safety considerations.

We demonstrate the benefits of this MPC/MHE approach by presenting in-silico studies based on the commercially available 10-subject Universities of Virginia/Padova (UVA/Padova) metabolic simulator accepted by the United States Food and Drug Administration (USFDA) [24]. The in-silico results showcase several advantages of the MPC/MHE approach, including fewer hypoglycemic events without increasing the number of hyperglycemic events, faster insulin delivery in response to meal consumption, and shorter insulin pump suspensions, resulting in smoother BG trajectories.

The paper is organized as follows: We present the control-relevant model, desired BG range, and input constraints in Section 2. In Section 3 we describe our combined MPC/MHE estimation and control approach, and compare it to a simplified version of the approach from [13] utilizing state-feedback MPC with a Luenberger observer as state estimator. In Section 4 we compare the results of the two estimation and control approaches and discuss the advantages of the MPC/MHE approach. Finally, we conclude with closing remarks in Section 5.

2. PROBLEM FORMULATION

2.1. Insulin-glucose transfer function

Because it is difficult to derive accurate models, and because there are long delays and significant noise in the CGM measurements, accurate estimation and effective control for an AP is exceptionally challenging. We use the control-relevant model proposed in [22], which has successfully been employed in AP controller design in [13, 16]. The model is a discrete-time linear time-invariant (LTI) system with sample period $T_s = 5$ minutes. Denoting the current time by t, the scalar plant input is the administered insulin bolus $u_{IN,t}$ [U] delivered per sample-period, and the scalar plant output is the subject’s BG value $y_{BG,t}$ [mg/dL]. The plant is linearized around a steady-state that is assumed to result in a BG output $y_s = 110$ [mg/dL] when applying the subject-specific, basal input rate u_{BASAL} [U/hour].

The input u_t and output y_t of the LTI model are defined as

$$u_t := u_{IN,t} - u_{BASAL} \times T_s, \quad y_t := y_{BG,t} - y_s.$$
is given by
\[
\frac{\mathcal{V}(z^{-1})}{U(z^{-1})} = \frac{1800g}{u_{TDI}} \times \frac{z^{-3}}{(1-p_1z^{-1})(1-p_2z^{-1})^2}
\]
(1)

with poles \(p_1 = 0.98, p_2 = 0.965\), the subject-specific total daily insulin amount \(u_{TDI} [U]\), and with the constant
\[
g := -90(1-p_1)(1-p_2)^2
\]

employed to set the correct gain and for unit conversion. The number 1800 comes from the “1800 rule” to estimate BG decrease with respect to delivering rapid-acting insulin [25].

2.2. State-space model

For control, we utilize a state-space model of the form
\[
x_{t+1} = Ax_t + Bu_t + Dd_t \quad y_t = Cx_t + n_t,
\]
(2)

with
\[
A := \begin{bmatrix} p_1 + 2p_2 & -2p_1p_2 - p_2^2 & p_1p_2^2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 3}
\]
\[
B := \frac{1800g}{u_{TDI}} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T \in \mathbb{R}^3
\]
\[
D := -B/10 \in \mathbb{R}^3
\]
\[
C := \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{1 \times 3}.
\]

The state is \(x_t \in \mathbb{R}^3\). The inputs are the control input \(u_t\) that belongs to the set \(U \subset \mathbb{R}\), and the unmeasured disturbance \(d_t\) that is assumed to belong to a set \(D \subset \mathbb{R}\). The measurement noise \(n_t\) belongs to the set \(N \subset \mathbb{R}\). The nominal system ((2) without \(d_t\) and \(n_t\)) is an equivalent realization of (1). We have included noise and disturbance terms \(n_t\) and \(d_t\), respectively, in order to explicitly account for model uncertainty, additive disturbances, and sensor noise. The matrix \(D\) is chosen to allow the disturbance to affect the state an order of magnitude smaller, and in the opposite way, than the insulin delivered as the control input does. Therefore, a positive disturbance \(d\) induces a rise in modeled BG output, akin to the consumption of carbohydrates.

2.3. Desired blood-glucose range

In the MPC/LO approach that we compare with, a range of desired BG values, i.e., the BG values generally considered safe and for which delivering the insulin basal rate is appropriate, is considered. This range is \([\underline{r}, \overline{r}]\) mg/dL, where \(\underline{r} = 80\) and \(\overline{r} = 140\), the same as in [22, 26]. For simplicity, the range is time-invariant, in contrast to [13, 16]. In order to implement this range in the controller, BG values are penalized according to the range excursion \(Z : \mathbb{R} \rightarrow \mathbb{R}\) defined as
\[
Z(y) := \arg\min_{\alpha \in \mathbb{R}} \{\alpha^2|y + y_s - \alpha| \in [\underline{r}, \overline{r}]\}.
\]
(3)

For the MPC/MHE approach, we do not penalize BG values based on their excursion from a strictly defined range, but rather approximate the desired range by penalizing values according to the following functions \(h : \mathbb{R} \rightarrow \mathbb{R}\) and \(c : \mathbb{R} \rightarrow \mathbb{R}\):
\[
h(y) := (\arctan(0.1y) + \pi/2)y + 10, \quad c(y) := \lambda h(-y + \overline{r}) + \hat{\lambda} h(y - \underline{r} + 20)
\]
(4)

where \(c(y)\) is parameterized by \(\hat{\lambda}\), the weight on low BG, and \(\lambda\), the weight on high BG. These weights can be chosen to separately tune the control response to hypoglycemia and hyperglycemia. In this work, we choose \(\lambda = 0.02\) and \(\hat{\lambda} = 0.005\) based on experimentation. The remaining numbers in (4), such as 0.1, \(\pi/2\), 10, and 20, are chosen to shift the nominal cost as desired. Plots of these functions \(h\) and \(c\) are shown in Figure 1. The output cost used in the MPC/MHE cost function (6) below is \(c(y)^2\). Therefore, the output cost is asymmetric with respect to the desired BG range, roughly penalizing lower BG values 4² times more heavily than higher BG values.
2.4. **Insulin delivery constraints**

At each time t the control input is restricted to the set \mathcal{U} defined as

$$\mathcal{U} := \{u_t \in \mathbb{R} | 0 \leq u_t + u_{\text{BASAL}} \times T_s \leq u_{\text{MAX}}\},$$

where $u_{\text{MAX}} = 25$ [U] is the maximum bolus size the CSII pump is allowed to command, and is selected in this work to be so large that it is practically impossible for the upper bound to become active.

3. **ESTIMATION AND CONTROL APPROACH**

In this section, we discuss our novel MPC/MHE estimation and control approach and compare it to a control strategy that is based on state-feedback MPC with a Luenberger Observer (MPC/LO). As discussed in the introduction, a more complicated version of this MPC/LO approach augmented with additional safety features has been used in clinical trials, but we use a simplified version as a benchmark-controller in this study. First we define some notation: We denote by $\mathbb{Z}_{\geq 0}$ the set of non-negative integers, by \mathbb{Z}_+ the set of positive integers, and by \mathbb{Z}_a^b the set of consecutive integers a, \ldots, b. Given a discrete-time signal $w : \mathbb{Z}_{\geq 0} \to \mathbb{R}^n$ and two times $t_0, t \in \mathbb{Z}_{\geq 0}$ with $t_0 < t$, we denote by $w_{t_0:t}$ the sequence $\{w_{t_0}, w_{t_0+1}, \ldots, w_t\}$. The prediction horizon is denoted by $T \in \mathbb{Z}_+$, the control horizon is denoted by $M \in \mathbb{Z}_+^T$, and the estimation horizon is denoted by $L \in \mathbb{Z}_+$. In this work, we choose $T = 9$, $M = 5$, and $L = 3$ (where T and M are chosen the same as in [13], and L was chosen based on experimentation).

3.1. Combined MPC and MHE

Our estimation and control approach combines MPC and MHE as discussed in [18, 19], where the MPC and MHE optimization objectives are incorporated within a single min-max optimization problem, the solution of which simultaneously characterizes solutions to the MHE and MPC subproblems. We formulate the MPC/MHE problem as a finite-horizon min-max optimization problem, to be solved at each time t, of the form

$$\begin{align*}
\min_{u_{t:t+M-1}} \quad & \max_{d_{t-L:t+T-1}} \quad J_t(x_{t-L}, u_{t-L,t-1}, u_{t:t+M-1}, d_{t-L:t+T-1}, n_{t-L:t})
\end{align*}$$

where $J_t(\cdot)$ is the cost function

$$J_t(\cdot) = \sum_{k=t+1}^{t+T} c(Cx_k)^2 + \sum_{k=t}^{t+M-1} \lambda_u u_k^2 - \sum_{k=t-L}^{t-1} \lambda_d d_k^2 - \sum_{k=t-L}^{t} \lambda_n n_k^2,$$

Copyright © 2016 John Wiley & Sons, Ltd.
Prepared using ocaauth.cls
DOI: 10.1002/oca
and subject to

\[x_{k+1} = Ax_k + Bu_k + Dd_k \quad \forall k \in \mathbb{Z}_{t-L}^{t+T-1} \]
\[y_k = Cx_k + n_k \quad \forall k \in \mathbb{Z}_{t-L}^{t} \]
\[d_k \in \mathcal{D} \quad \forall k \in \mathbb{Z}_{t-L}^{t+T-1} \]
\[u_k \in \mathcal{U} \quad \forall k \in \mathbb{Z}_{t-L}^{t+M-1} \]
\[u_k = 0 \quad \forall k \in \mathbb{Z}_{t+M}^{t+T-1} \]

where \(\lambda_u, \lambda_d, \) and \(\lambda_n \) are positive scalar weights on the control input \(u \), disturbance \(d \), and measurement noise \(n \), respectively. In this work, we choose these weights to be \(\lambda_u = 2, \lambda_d = 2, \) and \(\lambda_n = 300 \). The running cost \(c(\cdot) \) is given in (4) and shown in Figure 1(b).

Equations (8a)-(8b) enforce the dynamics of the model (2). Equations (8c) and (8d) enforce that the input disturbance and control input belong to the constraint sets \(\mathcal{D} \) and \(\mathcal{U} \) (as defined in (5)), respectively. In this work, we define the constraint set \(\mathcal{D} := \{d \in \mathbb{R} | 0 \leq d \leq 0.5 \} \). A disturbance of \(d = 0.5 \) would counteract the effects of delivering 0.05 [U] insulin (which turns out to be slightly more than the standard deviation of the mean insulin delivered using the MPC/MHE approach shown later in Figure 3). Lastly, equation (8e) ensures that, beyond the control horizon \(M \), the basal rate \(u_{BASAL} \) is delivered.

The criterion defined in (7) depends on the unknown initial state \(x_{t-L} \), the unknown disturbance input sequence \(d_{t-L:t+T-1} \), the measured output sequence \(y_{t-L:t} \) via the cost on \(n_{t-L:t} \), and the control input sequence \(u_{t-L:t+M-1} \). The control input sequence is composed of two distinct sequences: the (known) past inputs \(u_{t-L:t-1} \) that have already been applied, and the future inputs \(u_{t+1:T} \) that need to be characterized. To select the future inputs \(u_{t+1:M-1} \), we optimize (minimize) the criterion (7) with respect to these variables, akin to standard MPC. At a given time \(t \in \mathbb{Z}_{\geq 0} \), we do not know the values of \(x_{t-L} \) and \(d_{t-L:t+T-1} \) (and \(n_{t-L:t} \), which depend on these), so we optimize the criterion under worst-case assumptions on these variables (i.e., maximize (7)). The optimization (6) is repeated at each time step, i.e., every \(T_s = 5 \) minutes.

As is common in MPC, at each time \(t \), we use as the control input the first element of the sequence

\[u_{t:t+M-1}^* = \{u_t^*, u_{t+1}^*, u_{t+2}^*, \ldots, u_{t+M-1}^*\} \]

that minimizes (6), leading to the following control law:

\[u_t = u_t^*, \quad \forall t \in \mathbb{Z}_{\geq 0}. \]

At each time \(t \), after the solution to (6) is computed, the control input commanded to the pump is the value of \(u_t^* \) rounded down to the nearest integer multiple of the CSII pump-discretization of 0.05 [U] [13]. The portion that is removed when rounding down is then added to the control command given at time \(t + 1 \) in a so-called carry-over scheme, which is precisely described in [13].

More details and theoretical results regarding this approach to combine MPC with MHE can be found in [18, 19]. A particular primal-dual-like interior-point method was developed by the authors to numerically solve these optimization problems, and details about this method can be found in [19].

3.2. State-feedback MPC and Luenberger Observer

For completeness, we now give a brief overview of the simplified asymmetric MPC/LO approach that we use for comparison. The full MPC/LO approach used in clinical trials is described in detail in [13]. The purpose of this work is to investigate the benefits of the proposed MPC/MHE method with the simplest possible comparison to an existing AP control method; therefore, the version of this MPC/LO approach with which we compare does not include several important safety features that are included in [13] for deployment in clinical trials. These additional features are diurnal BG target ranges and constraints, feed-forward control action following user-initiated meal-announcement, and insulin-on-board constraints. For more details on these additional features of the MPC/LO approach and its performance in trials, we refer the interested reader to [13, 27].
The main conceptual difference between this MPC/LO approach and the MPC/MHE approach described above is that the MPC/MHE approach employs output-feedback, whereas the MPC/LO approach is based on state-feedback. State-feedback control is dependent upon the state estimator whose function is independent of, and unrelated to, the control design. In the MPC/MHE approach, the state estimate and control are computed simultaneously, so they directly affect each other and yield an input that is designed for a worst-case cost outcome. Another difference is that with MPC/LO the asymmetric cost is on the control input rather than the predicted output as with MPC/MHE. This is meant to facilitate decoupled design of the control response to hypoglycemia and hyperglycemia, whereas the asymmetry on the output in the MPC/MHE approach allows both the minimizer and the maximizer to affect the result asymmetrically because the predicted output depends on both \(u \) and \(d \). Finally, neither disturbances nor noise are explicitly considered in this MPC/LO approach.

The state estimate \(\hat{x}_t \) that is used for control in the MPC/LO approach is found using a linear recursive state estimator known as a Luenberger observer (see e.g. [28]). This state estimator is given by

\[
\hat{x}_{t+1} = A\hat{x}_t + K(y_t - \hat{y}_t) + Bu_t, \quad \hat{y}_t = C\hat{x}_t, \tag{10}
\]

where the gain \(K \) is designed as in [13].

We formulate the asymmetric MPC/LO problem as a finite-horizon optimization problem, to be solved at each time \(t \), of the form

\[
\min_{u_{t:T+M-1}} J_t(x_t, u_{t:t+M-1}) \tag{11}
\]

with cost function

\[
J_t(\cdot) := \sum_{k=t+1}^{t+T} z_k^2 + \sum_{k=t}^{t+M-1} (\hat{R}u_k^2 + \hat{R}u_k^2), \tag{12}
\]

and subject to

\[
x_{t+1} = A\hat{x}_t + Bu_t \quad \forall k \in \mathbb{Z}_{t+T-1} \tag{13a}
\]

\[
y_k = Cx_k \quad \forall k \in \mathbb{Z}_{t+T} \tag{13b}
\]

\[
u_k \in \mathcal{U} \quad \forall k \in \mathbb{Z}_{t+M-1} \tag{13c}
\]

\[
u_k = 0 \quad \forall k \in \mathbb{Z}_{t+T-1} \tag{13d}
\]

\[
u_k = \max(u_k, 0) \quad \forall k \in \mathbb{Z}_{t+M-1} \tag{13e}
\]

\[
u_k = \min(u_k, 0) \quad \forall k \in \mathbb{Z}_{t+T-1} \tag{13f}
\]

\[
z_k = Z(y_k) \quad \forall k \in \mathbb{Z}_{t+M-1} \tag{13g}
\]

where \(\hat{R} \) and \(\hat{R} \) are positive scalar weights on the non-negative and non-positive control inputs, respectively. As in [13], we choose the weights to be \(\hat{R} = 7000 \) and \(\hat{R} = 100 \) in order to conservatively respond to hyperglycemia while encouraging pump attenuation in response to predicted hypoglycemia. As before, only the first element \(u^*_k \) of the predicted optimal insulin trajectory is commanded to the pump, and the optimization (11) is repeated at each time step, i.e., every \(T_s = 5 \) minutes.

Equation (13a) enforces that the initial state is defined as the state estimate from the Luenberger observer (10). Equations (13b)-(13c) enforce the dynamics of the model (2) without considering disturbances or noise. Equation (13d) enforces that the control input belongs to the constraint set \(\mathcal{U} \) (as defined in (5)). Equation (13e) ensures that, beyond the control horizon \(M \), the basal rate \(\bar{u}_{BASAL} \) is delivered. Equations (13f)-(13g) facilitate an asymmetric input cost and provide positive and negative deviations of the input \(u_k \) from \(\bar{u}_{BASAL} \). Finally, (13h) provides the cost for output excursions from the desired BG range, where \(Z(y_k) \) is defined in (3).
Figure 2 shows the input and output costs used in both the MPC/MHE approach and the MPC/LO approach.

(a) Output costs. The desired and admissible BG ranges are shown in green and yellow, respectively, for reference. 50 for comparison because \(R/\lambda u = 50 \).

(b) Input costs. The MPC/MHE input cost is multiplied by 50 for comparison because \(R/\lambda u = 50 \).

Figure 2. Output and input costs for MPC/MHE and MPC/LO as given in the first and second terms of (7) and (12), respectively.

4. SIMULATION STUDY

The efficacy of this combined MPC/MHE estimation and control approach is demonstrated via in-silico trials of 10 virtual subjects using the commercially available UVA/Padova USFDA accepted metabolic simulator [24]. Simulations\(^{1}\) start at 14:00 and are 28 hours in duration. The simulations begin with two hours of open-loop until 16:00 when the feedback controller is turned on, and simulations run in closed-loop until 18:00 the next day. Every simulation includes three 90 gram carbohydrate (gCHO) meals consumed at 18:30, 07:00, and 13:00, respectively. For most people, 90 gCHO constitutes a large meal, and it happens to be the largest meal allowed in the clinical protocol of [27]. The parameters of both the simulator and controller are time-invariant, so the time of day of meal consumption is irrelevant. We only consider the most challenging case of unannounced meals, meaning the controller has no information about when a meal is consumed, or how large any consumed meal is, and therefore the meal-disturbance is rejected based on CGM feedback only. To further stress the controller, the UVA/Padova simulator includes subjects with parameter values that may be considered slightly physiologically implausible.

We consider a total of 110 simulations. All 10 subjects in the commercially available UVA/Padova metabolic simulator are simulated 11 times: 10 times with different seeds for random CGM additive sensor noise, and once with no additive sensor noise. Even without additive sensor noise, the CGM measurements are subject to dynamics and delays that cause it to differ from the true (simulated) BG values. For more details, see [24]. We make no assumptions about the CGM measurement noise, which is, in general, neither zero-mean nor Gaussian. Therefore, we do not introduce constraints on the measurement noise but simply penalize it according to the last term in (7).

4.1. Comparison of MPC/MHE and MPC/LO

The aggregate results for all 110 simulations are shown in Figure 3(a). A zoomed version of these results for the first meal is shown in Figure 3(b). To yield a meaningful comparison, the MPC/MHE approach is tuned specifically to achieve similar hyperglycemic peaks after meal consumption as those achieved by the MPC/LO approach. This facilitates a comparison between

\(^{1}\) All simulations were performed by Ravi Gondhalekar at the University of California, Santa Barbara (UCSB).
the proposed MPC/MHE and benchmark MPC/LO approach, with respect to the other glucose control metrics. In particular, the aggregate results in Figure 3(a) show that the MPC/MHE approach is able to prevent the extremely low BG values that are within the min/max envelope of the MPC/LO approach. In addition, the MPC/MHE approach does not cause a large rebound in BG just before 03:00 as the MPC/LO approach does. However, we see that, on average, BG values are not regulated back to within the desired BG range as soon after a meal is consumed using the MPC/MHE approach. Finally, the hyperglycemic peak after the third meal is noticeably lower for the MPC/MHE approach; this is likely due to the fact that the MPC/MHE approach enforces shorter pump suspensions, resulting in more insulin-on-board, which helps to attenuate the BG response due to the meal. We discuss this further later.

The insulin profiles, shown in the bottom plots of Figure 3, are significantly different. The amount of insulin delivered using the MPC/MHE approach peaks at a lower value after a meal is consumed, but it continues delivering insulin above the basal rate for longer than the MPC/LO approach. Another significant difference is that, after a meal is consumed, the MPC/MHE approach responds more quickly by delivering insulin above the basal rate before the MPC/LO approach does. This is most easily seen in Figure 3(b). This benefit is likely due to the difference in estimation schemes; the Luenberger observer is recursive, which may cause its state estimate to lag slightly when a rapid change in the state occurs. The advantage of this faster insulin delivery achieved with MPC/MHE is quantified in Figure 7 below.

These features are also seen, perhaps more clearly, in Figure 4, which shows results for an individual subject for both the MPC/MHE approach and the MPC/LO approach. This particularly challenging virtual subject was chosen to highlight the differences between the approaches. For both the MPC/MHE and MPC/LO approaches, Figure 4 shows the actual BG trajectories in the top plot and the insulin delivered in the bottom plot. The MPC/MHE approach tends to keep BG levels slightly higher but effectively mitigates the extreme hypoglycemia experienced using the MPC/LO approach. The MPC/LO approach clearly suspends the pump (i.e., delivers 0 [U] of insulin) much longer than the MPC/MHE approach in the face of impending hypoglycemia. This results in a larger rebound in the BG for the MPC/LO approach after 00:00 as well as a higher peak after the third meal. Finally, the bottom plot shows that the MPC/MHE approach commands insulin to be delivered above the basal rate earlier than the MPC/LO approach after meal consumption.

Another way to present aggregate performance of a controller for the AP problem is to consider Control-Variability Grid Analysis (CVGA) plots as described in [29]. Figures 5(a) and 5(b) show the CVGA plots for our MPC/MHE approach as well as the MPC/LO approach, respectively, for all 110 simulations. The black dots represent each simulation’s minimum (horizontal axis) and maximum (vertical axis) BG values with the highest and lowest 2.5% removed. The large blue dot denotes the arithmetic mean of the individual black dots, and the blue circle has a radius of the standard deviation of the distances of each individual dot.

The CVGA plots in Figure 5 show that our MPC/MHE approach has a mean value that is shifted to the left and just slightly higher than the mean value of the MPC/LO approach. This means that our MPC/MHE approach is effective at keeping subjects from experiencing dangerously low BG levels with the caveat that they may experience slightly higher glucose levels on average. This comparison is easy to see in Figure 4 for a single subject. In addition, the standard deviation for the MPC/MHE approach is significantly smaller than the standard deviation for the MPC/LO approach. A reduction in the CVGA standard deviation implies that the same controller is affected less by inter-subject variability. The resulting number of simulations in each of the CVGA zones, as well as the mean and standard deviation values, are given in Table I below for both approaches. These statistics indicate that the MPC/LO approach has 11 black dots in the upper right-hand corner superimposed.

4.2. Quantifying these results

In this section we quantify the advantages of using the MPC/MHE approach over the MPC/LO approach. Specifically, the MPC/MHE approach results in: 1) fewer hypoglycemic events with the same number of hyperglycemic events, 2) fewer and shorter insulin pump suspensions, helping to smooth BG trajectories, and 3) accelerated insulin delivery in response to meal consumption.
Figure 3. Aggregate results of all 110 simulations for the MPC/MHE approach (blue) and the MPC/LO approach (red). The top plots show the mean BG trajectory as well as its standard deviation and minimum/maximum envelope. The bottom plots show the mean insulin delivered as well as its standard deviation and minimum/maximum envelope.

(a) Entire simulation. The red vertical bars at 18:30, 07:00, and 13:00 indicate times a 90 gCHO meal is consumed.

(b) First meal response.

The main drawback of using the MPC/MHE approach is that the BG values are slightly higher on average. Table I contains the aggregate results for both approaches. The first set of rows shows the time-in-range percentages of two BG intervals and several thresholds. As we noted before, the MPC/LO approach keeps the BG within the desired range a larger percentage of the time and also results in less time above hyperglycemic values. The MPC/MHE approach, on the other hand, results in significantly less time below hypoglycemic thresholds. Both approaches may be tuned to adjust these values, but in this work, we tuned the MPC/MHE approach specifically to achieve comparable hyperglycemic peaks as the MPC/LO approach in order to contrast other features of the controllers.
Figure 4. Results for Subject #7 with random additive noise seed 2. The top plot shows the BG for both the MPC/MHE approach (blue solid) and the MPC/LO approach (red dashed). Similarly, the bottom plot shows the insulin delivered for each approach as well as the basal insulin rate (green solid).

Figure 5. CVGA plots for 110 simulations. The circles are centered on the mean with radius equal to the standard deviation. Related statistics are provided in Table I.

The second and third set of rows in Table I list the number of simulations and events, respectively, for which BG values are above or below several thresholds. The two control strategies were tuned to achieve close to equal BG peaks after meal consumption, and therefore the two approaches’ control performance with respect to hyperglycemic statistics are very similar. However, using the MPC/MHE approach results in half as many simulations experiencing hypoglycemia of less than 60 [mg/dL] and far fewer hypoglycemic events. Histograms for the number of hyperglycemic and hypoglycemic events are given in Figure 6(a).

The fourth set of rows in Table I shows the number of pump suspensions that last longer than particular lengths of time. A histogram of these results is shown in Figure 6(b). The MPC/MHE approach results in fewer suspensions of lengths greater than 15 and 30 minutes and results in no pump suspensions longer than 60 minutes. This is an advantage because, while suspending the pump is important in order to attenuate predicted hypoglycemic BG values and safeguard from dangerous outcomes, long pump suspensions can deteriorate overall performance as less insulin is present in
the body, causing BG values to rebound or peak higher after a meal is consumed. Both of these issues can be seen in the aggregate results in Figure 3(a) and the individual results in Figure 4 where a long pump suspension, as commanded by the MPC/LO approach, causes BG values to rebound after the first meal and peak higher after the third meal.

Figure 6. Histograms for the number of hyperglycemic and hypoglycemic events as well as the number of pump suspensions for the MPC/MHE approach (blue) and the MPC/LO approach (red).

The fifth set of rows in Table I gives the number of UCSB Health Monitoring System (HMS) alarms [30] and number of simulations that experience HMS alarms. The MPC/MHE approach causes significantly fewer alarms than the MPC/LO approach. Minimizing the number of alarms is important when implementing these controllers because if alarms go off too frequently, subjects may experience “alarm fatigue” and ignore the alarms. The sixth set of rows in Table I gives the numerical results corresponding to the CVGA plots in Figure 5. The seventh set of rows gives the mean, minimum, and maximum BG values for each approach. The MPC/MHE approach results in a slightly higher mean BG but also a higher minimum BG. Interestingly, the MPC/MHE approach produces a very slightly lower maximum BG. The eighth set of rows gives the Low Blood Glucose Index (LBGI) and High Blood Glucose Index (HGBI), as computed according to [8]. As expected, the MPC/MHE approach results in a lower LBGI but a higher HGBI. Finally, the last row gives the total amount of insulin delivered using each approach averaged over all 110 simulations as well as the standard deviation and minimums and maximums. The MPC/MHE approach delivers less insulin than the MPC/LO approach; therefore, it is not surprising that the MPC/MHE results in slightly higher mean BG.

The last advantage, and one that is not quantified in Table I, is that the MPC/MHE approach delivers insulin more quickly after a meal. This was mentioned when discussing the aggregate responses after the first meal shown in Figure 3(b) and is precisely quantified in Figure 7, which shows the cumulative insulin delivered as well as the mean BG after a meal averaged over all three meals and all 110 simulations for both approaches. For reference, the basal insulin rate is shown and increases at a rate of 0.1026 [U/5min]. On average, BG begins to rise about 10 minutes after a meal is consumed. After 20 minutes, the MPC/MHE approach begins to deliver insulin at a rate higher than the basal rate. The MPC/LO approach, on the other hand, does not deliver insulin at a rate higher than the basal rate until 30 minutes after a meal is consumed. Consequently, the MPC/MHE approach delivers more insulin compared to the MPC/LO approach for the first 55 minutes after a meal is consumed, after which time the MPC/LO approach continues delivering insulin at a higher rate. Moreover, the mean BG is lower for the MPC/MHE approach until about 105 minutes after meal consumption even though it starts out slightly higher than the BG for the MPC/LO approach before a meal. This faster response to increasing BG values after a meal may be due to using an MHE-like state estimator as opposed to a Luenberger observer because the Luenberger observer computes the estimates recursively and, therefore, may produce a lagging state estimate if the state is rapidly changing. This phenomenon is also found in [17] when specifically comparing the results.
of a state-feedback MPC strategy using both a Luenberger observer and an MHE for estimating BG. The MPC/MHE approach does not, however, cumulatively deliver as much insulin as the MPC/LO approach, so BG values stay slightly higher for longer using the MPC/MHE approach.

Figure 7. Cumulative insulin delivered (blue) and mean BG (red) since a meal consumption for both MPC/MHE and MPC/LO approaches averaged over all three meals and 110 simulations.

5. CONCLUSIONS

We presented a new estimation and control approach for regulating BG in T1DM. This approach simultaneously performs Model Predictive Control and Moving Horizon Estimation in a single min-max optimization problem to form a feedback controller that results in elevated cost-conservatism with respect to disturbances. This combined MPC/MHE approach incorporates an asymmetric output cost penalizing “riskier” low BG values more severely than high BG values. We compared this approach to a state-feedback MPC approach that utilized a Luenberger observer for state estimation and incorporated an asymmetric input cost in order to decouple the controller’s response to low versus high BG values. This MPC/LO approach is a simplified version of an estimation and control approach that has been successfully tested in clinical trials.

Both of these control and estimation approaches were evaluated by in-silico studies utilizing a metabolic simulator. In 110 simulations of 10 virtual subjects, we found that while the MPC/MHE approach keeps BG values slightly higher on average, it successfully reduces the number of hypoglycemic events without increasing the number of hyperglycemic events, it delivers insulin sooner in response to meal consumption, and it commands shorter insulin pump suspensions, which results in smoother BG trajectories. Therefore, this MPC/MHE approach may be advantageous for the feedback control of an AP for the treatment of T1DM.

6. ACKNOWLEDGMENTS

The authors thank Dr. F. J. Doyle III and Dr. E. Dassau, both of Harvard University, for their support, and for providing the environment that lead to this work. The authors acknowledge that access to the UVA/Padova metabolic simulator was provided by an agreement with Prof. C. Cobelli (University of Padova) and Prof. B. P. Kovatchev (UVA) for research purposes. All simulations using the metabolic
simulator were performed by Ravi Gondhalekar at UCSB. Ravi Gondhalekar acknowledges funding provided by the National Institutes of Health: DP3DK094331, R01DK085628.

REFERENCES

Table I. Aggregate results for the two comparisons considered.

<table>
<thead>
<tr>
<th>BG [mg/dL] % time</th>
<th>MPC/MHE</th>
<th>MPC/LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>∈ [80, 140]</td>
<td>45.47</td>
<td>49.19</td>
</tr>
<tr>
<td>∈ [70, 180]</td>
<td>56.62</td>
<td>61.24</td>
</tr>
<tr>
<td>< 80</td>
<td>1.05</td>
<td>1.85</td>
</tr>
<tr>
<td>< 70</td>
<td>0.39</td>
<td>1.30</td>
</tr>
<tr>
<td>< 60</td>
<td>0.13</td>
<td>0.99</td>
</tr>
<tr>
<td>< 50</td>
<td>0.03</td>
<td>0.68</td>
</tr>
<tr>
<td>< 40</td>
<td>0.00</td>
<td>0.34</td>
</tr>
<tr>
<td>> 180</td>
<td>42.99</td>
<td>37.46</td>
</tr>
<tr>
<td>> 250</td>
<td>20.84</td>
<td>17.53</td>
</tr>
<tr>
<td>> 300</td>
<td>7.70</td>
<td>5.98</td>
</tr>
<tr>
<td>> 350</td>
<td>1.93</td>
<td>1.43</td>
</tr>
<tr>
<td>> 400</td>
<td>0.58</td>
<td>0.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Simulations with BG [mg/dL]</th>
<th>MPC/MHE</th>
<th>MPC/LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 80</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>< 70</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>< 60</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>< 50</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>< 40</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>> 180</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>> 250</td>
<td>109</td>
<td>108</td>
</tr>
<tr>
<td>> 300</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>> 350</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>> 400</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Events BG [mg/dL]</th>
<th>MPC/MHE</th>
<th>MPC/LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 80</td>
<td>34</td>
<td>45</td>
</tr>
<tr>
<td>< 70</td>
<td>15</td>
<td>36</td>
</tr>
<tr>
<td>< 60</td>
<td>8</td>
<td>34</td>
</tr>
<tr>
<td>< 50</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>< 40</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>> 180</td>
<td>330</td>
<td>332</td>
</tr>
<tr>
<td>> 250</td>
<td>285</td>
<td>285</td>
</tr>
<tr>
<td>> 300</td>
<td>131</td>
<td>128</td>
</tr>
<tr>
<td>> 350</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>> 400</td>
<td>21</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Pump Suspensions</th>
<th>MPC/MHE</th>
<th>MPC/LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 15 min</td>
<td>201</td>
<td>291</td>
</tr>
<tr>
<td>≥ 30 min</td>
<td>28</td>
<td>111</td>
</tr>
<tr>
<td>≥ 60 min</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>≥ 90 min</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>≥ 120 min</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>≥ 150 min</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># HMS Alarms</th>
<th>MPC/MHE</th>
<th>MPC/LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CVGA zone count: A</th>
<th>MPC/MHE</th>
<th>MPC/LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CVGA zone count: B</th>
<th>MPC/MHE</th>
<th>MPC/LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CVGA zone count: C</th>
<th>MPC/MHE</th>
<th>MPC/LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CVGA zone count: D</th>
<th>MPC/MHE</th>
<th>MPC/LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CVGA zone count: E</th>
<th>MPC/MHE</th>
<th>MPC/LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CVGA circle radius</th>
<th>MPC/MHE</th>
<th>MPC/LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.31</td>
<td>12.26</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BG mean: mean±std [min,max]</th>
<th>MPC/MHE</th>
<th>MPC/LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>180±18.92 [152,219]</td>
<td>171±14.90 [148,201]</td>
<td></td>
</tr>
<tr>
<td>94±16.72 [43,122]</td>
<td>89±23.65 [22,121]</td>
<td></td>
</tr>
<tr>
<td>307±47.18 [247,427]</td>
<td>307±53.62 [246,457]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LBGI: mean±std [min,max]</th>
<th>MPC/MHE</th>
<th>MPC/LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17±0.29 [0.00,1.97]</td>
<td>0.47±1.08 [0.00,4.51]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Daily Insulin [U]: mean±std [min,max]</th>
<th>MPC/MHE</th>
<th>MPC/LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.4±6.6 [32.7,57.3]</td>
<td>42.5±7.1 [33.1,59.5]</td>
<td></td>
</tr>
</tbody>
</table>